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Abstract

We studied an autoassociative neural network with dynamic synapses which include a facilitating mechanism. We have developed a

general mean-field framework to study the relevance of the different parameters defining the dynamics of the synapses and their influence

on the collective properties of the network. Depending on these parameters, the network shows different types of behaviour including a

retrieval phase, an oscillatory regime, and a non-retrieval phase. In the oscillatory phase, the network activity continously jumps between

the stored patterns. Compared with other activity-dependent mechanisms such as synaptic depression, synaptic facilitation enhances the

network ability to switch among the stored patterns and, therefore, its adaptation to external stimuli. A detailed analysis of our system

reflects an efficient—more rapid and with lesser errors—network access to the stored information with stronger facilitation. We also

present a set of Monte Carlo simulations confirming our analytical results.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Associative memory illustrates the simplest possible
manner in which collective neural computation can work.
The basic problem is to store a set of different patterns in a
recurrent network, in such a way that when a new stimulus
is presented, the network dynamics drives the system to the
most similar—according to a previously defined distance—
among all different ones. Thus, the recall of stored patterns
during the dynamics appears, and the patterns are the
attractors of the dynamics. The number of different
attractors determines the number of patterns that the
system can store and retrieve. Many different variants,
including asymmetric synapses, have been studied in the
last decades [2,3]. In these models, after learning, neurons
are considered as the only dynamical variables. That is,
synapses are static, with fixed strengths. However, it has
recently been emphasized that a neural dynamics with
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static synapses is incomplete and unrealistic [1]. The
observation of diverse types of synaptic plasticity and
ranges of timescales over which they operate suggests that
the dynamics of synapses has an active role in information
processing in neural systems. Therefore, more realistic
neural networks models should include both neural and
synaptic dynamical descriptions.
We address here this problem by studying the effect of

the consideration of a phenomenological model of dynamic
synapses [7] within the context of attractor neural networks
(ANN). Although we are concerned here with a network of
binary neurons, previous studies have shown that the
behaviour of such a simple network dynamics agrees
qualitatively with the behaviour that is observed in
more realistic networks, such as integrate and fire neuron
models of pyramidal cells [5]. Concerning dynamic
synapses, there are several activity-dependent processes
which take place. For instance, processes in which the
postsynaptic potential or response can either decrease
(depression) or increase (facilitation) due to repeated
presynaptic activation. This has been reported to be
with activity-dependent synapses: The role of synaptic facilitation,
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necessary to produce an appreciable synaptic plasticity
[1] which is fundamental for the development and
adaptation of the nervous system, and they are believed
to be on the basis of higher functions as learning and
memory.
2. The model

Our starting point is a network of N binary neurons
si ¼ 1; 0 representing, respectively, firing or silent states.
Each neuron follows the probabilistic dynamics:

Probfsiðtþ 1Þ ¼ 1g ¼ 1
2f1þ tanh½2bhiðtÞ�g. (1)

b ¼ 1=T where T is the temperature, and hiðtÞ represents
the total presynaptic current arriving to the postsynaptic
neuron i: In order to consider dynamic synapses with
facilitation and/or depression, we assume hiðtÞ ¼PN

j¼1oijDjðtÞFjðtÞsjðtÞ � yi: Here, yi is the threshold of
neuron i to fire, and oij are the static synaptic weights
where the system stored patterns of information during a
previous slow learning process. The stored patterns are
codified in states of neural activity, namely, nn � fxni g; n ¼
1; . . . ;P: For instance, one can choose the standard
covariance rule, namely, oij ¼ 1=ðNf ð1� f ÞÞ

PP
n¼1ðx

n
i �

f Þðxnj � f Þ with hxni i ¼ f : The complete dynamics for
depression DjðtÞ and facilitation FjðtÞ was reported in [7].
Here, we use a simplified version of such model in which
DjðtÞ � xjðtÞ and FjðtÞ � U þ ð1�UÞujðtÞ, being xjðtÞ the
fraction of neurotransmitters which are in a recovered
state. A fraction of these neurotransmitters, namely, UxðtÞ,
is ready to be released after the arrival of a presynaptic
action potential ðsj ¼ 1Þ. The remaining, ð1�UÞxðtÞ, can
also be released by facilitating mechanisms whose dy-
namics is driven by the variable ujðtÞ. For simplicity we
assume that the complete dynamics is described by the
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Fig. 1. (Left) Behaviour of the maximum absolute value for the eigenvalu

tfac ¼ 20ms. Here, t�rec and t��rec are, respectively, the critical points at which

trec4t��rec the paramagnetic states (P) are the only one that remain stable. (

increasing trec from 4 to 18 during 3 s.
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discrete system

xjðtþ 1Þ ¼ xjðtÞ þ
1� xjðtÞ

trec
�UxjðtÞsjðtÞ

� ð1�UÞujðtÞxjðtÞsjðtÞ,

ujðtþ 1Þ ¼ ujðtÞ �
ujðtÞ

tfac
þU ½1� ujðtÞ�sjðtÞ, ð2Þ

where trec and tfac are the time constant for depressing and
facilitating mechanisms, respectively.

3. Results

We solved the system described by Eqs. (1)–(2) within
the standard mean field assumption si � hsii and in the
limit of only one stored pattern, a � P=N ¼ 0 and f ¼ 1

2
,

although most of our conclusions are also valid for many
patterns. The result is a discrete map ~ytþ1 ¼

~F ð~ytÞ where
~y � fmþ;m�;xþ; x�; uþ; u�g is a vector whose components
are order parameters which measure the overlap with the
stored pattern ðmÞ, the mean depression level ðxÞ and the
mean facilitation level (u), in the neurons that are,
respectively, active ðþÞ or inactive ð�Þ in the pattern. The
local stability of the steady state solutions can be studied
by analysing the behavior of the eigenvalues, namely li

associated to the local dynamics of this map (see Ref. [6]
for details). In particular, fixed points become unstable
when the maximum absolute value of all eigenvalues,
namely jljmax is bigger than one. Fig. 1(left) shows jljmax as
a function of trec for U ¼ T ¼ 0:1 and tfac ¼ 20ms. Then,
the analysis of the stability of fixed points reveals three
different regimes in the behaviour of the system. First, a
ferromagnetic-like phase associated to standard associative
memory appears for trecot�rec. Second a paramagnetic-like
or non-memory phase occurs for trec4t��rec: Finally, an
oscillatory phase in which the network activity is jumping
F O P

32
Time (s)

es driving the dynamics around the fixed points, for U ¼ T ¼ 0:1 and

the ferromagnetic (F) and oscillatory phases (O) become unstable. For

Right) the emergence of different dynamical behaviours by continously
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Fig. 2. Phase diagrams for a ¼ 0, for several values of the relevant parameters defining the dynamic of the synapses, namely U ; trec; tfac and T . The left

panel represents the phase diagram in the plane (trec; tfac) at temperature T ¼ 0:1 and U ¼ 0:1. The middle panel corresponds to the phase diagram in the

plane ðtrec;UÞ for T ¼ 0:1 and g � tfac=trec ¼ 0:25. The dashed (solid) line correspond to the line of critical t�rec ðt
��
recÞ where recall (oscillatory) phase

disappears. The right panel is the phase diagram in the plane ðT ; tfacÞ for U ¼ 0:1 and trec ¼ 3ms. In all panels solid lines correspond to second order phase

transitions and dashed lines to first-order phase transitions.
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Fig. 3. (Left) Dependence of the half period during the oscillatory regime as a function of tfac. (Right) Dependence of the maximum of the overlap m as a

function also of tfac and three different values of trec: Both panels show that strong facilitation (large values of tfac) produces a more rapid access to stored

information and with less error. The figure also shows the contrary effect due to depression, that appear for week facilitation (small values of tfac). Data

points correspond to Monte Carlo simulations confirming the mean field results.
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between different memories appears for t�recotrecot��rec.
Fig. 1(right) shows the emergence of these three phases
when one continously varies trec between 3 and 18 during
3 s. Fig. 2 shows phase diagrams obtained by plotting the
critical lines at which transitions between these three phases
occur for different values of the parameters trec, tfac and U .
By inspection of these diagrams, one observes that the
width of the oscillatory phase enlarges for increasing values
of tfac. Moreover, a detailed analysis of the oscillatory
phase shows that the access to the stored memories and the
error in the retrieval of such memories strongly depends on
facilitation and on its competition with depression. This is
shown in Fig. 3 where the half period of the oscillations in
the overlap with a pattern, m � mþ �m�, and its
maximum absolute value are represented as function of
tfac, for different values of trec and U ¼ T ¼ 0:1.

4. Discussion

Using a realistic model of dynamical synapses which
includes short-term facilitation and depression, we show
Please cite this article as: J. Torres, et al., Attractor neural networks
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that, depending on the competition between these two
mechanisms, different type of behaviour occurs in ANN.
For low depression, a ferromagnetic or memory phase
occurs. For very large depression or facilitation, a
paramagnetic or non-memory phase occurs. For inter-
mediate facilitation and/or depression, an oscillatory phase
with the network activity jumping between the attractors
shows up. We also observed that a high facilitation
enhances the network ability to switch among the stored
patterns, as well as its adaptation to external stimuli, as it is
reported with more detail in [6]. Other interesting new
phenomena are, for instance, that the memory phase
disappears earlier for a fixed degree of depression and
temperature. Moreover, in the oscillatory phase we observe
that its width, in the corresponding phase diagram,
increases with facilitation, as shown in Fig. 2. In addition,
the frequency of the oscillations also increases with
facilitation. As a consequence, we conclude that facilitation
allows to recover information with less error but during a
shorter period of time. This supports the idea that synaptic
facilitation has influence in processes of short-term
with activity-dependent synapses: The role of synaptic facilitation,
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memory. The facility to switch could be interesting to code
both spatial and temporal information, and could explain,
for instance, the spatio-temporal dynamics in the early
olfactory processes which is described in [4].
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