Power linear Keller maps with ditto triangularizations

He Tong Michiel de Bondt*

October 21, 2014

Abstract

We show that power linear Keller maps $F=\left(x_{1}+\left(A_{1} x\right)^{d}, x_{2}+\left(A_{2} x\right)^{d}, \ldots\right.$, $\left.x_{n}+\left(A_{n} x\right)^{d}\right)$ are linearly triangularizable if (1) $\operatorname{rk} A \leq 2$ or (2) cork $A \leq 2$ and $d \geq 3$ or (3) cork $A=3, d \geq 5$ and the diagonal of A is nonzero. Furthermore, we show that the triangularizations can be chosen power linear as well.

1 Introduction

The famous Jacobian Conjecture, which was first formulated by O.H. Keller in 1939, for short JC, asserts that for every $n \geq 1$ the following holds:

If $F=\left(F_{1}, F_{2}, \ldots, F_{n}\right)$ is a polynomial map over \mathbb{C} with constant nontrivial Jacobian determinant, then F is invertible.
In the 1980's, there are two famous reduction results. At first, it is shown that in order to prove the JC, it suffices to verify the JC for polynomial maps F over \mathbb{C} of special cubic homogeneous form:

$$
F=x+H=\left(x_{1}+H_{1}, x_{2}+H_{2}, \ldots, x_{n}+H_{n}\right)
$$

where each component H_{i} of H is either zero or homogeneous of degree 3 , see [1]. Later, Ludwik Drużkowski showed in [8] that in addition, one may assume that each component H_{i} of H is a third power of a linear form:

$$
F=x+(A x)^{* 3}=\left(x_{1}+\left(A_{1} x\right)^{3}, x_{2}+\left(A_{2} x\right)^{3}, \ldots, x_{n}+\left(A_{n} x\right)^{3}\right)
$$

where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right), A_{i}$ is the i-th row of an $(n \times n)$-matrix A, and $A_{i} x$ is the matrix product

$$
\left(\begin{array}{llll}
A_{i 1} & A_{i 1} & \cdots & A_{i n}
\end{array}\right) \cdot\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)
$$

[^0]For the case $\operatorname{deg} F \leq 2$, S. Wang had already proved in 1980 that the JC is true over any field of characteristic $\neq 2$, see [17] and [1].
In 1993, David Wright showed that in case $n=3$, the JC holds for maps F having special cubic homogeneous form, see [18]. In particular F is so called 'linearly triangularizable', see definition 2.5. In 1994, the result of Wright was extended to the case $n=4$ by Engelbert Hubbers, see [13], but for $n=4$, maps of special cubic homogeneous form are not always linearly triangularizable. Hubbers used a (for those days) strong computer to get these results.
More than 10 jears later, the result of Wright was extended in another direction: Arno van den Essen and the second author showed that in case $n=3$ the JC holds for maps F having special homogeneous form in general (not just cubic) in [2]. The main theorem of [2] asserts that F is even linearly triangularizable, just as in the cubic case.
But let us focus on special cubic linear maps $x+(A x)^{* 3}$ and, more generally, special power linear maps $x+(A x)^{* d}$, from now on. At the same time that Wright showed the case $n=3$ for special homogeneous cubic maps, Drużkowski showed that for special cubic linear maps $F=x+(A x)^{* 3}$ with rk $A \leq 2$ or $\operatorname{cork} A \leq 2, F$ is invertible, see [9]. In particular, F is tame.
Although the results of Drużkowski for degree $d=3$ generalize to degree $d \geq 3$ in a straightforward manner, we have chosen to rewrite these results. The main reason for this is that the proofs of Drużkowski are very sketchy; at some points, one can better speak of 'guidelines of how to prove'.
Furthermore, Drużkowski only proved tameness in [9], which is weaker than linear triangularizability, but for the case $\operatorname{cork} A \leq 2$, his proof is powerful enough for linear triangularizability, as Charles Ching-An Cheng observes in [4]. In the same article, Cheng proves linear triangularizability for the case $\operatorname{rk} A=2$ and $d=3$.
But this proof is quite long. Cheng presents a much shorter proof for the case $\operatorname{rk} A=2$ and d arbitrary in [6], by showing the following result (Theorem 2 in [6]):

Theorem 1.1. Let $F=x+(A x)^{* d}$ be a power linear Keller map, $r=\operatorname{rk} A$, and assume that all special homogeneous Keller maps of degree d in dimension r are linearly triangularizable. Then F is linearly triangularizable as well.

Since it is a classical result that for $r=2$, the conditions of this theorem are fulfilled (see [1], [2] or [6]), the case $\operatorname{rk} A=2$ and d arbitrary follows. As mentioned above, the main result of [2] was exactly the case $r=3$ of the conditions of the above theorem for all d, so the case $\operatorname{rk} A=3$ and d arbitrary follows as well, as mentioned in [2].
We shall show that power linear Keller maps $F=\left(x_{1}+\left(A_{1} x\right)^{d}, x_{2}+\left(A_{2} x\right)^{d}, \ldots\right.$, $\left.x_{n}+\left(A_{n} x\right)^{d}\right)$ are linearly triangularizable in each of the following cases:
(1) $\operatorname{rk} A \leq 2$,
(2) $\operatorname{cork} A \leq 2$ and $d \geq 3$,
(3) $\operatorname{cork} A=3, d \geq 5$ and the diagonal of A is nonzero.

Furthermore, we show that in all of the above cases, the triangularizations can be chosen power linear as well. For a significant part, our results are based on the work of Drużkowski in [9].
Although the results for $\operatorname{rk} A \leq 2$ are valid for any d, those for $\operatorname{cork} A \leq 2$ apply only to the case $d \geq 3$. This restriction is not important for the JC, since it has already been proved for any polynomial map over \mathbb{C} with degree $d \leq 2$. On the other hand, the invertibility statement of the JC is weaker than linear triangularizability, so it is worth mentioning that in 2002, Cheng proved that quadratic linear Keller maps $x+(A x)^{* 2}$ with cork $A=1$ are linearly triangularizable, see [5].
In the last section, we present a quadratic linear map in dimension 6 with $\operatorname{rk} A=\operatorname{cork} A=3$, which is, as observed above, linearly triangularizable, but without a linear triangularization that is quadratic linear as well. So in our result for $\operatorname{cork} A=3$, the assumption $d \geq 5$ or at least some assumption on d, is necessary.

2 Definitions and preliminaries

Definition 2.1. Write A^{t} for the transpose of a matrix A. Now let A be an $(n \times n)$-matrix. We write e_{i} for the i-th standard basis vector over \mathbb{C}^{n}. Viewing vectors as column matrices, the matrix product $A e_{i}$ evaluates to the i-th column of A and $e_{i}^{\mathrm{t}} A$ evaluates to the i-th row of A. But we will just write A_{i} for the i-th row of A.

Definition 2.2. We call a map H power linear (of degree d) if H is of the form

$$
H=(A x)^{* d}:=\left(\left(A_{1} x\right)^{d},\left(A_{2} x\right)^{d}, \ldots,\left(A_{n} x\right)^{d}\right)
$$

and a map F special power linear (of degree d) if F is of the form

$$
F=x+(A x)^{* d}=\left(x_{1}+\left(A_{1} x\right)^{d}, x_{2}+\left(A_{2} x\right)^{d}, \ldots, x_{n}+\left(A_{n} x\right)^{d}\right)
$$

So H is power linear if and only if $x+H$ is special power linear.
Definition 2.3. Let F be a polynomial map. We say that F is upper/lower triangular if its Jacobian $\mathcal{J} F$ is upper/lower triangular. We call F triangular if it is either upper or lower triangular.

A triangular Keller map is tame and hence invertible.
Definition 2.4. Let $F=x+H$ be a polynomial map. We call F special homogeneous (of degree d) if H is homogeneous (of degree d).

In [1, lemma 4.1], it is shown that a special homogeneous map of degree $d \geq 2$ is a Keller map, if and only if $\mathcal{J} H$ is nilpotent.

Definition 2.5. Let F be a polynomial map over \mathbb{C}. We call F linearly triangularizable if there exists a $T \in \mathrm{GL}_{n}(\mathbb{C})$ such $T^{-1} \circ F \circ T$ is triangular.

A linear triangularizable map can be triangularized to both an upper and a lower triangular map: take $T=\left(x_{n}, x_{n-1}, \ldots, x_{1}\right)$ to get from lower to upper and vice versa.

Proposition 2.6. If $F=x+H$ is a linearly triangularizable Keller map and the components of H do not have linear parts, then $\mathcal{J} H$ is nilpotent.

Proof. The proof is left as an exercise to the reader. A stronger result can be found in [10, Th. 1.6].

Proposition 2.7. If $F=x+H$ is a triangular Keller map and the components of H do not have linear parts, then $\mathcal{J} H$ has only zeros on its diagonal.

Proof. From proposition 2.6, it follows that $\mathcal{J} H$ is nilpotent. Since a nilpotent matrix over a reduced ring has only eigenvalue zero and the diagonal of a triangular matrix is formed by its eigenvalues, it follows that $\mathcal{J} H$ has only zeros on its diagonal.

Definition 2.8. Let $f \in \mathbb{C}[x]=\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. We write $\operatorname{deg} f$ for the total degree of f. We write $\operatorname{deg}_{x_{i}}$ for the degree of f, seen as a polynomial in x_{i} over $\mathbb{C}\left[x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right]$. We write $\operatorname{deg}_{x_{i}, x_{j}, x_{k}}$ for the (total) degree of f, seen as polynomial in x_{i}, x_{j}, x_{k}.

3 Some results on linear dependence

Lemma 3.1. Let $H:=(A x)^{* d}$ such that $\mathcal{J} H$ is nilpotent. Assume that the first r rows of $A_{1}, A_{2}, \ldots, A_{r}$ of A are independent and the last $n-r$ rows of A are dependent of A_{r-1} and A_{r} only. Assume a similar condition on the columns of A, i.e. the last $n-r$ columns of A are dependent of $A e_{r-1}$ and $A e_{r}$ only. Then the components of $H:=(A x)^{* d}$ are linearly dependent.

Proof. Write $A e_{r+i}=\lambda_{r+i} A e_{r-1}+\mu_{r+i} A e_{r}$. Put

$$
L=\left(\begin{array}{l}
x_{1} \\
\vdots \\
x_{r-2} \\
x_{r-1}-\lambda_{r+1} x_{r+1}-\cdots-\lambda_{n} x_{n} \\
x_{r}-\mu_{r+1} x_{r+1}-\cdots-\mu_{n} x_{n} \\
x_{r+1} \\
\vdots \\
x_{n}
\end{array}\right)
$$

and let $B:=A \cdot \mathcal{J} L$. Then the last $n-r$ columns of B and hence those of $\mathcal{J} \tilde{H}$
are zero, where

$$
\tilde{H}:=L^{-1} \circ H \circ L=\left(\begin{array}{c}
\left(B_{1} x\right)^{d} \\
\vdots \\
\left(B_{r-2} x\right)^{d} \\
\left(B_{r-1} x\right)^{d}+\lambda_{r+1}\left(B_{r+1} x\right)^{d}+\cdots+\lambda_{n}\left(B_{n} x\right)^{d} \\
\left(B_{r} x\right)^{d}+\mu_{r+1}\left(B_{r+1} x\right)^{d}+\cdots+\mu_{n}\left(B_{n} x\right)^{d} \\
\left(B_{r+1} x\right)^{d} \\
\vdots \\
\left(B_{n} x\right)^{d}
\end{array}\right)
$$

Each row B_{r+i} with $i \geq 1$ is a linear combination of B_{r-1} and B_{r}, for a similar statement holds for the rows of A. So $\hat{H}:=\left(\tilde{H}_{1}, \ldots, \tilde{H}_{r-2}, \tilde{H}_{r-1}, \tilde{H}_{r}\right)$ is of the form

$$
\hat{H}=\left(\begin{array}{c}
\left(B_{1} x\right)^{d} \\
\vdots \\
\left(B_{r-2} x\right)^{d} \\
p\left(B_{r-1} x, B_{r} x\right) \\
q\left(B_{r-1} x, B_{r} x\right)
\end{array}\right)
$$

Furthermore, since the last $n-r$ columns of $\mathcal{J} \tilde{H}$ are zero, the $(r \times r)$-matrix $\mathcal{J} \hat{H}$ is nilpotent as well. In particular, $\operatorname{det} \mathcal{J} \hat{H}=0$. If $p\left(B_{r-1} x, B_{r} x\right)$ and $q\left(B_{r-1} x, B_{r} x\right)$ are algebraically independent, then all linear forms $B_{i} x$ with $i \leq r$ are algebraically dependent of the components of \hat{H}. So

$$
\operatorname{trdeg}_{\mathbb{C}} \hat{H}=\operatorname{trdeg}_{\mathbb{C}}\left(B_{1} x, \ldots, B_{r} x\right)=\operatorname{trdeg}_{\mathbb{C}}\left(A_{1} x, \ldots, A_{r} x\right)=r
$$

for the first r rows of A are linearly independent. This contradicts $\operatorname{det} \mathcal{J} \hat{H}=0$, so $p\left(B_{r-1} x, B_{r} x\right)$ and $q\left(B_{r-1} x, B_{r} x\right)$ are algebraically dependent. But with p and q homogeneous of the same degree d, this dependence relation refines to a linear relation, say that $\nu_{1} p+\nu_{2} q=0$ with $\nu \neq 0$. Then

$$
\begin{aligned}
& \nu_{1}\left(\left(B_{r-1} x\right)^{d}+\lambda_{r+1}\left(B_{r+1} x\right)^{d}+\cdots+\lambda_{n}\left(B_{n} x\right)^{d}\right)+ \\
& \quad \nu_{2}\left(\left(B_{r} x\right)^{d}+\mu_{r+1}\left(B_{r+1} x\right)^{d}+\cdots+\mu_{n}\left(B_{n} x\right)^{d}\right)=0
\end{aligned}
$$

So the components of $(B x)^{* d}$, and hence those of $H=(A x)^{* d}$ also, are linearly dependent.

The preceding lemma is a special case of the following theorem:
Theorem 3.2. Let $H:=(A x)^{* d}$ such that $\mathcal{J} H$ is nilpotent. Assume that the first r rows of $A_{1}, A_{2}, \ldots, A_{r}$ of A are independent and the last $n-r$ rows of A are dependent of A_{r-1} and A_{r} only. Then the components of $H:=(A x)^{* d}$ are linearly dependent.

Proof. Since the rows of A are dependent, the columns are dependent as well. We distinguish two cases:

- There is an $i \leq r-2$ such that column $A e_{i}$ of A is dependent of the other columns of A.
Then there is a vector λ with $\lambda_{i} \neq 0$ for some $i \leq r-2$ such that $A \lambda=$ 0 . Replacing H by $P^{-1} \circ H \circ P$ for a suitable permutation P within $x_{1}, x_{2}, \ldots, x_{r-2}$, we may assume that $\lambda_{1} \neq 0$. Since

$$
\mathcal{J} H=d\left(\begin{array}{cccc}
A_{11}\left(A_{1} x\right)^{d-1} & A_{12}\left(A_{1} x\right)^{d-1} & \cdots & A_{1 n}\left(A_{1} x\right)^{d-1} \tag{1}\\
A_{21}\left(A_{2} x\right)^{d-1} & A_{22}\left(A_{2} x\right)^{d-1} & \cdots & A_{2 n}\left(A_{2} x\right)^{d-1} \\
\vdots & \vdots & \ddots & \vdots \\
A_{n 1}\left(A_{n} x\right)^{d-1} & A_{n 2}\left(A_{n} x\right)^{d-1} & \cdots & A_{n n}\left(A_{n} x\right)^{d-1}
\end{array}\right)
$$

the expression $\operatorname{det}\left(T I_{n}+\mathcal{J} H\right)$, which is T^{n} on account of the nilpotence of $\mathcal{J} H$, can be seen as a polynomial in the transcendent 'variables' $A_{1} x, A_{2} x, \ldots, A_{r} x$. Since $r-2 \geq 1$, 'variable' $A_{1} x$ only appears in the first row of (1). So substituting $A_{1} x=0$ in $\mathcal{J} H$ just makes the first row of $\mathcal{J} H$ zero. This substitution does not affect the condition $\operatorname{det}\left(T I_{n}+\mathcal{J} H\right)=T^{n}$. So $\mathcal{J} \tilde{H}$ is nilpotent, where $\tilde{H}:=\left(0, H_{2}, \ldots, H_{n}\right)$. Next, let

$$
\hat{H}:=L^{-1} \circ \tilde{H} \circ L=\tilde{H} \circ L
$$

where $L=x+\lambda_{1}^{-1}\left(0, \lambda_{2} x_{1}, \ldots, \lambda_{n} x_{1}\right)$. Now $x+\hat{H}$ is power linear of degree d as well, but both the first row and the first column of $\mathcal{J} \hat{H}$ are zero. Hence $x+\hat{H}$ is essentially a power linear map in dimension $n-1$, and the result follows by induction.

- For each $i \leq r-2$, column $A e_{i}$ of A is independent of the other columns of A.
Since in particular the first $r-2$ columns of A are independent, there exists a basis of the column space of A of the form $A e_{1}, A e_{2}, \ldots, A e_{r-2}, A e_{i_{1}}, A e_{i_{2}}$. Furthermore, for each $j \geq r-1$, column $A e_{j}$ is a linear combination of $A e_{i_{1}}$ and $A e_{i_{2}}$ only. We shall show that we may assume that $i_{1}=r-1$ and $i_{2}=r$, in order to be able to apply lemma 3.1.
For that purpose let us look at the rows $A_{i_{1}}$ and $A_{i_{2}}$ of A. If both rows are dependent, then $H_{i_{1}}$ and $H_{i_{2}}$ are linearly dependent and we are done. So assume that $A_{i_{1}}$ and $A_{i_{2}}$ are independent. Since the last $n-r$ rows of A are linear combinations of A_{r-1} and A_{r} and $i_{1}, i_{2} \geq r-1$, both $A_{i_{1}}$ and $A_{i_{2}}$ are linear combinations of A_{r-1} and A_{r}. Hence the spaces $\mathbb{C} A_{i_{1}}+\mathbb{C} A_{i_{2}}$ and $\mathbb{C} A_{r-1}+\mathbb{C} A_{r}$ are equal.
Hence $A_{i_{1}}$ and $A_{i_{2}}$ can take the role of A_{r-1} and A_{r}, i.e. the rows A_{1}, A_{2}, $\ldots, A_{r-2}, A_{i_{1}}, A_{i_{2}}$ are independent and each row A_{j} with $j \geq r-1$ is a linear combination of $A_{i_{1}}$ and $A_{i_{2}}$ only.
Replacing H by $P^{-1} \circ H \circ P$ for a suitable permutation P within x_{r-1}, x_{r}, \ldots, x_{n}, we may assume that H satisfies the conditions of lemma 3.1. So the components of H are linearly dependent.

The proof of theorem 3.2 and its preceding lemma was essentially given by Druzkowski in [9], where he proved the case $r=n-2$ of theorem 3.2. The remaining theorems in this section show that under certain conditions, the components of H are not only linearly dependent, but the linear dependence even restricts to two components of H, i.e. $H_{i}=s H_{j}$ for some $i \neq j$ and an $s \in \mathbb{C}$.

Lemma 3.3. Let $L_{1}, L_{2}, \ldots, L_{r} \in \mathbb{C}[x]$ be linear such that $2 \leq r \leq d+1$ and

$$
\begin{equation*}
\lambda_{1} L_{1}^{d}+\lambda_{2} L_{2}^{d}+\ldots+\lambda_{r} L_{r}^{d}=0 \tag{2}
\end{equation*}
$$

for some $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right) \neq 0$. Then there are $i \neq j$ and an $s \in \mathbb{C}$ such that $L_{i}=s L_{j}$.

Proof. Assume the opposite. In particular, $L_{1} \neq s L_{r}$ and $L_{r} \neq s L_{1}$ for all $s \in \mathbb{C}$, whence L_{1} and L_{r} are independent. There exists a linear basis $y_{1}, y_{2}, \ldots, y_{n}$ of $\mathbb{C}[x]$ with $y_{1}=L_{1}$ and $y_{2}=L_{r}$.
The case $d=1$ is easy, so assume $d \geq 2$. Differentiating (2) with respect to y_{1} gives

$$
\mu_{1} L_{1}^{d-1}+\mu_{2} L_{2}^{d-1}+\ldots+\mu_{r-1} L_{r-1}^{d-1}=0
$$

for certain $\mu_{i} \in \mathbb{C}$. In particular, $\mu_{1}=d \lambda_{1}$, whence not all μ_{i} are zero. Hence, the result follows by induction on d.

The following theorem generalizes Theorem 3.1 of [16] (the case cork $A=3$ of this theorem). [16] is a co-production of Song Shuang and the first author.

Theorem 3.4. Assume H is of the form $(A x)^{* d}$ such that $\operatorname{cork} A \leq d-2$, $\operatorname{tr} \mathcal{J} H=0$, and the diagonal of A is nonzero. Then there are $i \neq j$ and an $s \in \mathbb{C}$ such that $A_{i}=s A_{j} \neq 0$.

Proof. Since the diagonal of $\mathcal{J} H$ is nonzero, we can replace H by $P^{-1} \circ H \circ P$ to get $A_{11} \neq 0$, where P is a permutation. Similarly, we can make the first r rows of A independent in addition, where $r=\operatorname{rk} A \geq n-(d-2)$. Since $\operatorname{tr} \mathcal{J} H=0$, we have

$$
\begin{equation*}
d A_{11}\left(A_{1} x\right)^{d-1}+d A_{22}\left(A_{2} x\right)^{d-1}+\cdots+d A_{n n}\left(A_{n} x\right)^{d-1}=0 \tag{3}
\end{equation*}
$$

Since the first r rows of A are independent, there exists a basis y of $\mathbb{C} x_{1}+\mathbb{C} x_{2}+$ $\cdots+\mathbb{C} x_{n}$ such that $A_{i} x=y_{i}$ for all $i \leq r$. Differentiating (3) with respect to y_{1} gives

$$
d(d-1) A_{11}\left(A_{1} x\right)^{d-2}+\lambda_{r+1}\left(A_{r+1} x\right)^{d-2}+\cdots+\lambda_{n}\left(A_{n} x\right)^{d-2}=0
$$

for certain $\lambda_{i} \in \mathbb{C}$. These are $n-r+1 \leq d-1$ linear powers (powers of linear forms). Now apply lemma 3.3 to get $A_{i}=s A_{j}$ for some $i \neq j$ and $s \in \mathbb{C}$ with $i, j \in\{1, r+1, r+2, \ldots, n\}$.

Theorem 3.5. Assume H is as in theorem 3.2 and $\operatorname{cork} A \leq d-1$. Then there are $i \neq j$ and an $s \in \mathbb{C}$ such that $A_{i}=s A_{j}$.

Proof. From theorem 3.2, it follows that there is a linear relation between the components of H. Similar to the proof of theorem 3.4 (but with d instead of $d-1$), one can show that this relation is of the form $H_{i}=\alpha H_{j}$ for some $i \neq j$. So $A_{i}=s A_{j}$ for some $s \in \mathbb{C}$.

We will use the above theorems in the next section.

4 Linear triangularization to power linear maps

The following lemma is crucial in both [9] and our study of power linear maps $(A x)^{* d}$ where A has a small corank. It can be found at the beginning of page 238 in [9].

Lemma 4.1. Let $H=(A x)^{* d}$ such that $\mathcal{J} H$ is nilpotent. If A has a principal minor of any size which determinant is nonzero, then there exists a relation $R \neq 0$ such that

$$
R\left(\left(A_{1} x\right)^{d-1},\left(A_{2} x\right)^{d-1}, \ldots,\left(A_{n} x\right)^{d-1}\right)=0
$$

and $\operatorname{deg}_{y_{i}} R(y) \leq 1$ for all $i \leq n$. Furthermore, if $A_{k}=0$ for some k, then $\operatorname{deg}_{y_{k}} R=0$ as well.

Proof. Write

$$
\begin{aligned}
& \operatorname{det}\left(T I_{n}+d\left(\begin{array}{cccc}
A_{11} y_{1} & A_{12} y_{1} & \cdots & A_{1 n} y_{1} \\
A_{21} y_{2} & A_{22} y_{2} & \cdots & A_{2 n} y_{2} \\
\vdots & \vdots & & \vdots \\
A_{n 1} y_{n} & A_{n 2} y_{n} & \cdots & A_{n n} y_{n}
\end{array}\right)\right) \\
& \quad=T^{n}+R_{1}(y) T^{n-1}+R_{2}(y) T^{n-2}+\cdots+R_{n-2}(y) T^{2}+R_{n-1}(y) T+R_{n}(y)
\end{aligned}
$$

Since $\mathcal{J} H$ is nilpotent, $\operatorname{det}\left(T I_{n}+\mathcal{J} H\right)=T^{n}$. It follows from (1) that the coefficient of T^{n-j} of $\operatorname{det}\left(T I_{n}+\mathcal{J} H\right)$ equals

$$
R_{j}\left(\left(A_{1} x\right)^{d-1},\left(A_{2} x\right)^{d-1}, \ldots,\left(A_{n} x\right)^{d-1}\right)=0
$$

for all $j \geq 1$. Furthermore, it follows from the definition of determinant that $\operatorname{deg}_{y_{i}} R_{j} \leq 1$ for all i, j. For some j, A has a principal minor of size j which determinant is $\alpha \neq 0$, say with rows and columns $i_{1}, i_{2}, \ldots, i_{j}$. Then the coefficient of $y_{i_{1}} y_{i_{2}} \cdots y_{i_{j}}$ of R_{j} equals $d \alpha$, whence $R_{j} \neq 0$.
If $A_{k}=0$, then all minors with row k of A have determinant zero, whence $\operatorname{deg}_{y_{k}} R_{j}=0$.

In all remaining lemmas in this section, relations R between linear powers $L_{1}^{d}, L_{2}^{d}, \ldots, L_{m}^{d}$ with $\operatorname{deg}_{y_{i}} R \leq 1$ for all $i \leq m$ are studied. For such relations, conditions are formulated that imply $L_{i}=s L_{j}$ for some $i \neq j$ and an $s \in \mathbb{C}$,

Lemma 4.2. Let $d \geq 2$ and R be a nonzero relation with $\operatorname{deg}_{y_{i}} R \leq 1$ such that

$$
\begin{equation*}
R\left(x_{1}^{d}, x_{2}^{d}, \ldots, x_{r}^{d},\left(\lambda_{1} x_{1}+\lambda_{2} x_{1}+\cdots+\lambda_{r} x_{r}\right)^{d}\right)=0 \tag{4}
\end{equation*}
$$

Then $\lambda=\lambda_{i} e_{i}$ for some i.
Proof. Since $x_{1}^{d}, x_{2}^{d}, \ldots, x_{r}^{d}$ are algebraically independent, it follows that R has a term of the form

$$
\alpha \cdot y_{1}^{t_{1}} \cdots y_{r}^{t_{r}} \cdot y_{r+1}
$$

with $\alpha \neq 0$ and $0 \leq t_{i} \leq 1$ for all i. The coefficient of $x_{1}^{d t_{1}} x_{2}^{d t_{2}} \cdots x_{r}^{d t_{r}} x_{j}^{d-1} x_{k}$ in (4) equals $(d-1) \alpha \lambda_{j} \lambda_{k}=0$, so $\lambda_{j} \lambda_{k}=0$ for all $j \neq k$. It follows that λ has at most one nonzero coordinate, i.e. $\lambda=\lambda_{i} e_{i}$ for some i.

Lemma 4.3. Let $d \geq 2$ and R be a nonzero relation with $\operatorname{deg}_{y_{i}} R \leq 1$ such that

$$
\begin{equation*}
R\left(x_{1}^{d}, x_{2}^{d}, \ldots, x_{r}^{d},\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}+\cdots+\lambda_{r} x_{r}\right)^{d},\left(\mu_{1} x_{1}+\mu_{2} x_{2}+\cdots+\mu_{r} x_{r}\right)^{d}\right)=0 \tag{5}
\end{equation*}
$$

Assume further that $\lambda_{i}=\mu_{i}=0$ for at most $r-3 i$'s. Then either $\lambda=\lambda_{i} e_{i}$ for some i or $\mu=\mu_{i} e_{i}$ for some i or λ and μ are dependent.

Proof. Assume that λ and μ are independent. Without loss of generality, we assume that (λ_{1}, λ_{2}) and (μ_{1}, μ_{2}) are independent. The cases $\operatorname{deg}_{y_{r+1}} R=0$ and $\operatorname{deg}_{y_{r+2}} R=0$ follow from lemma 4.2. So assume the opposite.
i) Suppose first that $\lambda_{1}=\mu_{2}=0$. Then $\lambda_{2} \mu_{1} \neq 0$. Since $\operatorname{deg}_{y_{r+2}} R=1, R$ has a term of the form

$$
\alpha y_{1}^{t_{1}} y_{2}^{t_{2}} \cdots y_{r}^{t_{r}} \cdot y_{r+1}^{t_{r+1}} y_{r+2}
$$

with $0 \leq t_{i} \leq 1$ for all i. If $t_{r+1}=0$, then by looking at the term

$$
x_{1}^{d t_{1}} x_{2}^{d t_{2}} \cdots x_{r}^{d t_{r}} \cdot\left(x_{1}^{d-1} x_{m}\right)
$$

of (5), we see that $\mu_{m}=0$ for all $m \neq 1$, i.e. $\mu=\mu_{1} e_{1}$. So assume $t_{r+1}=1$. Looking at the term

$$
x_{1}^{d t_{1}} x_{2}^{d t_{2}} \cdots x_{r}^{d t_{r}} \cdot x_{2}^{d-1} x_{l}^{2} x_{1}^{d-1}
$$

of (5), we see that $\lambda_{l} \mu_{l}=0$ for all $l \geq 3$. Assume $\lambda \neq \lambda_{2} e_{2}$. Then there is an $l \geq 3$ such that $\lambda_{l} \neq 0$. So $\mu_{l}=0$. Looking at the term

$$
x_{1}^{d t_{1}} x_{2}^{d t_{2}} \cdots x_{r}^{d t_{r}} \cdot x_{2}^{d-1} x_{l} x_{m} x_{1}^{d-1}
$$

gives $\mu_{m}=0$ for all $m \geq 3$. So $\mu=\mu_{1} e_{1}$.
So assume $\left(\lambda_{i}, \mu_{3-i}\right) \neq 0$ for $i=1,2$. Since $\left(\lambda_{1}, \lambda_{2}\right)$ and $\left(\mu_{1}, \mu_{2}\right)$ are independent, at least three of their four coordinates are nonzero. Assume without loss of generality that $\lambda_{1} \lambda_{2} \mu_{1} \neq 0$. If $\mu_{2}=0$, then we may assume that $\mu_{3} \neq 0$ on account of the assumption $\mu \neq \mu_{1} e_{1}$.

If $\mu_{2} \neq 0$, then $\lambda_{1} \lambda_{2} \mu_{1} \mu_{2} \neq 0$. From the assumption $\lambda_{i}=\mu_{i}=0$ for at most $r-3 i$'s, it follows that $\lambda_{i} \neq 0$ or $\mu_{i} \neq 0$ for some $i \geq 3$. So without loss of generality, we may assume $\mu_{3} \neq 0$. So assume $\mu_{3} \neq 0$ regardless of whether $\mu_{2}=0$ or not.
Assume that $\left(\lambda_{2}, \lambda_{3}\right)$ and $\left(\mu_{2}, \mu_{3}\right)$ are dependent. Then $\mu_{2} \mid \lambda_{2} \mu_{3} \neq 0$, so $\lambda_{2} \mu_{2} \neq 0$. If we interchange $\left(\lambda_{1}, \mu_{1}\right)$ and $\left(\lambda_{2}, \mu_{2}\right)$, which can be realized by flipping x_{1} and $x_{2},\left(\lambda_{2}, \lambda_{3}\right)$ and $\left(\mu_{2}, \mu_{3}\right)$ get independent but the condition $\lambda_{1} \mu_{1} \neq 1$ is not affected. So we may assume that $\left(\lambda_{2}, \lambda_{3}\right)$ and $\left(\mu_{2}, \mu_{3}\right)$ are independent and in addition $\lambda_{1} \mu_{1} \neq 0$.
ii) We show that the above assumptions lead to a contradiction. Replacing R by $R\left(y_{1}, y_{2}, \ldots, y_{r}, \lambda_{1}^{d} y_{r+1}, \mu_{1}^{d} y_{r+2}\right)$, we may assume that $\lambda_{1}=\mu_{1}=1$. Write $\lambda_{1} x_{1}+\lambda_{2} x_{2}+\cdots+\lambda_{r} x_{r}=x_{1}+L$ and similarly $\mu_{1} x_{1}+\mu_{2} x_{2}+\cdots+$ $\mu_{r} x_{r}=x_{1}+M$.
Let $s:=\operatorname{deg}_{y_{1}, y_{r+1}, y_{r+2}} R$. Notice that $\operatorname{deg}_{y_{i}} R \leq 1$ for all i. If $s \geq 3$, then $s=3$ and the left hand side of (5) has degree $3 d$ with respect to x_{1}; contradiction. Since $\operatorname{deg}_{y_{r+1}} R \neq 0, s \geq 1$. So two cases remain:
$-s=1$:
We can write

$$
R=R_{1} y_{1}+R_{2} y_{r+1}+R_{3} y_{r+2}+R_{4}
$$

with $R_{i} \in \mathbb{C}\left[y_{2}, \ldots, y_{r}\right]$. Looking at the coefficient of x_{1}^{d-1} in (5) gives

$$
R_{2}\left(x_{2}^{d}, \ldots, x_{r}^{d}\right) L=-R_{3}\left(x_{2}^{d}, \ldots, x_{r}^{d}\right) M
$$

Assume $R_{2} \neq 0$. Notice that $d \geq 2$. Reduction modulo $x_{i}^{d}-y_{i}$ for all i gives $R_{2} L=-R_{3} M$. Next, a generic substitution into the y_{i} 's gives $L=\alpha M$ for some $\alpha \in \mathbb{C}$. So L and M are linearly dependent. This contradicts the independence of $\left(\lambda_{2}, \lambda_{3}\right)$ and $\left(\mu_{2}, \mu_{3}\right)$, so $R_{2}=R_{3}=$ 0 . Looking at the coefficient of x_{1}^{d} in (5) gives $R_{1}=0$. So $R=R_{4}$. This contradicts $s=1$.
$-s=2$:
We can write

$$
R=R_{1} y_{r+1} y_{r+2}+R_{2} y_{1} y_{r+2}+R_{3} y_{1} y_{r+1}+R_{4}
$$

with $R_{i} \in \mathbb{C}\left[y_{2}, \ldots, y_{r}\right]$ for all $i \leq 3$ and $\operatorname{deg}_{y_{1}, y_{r+1}, y_{r+2}} R_{4} \leq 1$. Looking at the coefficient of $x_{1}^{2 d-1}$ in (5) gives

$$
\left(R_{1}+R_{3}\right)\left(x_{2}^{d}, \ldots, x_{r}^{d}\right) L=-\left(R_{1}+R_{2}\right)\left(x_{2}^{d}, \ldots, x_{r}^{d}\right) M
$$

and $\left(R_{1}+R_{3}\right)=\left(R_{1}+R_{2}\right)=0$ follows similar as $R_{2}=R_{3}=0$ in the case $s=1$. Looking at the coefficient of $x_{1}^{2 d}$ in (5) gives $R_{1}+R_{2}+R_{3}=0$, so $R_{2}=R_{3}=0$ and also $R_{1}=0$. So $R=R_{4}$. This contradicts $s=2$.

Theorem 4.4. Assume A is a matrix of corank 2 at most, $d \geq 3$ and $H=$ $(A x)^{* d}$ such that $\mathcal{J} H$ is nilpotent. Then there exists a $T \in \mathrm{GL}_{n}(\mathbb{C})$ and a lower triangular matrix B such that

$$
T^{-1} \circ(A x)^{* d} \circ T=(B x)^{* d}
$$

Proof. Assume first that every principal minor of A has determinant zero. From [9, lemma 1.2] (see also [12, prop. 6.3.9]), it follows that there is a permutation P such that $P^{-1} A P$ is lower triangular. So take $T=P$.
Assume next that A has an invertible principal minor. From lemma 4.1, it follows that there exists a nonzero relation R such that

$$
R\left(\left(A_{1} x\right)^{d-1},\left(A_{2} x\right)^{d-1}, \ldots,\left(A_{n} x\right)^{d-1}\right)=0
$$

Let $r:=\operatorname{rk} A \geq n-2$. After a suitable permutation, we have that the rows $A_{1}, A_{2}, \ldots, A_{r}$ are independent,

$$
A_{r+1}=\lambda_{1} A_{1}+\lambda_{2} A_{2}+\cdots+\lambda_{r} A_{r}
$$

and, in case $r=n-2$,

$$
A_{r+2}=\mu_{1} A_{1}+\lambda_{2} A_{2}+\cdots+\mu_{r} A_{r}
$$

We first show that $A_{i}=s A_{j}$ for some $i \neq j$ and $s \in \mathbb{C}$. The case $r=n-1$ follows from lemma 4.2, so assume that $r=n-2$. The case $\lambda_{i}=\mu_{i}=0$ for at most $r-3 i$'s follows from lemma 4.3, so assume $\lambda_{i}=\mu_{i}=0$ for at least $r-2$ i's. Replacing A by $P^{-1} A P$ for a suitable permutation P, we get that $\lambda_{i}=\mu_{i}=0$ for all $i \leq r-2$, and theorem 3.5 applies. So $A_{i}=s A_{j}$ for some $i \neq j$ and $s \in \mathbb{C}$.
So the components of H are linearly dependent. Replacing H by $T^{-1} \circ H \circ T$ for a suitable linear transformation T, we get $H_{1}=0$ and hence $A_{1}=0$. This transformation may make all principal minor determinants zero, but then, again by [9, lemma 1.2], there is a permutation matrix P such that $P^{-1} A P$ is lower triangular. So we may assume that there is still a nonzero principal minor determinant in A. From lemma 4.1 it follows that there exists a nonzero relation R_{1} such that

$$
R_{1}\left(\left(A_{2} x\right)^{d-1}, \ldots,\left(A_{n} x\right)^{d-1}\right)=0
$$

After a suitable permutation, we have that the rows $A_{2}, A_{3}, \ldots, A_{r+1}$ are independent and

$$
A_{r+2}=\lambda_{2} A_{2}+\lambda_{3} A_{3}+\cdots+\lambda_{r+1} A_{r+1}
$$

Applying lemma 4.2 again gives $A_{i}=s A_{j}$ for some $i \neq j$ with $i, j \neq 1$ and $s \in \mathbb{C}$, i.e. a linear relation between $\left(A_{2} x\right)^{d}, \ldots,\left(A_{n} x\right)^{d}$. So after a suitable linear transformation, we have $A_{2}=0$ as well.
Since $\operatorname{cork} A \leq 2,\left(A_{3} x\right)^{d-1}, \ldots,\left(A_{n} x\right)^{d-1}$ are algebraically independent. It follows from lemma 4.1 that all principal minor determinants of A are zero. So again we can take for T a suitable permutation matrix P.

The proof of the above theorem was essentially given by Drużkowski in [9]. Drużkowski observed something more or less similar to lemma 4.3, but found it unnecessary to prove that in full detail.

Lemma 4.5. Let $d \geq 3$ and R be a nonzero relation with $\operatorname{deg}_{y_{i}} R \leq 1$ such that

$$
\begin{equation*}
R\left(x_{1}^{d}, x_{2}^{d}, \ldots, x_{r}^{d},\left(\lambda_{1} x_{1}+\lambda_{2} x_{1}+\cdots+\lambda_{r} x_{r}\right)^{d},\left(\mu_{1} x_{1}+\mu_{2} x_{1}+\cdots+\mu_{r} x_{r}\right)^{d}\right)=0 \tag{6}
\end{equation*}
$$

Then either $\lambda=\lambda_{i} e_{i}$ for some i or $\mu=\mu_{i} e_{i}$ for some i or λ and μ are dependent.
Proof. The cases $\operatorname{deg}_{y_{r+1}} R=0$ and $\operatorname{deg}_{y_{r+2}} R=0$ follow from lemma 4.2, so assume the opposite. The case $\lambda_{i}=\mu_{i}=0$ for at most $r-3 i$'s follows from lemma 4.3, so assume without loss of generality that $\lambda_{i}=\mu_{i}=0$ for all $i \geq 3$. Similar as in the proof of lemma 4.3, we assume that $\lambda_{1}=\mu_{1}=1$ and write $\lambda_{1} x_{1}+\lambda_{2} x_{2}+\cdots+\lambda_{r} x_{r}=x_{1}+L$ and $\mu_{1} x_{1}+\mu_{2} x_{2}+\cdots+\mu_{r} x_{r}=x_{1}+M$. Put $s:=\operatorname{deg}_{y_{1}, y_{r+1}, y_{r+2}} R$. If $s \geq 3$, then $s=3$ and the left hand side of (6) has degree $3 d$ in x_{1}; contradiction. Since $\operatorname{deg}_{y_{r+1}} R \neq 0, s \geq 1$. So two cases remain:

- $s=1$:

Since $\lambda_{i}=\mu_{i}=0$ for all $i \geq 3, R$ is in fact a relation between x_{1}^{d}, x_{2}^{d}, $\left(x_{1}+L\right)^{d}$ and $\left(x_{1}+M\right)^{d}$, say

$$
R_{0}\left(x_{1}^{d}, x_{2}^{d},\left(x_{1}+L\right)^{d},\left(x_{1}+M\right)^{d}\right)=0
$$

for some homogeneous $R_{0} \neq 0$ with $\operatorname{deg}_{y_{1}, y_{3}, y_{4}} R_{0} \leq s$ and $\operatorname{deg}_{y_{2}} R_{0} \leq 1$. If R_{0} is linear, then it follows from lemma 3.3 and $d \geq 3$ that $L=0$, $M=0$ or $L=M$. If R_{0} is not linear, then it follows from $s=1$ that R_{0} is quadratic and $y_{2} \mid R_{0}$, for R_{0} is homogeneous. Hence, R_{0} decomposes into linear factors and can be chosen linear instead.

- $s=2$:

Write

$$
R=R_{1} y_{r+1} y_{r+2}+R_{2} y_{1} y_{r+2}+R_{3} y_{1} y_{r+1}+R_{4}
$$

with $R_{i} \in \mathbb{C}\left[y_{2}, \ldots, y_{r}\right]$ for all $i \leq 3$ and $\operatorname{deg}_{y_{1}, y_{r+1}, y_{r+2}} R_{4} \leq 1$. Looking at the coefficient of $x_{1}^{2 d-1}$ in (6) gives

$$
\left(R_{1}+R_{3}\right)\left(x_{2}^{d}, \ldots, y_{r}^{d}\right) L=-\left(R_{1}+R_{2}\right)\left(x_{2}^{d}, \ldots, y_{r}^{d}\right) M
$$

Looking at the coefficient of $x_{1}^{2 d}$ in (6), gives $R_{1}+R_{2}+R_{3}=0$, which implies $-R_{2} L=R_{3} M$.
At last, the coefficient of $x_{1}^{2 d-2}$ in (6) implies that the following is zero:

$$
\begin{aligned}
& 2 d R_{1} L M+(d-1)\left(R_{1}+R_{3}\right) L^{2}+(d-1)\left(R_{1}+R_{2}\right) M^{2} \\
& \quad=2 d R_{1} L M-(d-1) R_{2} L^{2}-(d-1) R_{3} M^{2} \\
& \quad=2 d R_{1} L M+(d-1) R_{3} L M+(d-1) R_{2} L M \\
& \quad=(d+1) R_{1} L M
\end{aligned}
$$

So $L M=0$ or $R_{1}=0$. So assume $R_{1}=0$. Then $-R_{2}=R_{3}$ due to $R_{1}+R_{2}+R_{3}=0$. From $-R_{2}=R_{3}$ and $-R_{2} L=R_{3} M$, it follows that either $R=R_{4}$, which contradicts $s=2$, or $L=M$.

Theorem 4.6. If H is as in theorem 3.4 and $\operatorname{cork} A=3$, then there exists a $T \in \mathrm{GL}_{n}(\mathbb{C})$ and a lower triangular matrix B such that

$$
T^{-1} \circ(A x)^{* d} \circ T=(B x)^{* d}
$$

Proof. Since the proof of theorem 4.6 is more or less similar to that of theorem 4.4, we only give a sketch of it.

From theorem 3.4 or [16, Th. 3.1], it follows that $A_{i}=s A_{j}$ for some $i \neq j$ and $s \in \mathbb{C}$, i.e. the components of H are linearly dependent. So we may assume that the first row of A is zero. Assume A has a nonzero principal minor determinant. The conditions of theorem 3.4 imply that $3=\operatorname{cork} A \leq d-2$, so $d \geq 5$. So it follows from lemmas 4.1 and 4.5 that we may assume that the first two rows of A are zero. Next, it follows from lemmas 4.1 and 4.2 that we may assume that the first three rows of A are zero. Since $\operatorname{cork} A=3$, all principal minors of A have determinant zero. So B as above exists.

Observe that in the proofs of theorems 4.4 and 4.6 , the process of triangularization is as follows: first, all occurences of $A_{i}=s A_{j}$ with $i \neq j$ and $s \in \mathbb{C}^{*}$ are eliminated by linear transformations 'within $\mathbb{C}\left[x_{i}, x_{j}\right]$ '. After that, A is made triangular by a permutation transformation. This result does not follow from the methods of Drużkowski.
The above observation does not hold for power linear maps $(A x)^{* d}$ with $\operatorname{rk} A=2$, but still there exist a triangularization of $(A x)^{* d}$ that is power linear as well. The following theorem, which is in fact a closer look on what happens in the proof of Theorem 1 of [6], shows this result not only for $d \geq 3$, but for any $d \geq 1$.
Theorem 4.7. Assume A is a matrix of rank 2 at most and $\mathcal{J}(A x)^{* d}$ is nilpotent. Then there exists a $T \in \mathrm{GL}_{n}(\mathbb{C})$ and a lower triangular matrix B such that

$$
T^{-1} \circ(A x)^{* d} \circ T=(B x)^{* d}
$$

Proof. The case $\operatorname{rk} A=1$ was already done by Drużkowski in [9]. So assume that $\operatorname{rk} A=2$. Then there are two rows $A_{i_{1}}$ and $A_{i_{2}}$ of A such that all other rows of A are linear combinations of $A_{i_{1}}$ and $A_{i_{2}}$. There are $n-2$ distinct unit vectors $e_{k_{3}}, \ldots, e_{k_{n}}$ such that the rows $A_{i_{1}}, A_{i_{2}}, e_{k_{3}}^{\mathrm{t}}, \ldots, e_{k_{n}}^{\mathrm{t}}$ are independent. Replacing A by $P^{-1} A P$ for a suitable permutation P makes that the rows $A_{j_{1}}, A_{j_{2}}, e_{3}^{\mathrm{t}}, \ldots, e_{n}^{\mathrm{t}}$ are independent.
Hence the matrix with those n rows is invertible. So set

$$
T:=\left(\begin{array}{c}
A_{j_{1}} \\
A_{j_{2}} \\
e_{3}^{\mathrm{t}} \\
\cdots \\
e_{n}^{\mathrm{t}}
\end{array}\right)^{-1}
$$

Then the last $n-2$ rows of T are $e_{3}^{\mathrm{t}}, \ldots, e_{n_{\tilde{H}}^{\mathrm{t}}}^{\mathrm{a}}$ well. Put $\tilde{H}=T^{-1} \circ H \circ T$, where $H=(A x)^{d}$. The components $H_{3}, \ldots, \tilde{H}_{n}$ of \tilde{H} are clearly linear powers. Write $A_{i}=\lambda_{i} A_{j_{1}}+\mu_{i} A_{j_{2}}$ for all i. Then

$$
A=\left(\begin{array}{ccccc}
\lambda_{1} & \mu_{1} & 0 & \cdots & 0 \\
\lambda_{2} & \mu_{2} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
\lambda_{n} & \mu_{n} & 0 & \cdots & 0
\end{array}\right) \cdot T^{-1}
$$

So the last $n-2$ columns of $A \cdot T$ are zero. It follows that $\tilde{H}_{i} \in \mathbb{C}\left[x_{1}, x_{2}\right]$ for each i. Hence $\left(x_{1}, x_{2}\right)+\left(\tilde{H}_{1}, \tilde{H}_{2}\right)$ is a homogeneous Keller map in dimension 2. Such maps are classified in e.g. [1]: we have either $\tilde{H}_{1}=\tilde{H}_{2}=0$, in which case \tilde{H} is already of the form $(B x)^{* d}$ with B triangular, or

$$
\binom{\tilde{H}_{1}}{\tilde{H}_{2}}=S^{-1} \circ\binom{0}{x_{1}^{d}} \circ S
$$

Now $\left(S, x_{3}, \ldots, x_{n}\right)^{-1} \circ \tilde{H} \circ\left(S, x_{3}, \ldots, x_{n}\right)$ is of the form $(B x)^{* d}$ with B triangular.

In case $\operatorname{rk} A=1$, Drużkowski found a matrix B with $n-1$ zero rows, but an argument similar as above would give a matrix B with $n-1$ zero columns.

5 Some final remarks

At first, we like to mention that in [5], Cheng proves that in case $\operatorname{cork} A=1$, $A_{i}=s A_{j}$ for some $i \neq j$ and $s \in \mathbb{C}$, also in the quadratic case. So the conclusion of theorem 4.4 holds for this case as well: see the proof of theorem 4.4.
The following quadratic linear map $(A x)^{* 2}$ in dimension 6 with $\mathrm{rk} A=\operatorname{cork} A=$ 3 , which is, as observed in the introduction, linearly triangularizable, but without a linear triangularization that is quadratic linear as well:

$$
H=\left(\begin{array}{c}
0 \\
0 \\
\left(x_{1}+x_{2}+x_{3}-x_{4}-x_{5}+x_{6}\right)^{2} \\
\left(x_{1}-x_{2}+x_{3}-x_{4}-x_{5}+x_{6}\right)^{2} \\
\left(x_{1}-x_{2}-x_{3}+x_{4}+x_{5}-x_{6}\right)^{2} \\
\left(x_{1}+x_{2}-x_{3}+x_{4}+x_{5}-x_{6}\right)^{2}
\end{array}\right)
$$

In order to prove that the above quadratic linear H has no ditto linear triangularization, we need the following normalization principle for triangular power linear maps.

Proposition 5.1. Let $H=(A x)^{* d}$ be lower triangular. Then there exists an r and a $G=(B x)^{* d}$ which is lower triangular as well, such that $G_{1}=G_{2}=\cdots=$ $G_{r}=0$ and $G_{r+1}, G_{r+2}, \ldots, G_{n}$ are linearly independent over \mathbb{C}.

Proof. Assume

$$
\lambda_{1} H_{1}+\lambda_{2} H_{2}+\cdots+\lambda_{s} H_{s}
$$

is a linear dependence relation between the components of H with $\lambda_{s} \neq 0$. After a suitable linear transformation that does not affect the fact that H is lower triangular, we have $H_{s}=0$. Repeating this argument, we get that all linear relations between the components of H are determined by zero components of H.
Next, if $H_{s}=0$, but $H_{i}=0$ does not hold for all $i \leq s$, then the map $P^{-1} \circ H \circ P$ with $P=\left(x_{2}, \ldots, x_{s}, x_{1}, x_{s+1}, \ldots, x_{n}\right)$, which is lower triangular as well, has more zero components at the beginning than H has, and the result follows by induction.

Now let $E=\left(x_{1}, x_{2}, x_{3}+x_{4}+x_{5}-x_{6}, x_{4}, x_{5}, x_{6}\right)$, then

$$
G:=E^{-1} \circ H \circ E=\left(\begin{array}{c}
0 \\
0 \\
8 x_{1} x_{2} \\
\left(x_{1}-x_{2}+x_{3}\right)^{2} \\
\left(x_{1}-x_{2}-x_{3}\right)^{2} \\
\left(x_{1}+x_{2}-x_{3}\right)^{2}
\end{array}\right)
$$

is a triangularization of H. In order to prove that H has no triangularization that is quadratic linear as well, we show that $\tilde{G}=T^{-1} \circ G \circ T$ cannot be both lower triangular just as G and quadratic linear just as H.
Assume $\lambda^{\mathrm{t}} G=0$. Looking at $\left(\frac{\partial}{\partial x_{1}}\right)^{2} G_{i}$ for all i, we see that $\lambda_{4}+\lambda_{5}+\lambda_{6}=0$. Looking at $\left(\frac{\partial}{\partial x_{2}}\right)^{2} G_{i}$ and $\left(\frac{\partial}{\partial x_{3}}\right)^{2} G_{i}$ for all i as well, we see that $\lambda_{4}=\lambda_{5}=\lambda_{6}=0$. Since $G_{1}=G_{2}=0, \lambda_{3}=0$ and the last four components of G are linearly independent.
Assume that \tilde{G} is lower triangular. From proposition 5.1, it follows that we may assume that $\tilde{G}_{1}=\tilde{G}_{2}=0$. Since the last four components of G, and hence those of $G(T x)$ as well, are linearly independent, it follows from $0=\tilde{G}_{1}=$ $\left(T^{-1}\right)_{1} G(T x)$ that the last four coordinates of $\left(T_{\tilde{T}}{ }^{-1}\right)_{1}$ are zero. Similarly, the last four coordinates of $\left(T^{-1}\right)_{2}$ are zero. Since \tilde{G} is lower triangular, we have $\tilde{G}_{3} \in \mathbb{C}\left[x_{1}, x_{2}\right]$, whence $\left(T^{-1} G\right)_{3}=\tilde{G}_{3}\left(T^{-1} x\right) \in \mathbb{C}\left[x_{1}, x_{2}\right]$ as well.
Looking at $\frac{\partial}{\partial x_{3}} G_{i}$ for all i, it follows that $\left(T^{-1} G\right)_{3} \in \mathbb{C}\left[x_{1}, x_{2}\right]$, if and only if $\left(T^{-1}\right)_{3}$ is of the form

$$
T_{3}^{-1}=\left(\begin{array}{lllll}
\mu_{1} & \mu_{2} & \mu_{3} & 0 & 0
\end{array}\right)
$$

Assume \tilde{G}_{3} is the square of a linear form. Then $\left(T^{-1} G\right)_{3}$ is such a square as well. This requires $\mu_{3}=0$, so the first three rows of T^{-1} are dependent. Contradiction, so \tilde{G}_{3} is not the square of a linear form.

In [12, Th. 8.4.2], a special cubic linear map is given that is not linearly triangularizable; the proof follows from [12, Th 7.4.4] and [12, Th 8.3.2]. Another
power linear map that is not linearly triangularizable is

$$
H=\left(\begin{array}{c}
0 \\
0 \\
\left(x_{1}+x_{5}-x_{6}+x_{7}-x_{9}\right)^{2} \\
\left(x_{2}+x_{5}-x_{6}+x_{7}-x_{9}\right)^{2} \\
\left(x_{2}+x_{3}-x_{8}\right)^{2} \\
\left(x_{3}-x_{8}\right)^{2} \\
\left(x_{4}-x_{8}\right)^{2} \\
\left(x_{5}-x_{6}+x_{7}-x_{9}\right)^{2} \\
\left(x_{1}+x_{4}-x_{8}\right)^{2}
\end{array}\right)
$$

The proof that this quadratic linear map cannot linearly be triangularized at all uses the same techniques as above, and is left as an exercise to the reader. Since for a triangular special homogeneous map $x+H$, either the first or the last component of H is zero, triangularizability of a power linear map H implies that its components are linearly dependent over \mathbb{C}. So one can ask whether the components of H need to be linearly dependent. This is not the case: in [3], the second author shows that there exists a cubic linear counterexample to this linear dependence problem in dimension 53.

References

[1] H. Bass, E.H. Connel, and D. Wright, The Jacobian Conjecture: Reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc., 7 (1982), 287-330.
[2] M. de Bondt and A. van den Essen, The Jacobian Conjecture: Linear triangularization for homogeneous polynomials in dimension three, J. Algebra, 294 (2005), 294-306.
[3] M. de Bondt, Power linear Keller maps and the Linear Dependence Problem, to appear.
[4] C.C.-A. Cheng, Cubic linear Keller maps, J. Pure and Applied Algebra, 160 (2001), 13-19.
[5] C.C.-A. Cheng, Quadratic linear Keller maps, Linear Algebra App., 348 (2002), 203-207.
[6] C.C.-A. Cheng, Power linear Keller maps of rank 2 are linearly triangularizable, J. Pure and Applied Algebra, 195 (2005), 127-130.
[7] B. Deng, G. Meisters, and G. Zampieri, Conjugation for polynomial mappings, Z. Angew. Math. Phys., 46 (1995), 872-882.
[8] L.M. Drużkowski, An Effective Approach to Keller's Jacobian Conjecture, Math. Ann., 264 (1983), 303-313.
[9] L.M. Drużkowski, The Jacobian Conjecture in case of rank or corank less than three, J. Pure and Applied Algebra, 85 (1993), 233-244.
[10] A. van den Essen and E. Hubbers, Polynomial maps with strongly nilpotent Jacobian matrix and the Jacobian Conjecture, Linear Algebra App., 247 (1996), 121-132.
[11] A. van den Essen and E. Hubbers, Chaotic polynomial automorphisms: counterexamples to several conjectures, Advances in Applied Mathematics, 18 (1997), 382-388.
[12] A. van den Essen, Polynomial Automorphisms and the Jacobian Conjecture, Vol. 190 in Progress in Mathematics, Birkhäuser, 2000.
[13] E.-M.G.M. Hubbers, Cubic homogeneous maps in dimension four, Master's thesis, University of Nijmegen, Februari 1994, directed by A.R.P. van den Essen.
[14] G. Meisters and Cz. Olech, Strong nilpotence holds in dimension up to five only, Linear and Multilinear Algebra, 30 (1991), 231-255.
[15] K. Rusek, A geometric approach to Keller's Jacobian Conjecture, Math. Ann., 264 (1983), 315-320.
[16] H. Tong and S. Shuang, The matrices of power linear Keller maps, submitted to J. Pure and Applied Algebra.
[17] S. Wang, A jacobian criterion for separability, J. Algebra, 65 (1980), 453494.
[18] D. Wright, The Jacobian Conjecture: linear triangularization for cubics in dimension three, Linear and Multilinear Algebra, 34 (1993), 85-97.

[^0]: *Supported by the Netherlands Organisation of Scientific Research (NWO).
 2000 Mathematical Subject Classification: 14R15, 14R10.
 Key words and phrases: Jacobian Conjecture, Keller map, linearly triangularizable.

