The version of the following full text has not yet been defined or was untraceable and may differ from the publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/34767

Please be advised that this information was generated on 2017-08-15 and may be subject to change.
Experimental discrimination between charge $2e/3$ top quark and charge $4e/3$ exotic quark production scenarios

We present the first experimental discrimination between the $2e/3$ and $4e/3$ top quark electric charge scenarios, using top quark pairs (tt) produced in pp collisions at $\sqrt{s}=1.96$ TeV by the Fermilab Tevatron collider. We use 370 pb$^{-1}$ of data collected by the D0 experiment and select events with
at least one high transverse momentum electron or muon, high transverse energy imbalance, and four or more jets. We discriminate between b- and \bar{b}-quark jets by using the charge and momenta of tracks within the jet cones. The data is consistent with the expected electric charge, $|q| = 2e/3$. We exclude, at the 92% C.L., that the sample is solely due to the production of exotic quark pairs QQ with $|q| = 4e/3$. We place an upper limit on the fraction of QQ pairs $\rho < 0.80$ at the 90% C.L.

The heavy particle discovered by the CDF and D0 collaborations at the Fermilab Tevatron proton-antiproton collider in 1995 [1] is widely recognized to be the top quark. Currently measured properties of the particle are consistent with standard model (SM) expectations for the top quark. However, many of the properties of the particle are still poorly known. In particular, its electric charge, a fundamental quantity characterizing a particle, has not yet been determined.

To date, it is possible to interpret the discovered particle as either a charge $2e/3$ or $-4e/3$ quark. In the published top quark analyses of the CDF and D0 collaborations [2], there is a two-fold ambiguity in pairing the b-quarks and the W bosons in the reaction $pp \rightarrow t\bar{t} \rightarrow W^+W^-bb$, and equivalently, in the electric charge assignment of the measured particle. In addition to the SM assignment, $t \rightarrow W^+b$, "$t" \rightarrow W^-b$ is also conceivable, in which case "" would actually be an exotic quark, Q, with charge $q = -4e/3$ (charge-conjugate processes are implied). It is possible to fit $Z \rightarrow \ell^+\ell^-$ and $Z \rightarrow bb$ data assuming a top quark mass of $m_t = 270$ GeV and a right-handed b-quark that mixes with the isospin $+1/2$ component of an exotic doublet of charge $-1e/3$ and $-4e/3$ quarks, $(Q_1 , Q_4)_R$ [3]. In this scenario, the $-4e/3$ charge quark is the particle discovered at the Tevatron, and the top quark, with mass of 270 GeV, would have so far escaped detection.

In this Letter, we report the first experimental discrimination between the $2e/3$ and $4e/3$ charge scenarios. We also consider the case where the analyzed sample contains an admixture of SM top quarks and exotic quarks and place an upper limit on the exotic quark fraction. Our search strategy assumes each quark decays 100% of the time to a W boson and a b-quark. We use the lepton-plus-jets channel which arises when one W boson decays leptonically and one decays hadronically. The charged leptons (e/μ) originate from a direct W decay or from $W \rightarrow \tau \rightarrow e/\mu$. We require that the final state have at least two b-quark jets. The data used in this Letter were collected by the D0 experiment from June 2002 through August 2004 and correspond to an integrated luminosity of 370 pb$^{-1}$.

The D0 detector includes a tracking system, calorimeters, and a muon spectrometer [4]. The tracking system is made up of a silicon microstrip tracker (SMT) and a central fiber tracker, located inside a 2 T superconducting solenoid. The SMT, with a typical strip pitch of 50-80 μm, allows a precise determination of the primary interaction vertex (PV) and an accurate determination of the impact parameter of a track relative to the PV [5]. The tracker design provides efficient charged-particle measurements in the pseudorapidity region $|\eta| < 3$ [6]. The calorimeter consists of a barrel section covering $|\eta| < 1.1$, and two end caps extending to $|\eta| \approx 4.2$. The muon spectrometer encapsulates the calorimeter up to $|\eta| = 2.0$ and consists of three layers of drift chambers and two or three layers of scintillators [7]. A 1.8 T iron toroidal magnet is located outside the innermost layer of the muon detector.

We select data samples in the electron and muon channels by requiring an electron with transverse momentum $p_T > 20$ GeV and $|\eta| < 1.1$, or a muon with $p_T > 20$ GeV and $|\eta| < 2.0$. The leptons are required to be isolated from other particles using calorimeter and tracking information. More details on the lepton identification and trigger requirements are given in Ref. [8]. W boson candidate events are then selected in both channels by requiring missing transverse energy, E_T, in excess of 20 GeV due to the neutrino. To remove multijet background, E_T is required to be non-collinear with the lepton direction in the transverse plane. Jets are defined using a cone algorithm [9] with radius $\Delta R = 0.5$ [10]. These events must be accompanied by four or more jets with $p_T > 15$ GeV and rapidity $|y| < 2.5$. After all the above selection requirements are applied, we have a total of 231 (277) events in the muon (electron) channel.

We use a secondary vertex tagging (SVT) algorithm to reconstruct displaced vertices produced by the decay of B hadrons. Secondary vertices are reconstructed from two or more tracks satisfying: $p_T > 1$ GeV, ≥ 1 hits in the SMT layers, and impact parameter significance $d_{xy}/\sigma_{d_{xy}} > 3.5$. A jet is considered as SVT-tagged if it contains a secondary vertex with a decay length significance $L_{xy}/\sigma_{L_{xy}} > 7$ [11]. The determination of the sample composition relies on b-tagging, c-tagging, and light flavour tagging efficiencies and uses the method described in Ref. [12]. In order to increase the purity of the sample we select only events with two or more SVT-tagged jets. In the selected sample of 21 events with two SVT-tagged jets, the largest (second largest) background is Wbb (single top quark [13]) production with a contribution of $\approx 5\%$ ($\approx 1\%$) to the number of selected events.

The top or anti-top quark whose W boson decays leptonically (hadronically) is referred to as the leptonic (hadronic) top and the associated b-quark is denoted b_t (b_h). To compute the top quark charge we need to i) de-
cide which of the two SVT-tagged jets are b_l and b_h and $ii)$ determine if b_l and b_h are b- or b-quarks. The detected final state partons in the tt candidate events comprise the b_l and b_h quarks, two quarks from the hadronically decaying W boson, and one muon or one electron. The four highest-p_T jets can be assigned to the set of final state quarks according to many permutations and there are at least two ways to assign the SVT-tagged jets to b_l and b_h. For each permutation, the measured four-vectors of the jets and lepton are fitted to the tt event hypothesis, taking into account the experimental resolutions and constraining the mass of two W bosons to its measured value and the top quark mass to 175 GeV. We decide which of the SVT-tagged jets are b_l and b_h by selecting the permutation with the highest probability of arising from a tt event. Studies on simulated tt show that this gives the correct assignment in about 84% of the events.

We measure the absolute value of the top quark charge on each side of the event, given by $Q_1 = |q_b + q_b|$ on the lepton side and $Q_2 = |q_b + q_b|$ on the hadronic side. The charge of the lepton is indicated by q_b and q_b are the SVT-tagged jets on the lepton and hadronic side of the event. The charges q_b and q_b are determined by combining the p_T and charge of the tracks contained within a cone of $\Delta R = 0.5$ around the SVT-tagged jet axis. Based on an optimization using simulated tt events generated with ALPGEN [14] and GEANT [15] for a full D0 detector simulation, we define an estimator for jet charge $q_{\text{jet}} = (\sum_i q_i P^0_{i} / (\sum_i P^0_{i})$ where the subscript i runs over all tracks with $p_T > 0.5$ GeV and within 0.1 cm of the PV in the direction parallel to the beam axis.

To determine the expected distributions for the top quark charges Q_1 and Q_2, it is crucial to determine the expected distributions for q_{jet} in the case of a b-quark or a b-quark jet. In $\approx 50\%$ of the tt events, one of the SVT-tagged jets is actually a c-quark jet arising from $W \rightarrow cs$ (or its charge conjugate). Therefore we need to determine the expected distribution for q_{jet} in the case of c and c-quark jets.

We derive the expected distributions of jet charge from dijet collider data, enhanced in heavy flavor (b and c). We select events with exactly two jets, both SVT-tagged, with $p_T > 15$ GeV and $|y| < 2.5$. The method requires that the two jets are of charge conjugate flavors. To ensure this, we enhance $b\bar{b}$ and $c\bar{c}$ produced by flavor creation [16, 17, 18], by requiring the azimuthal distance between the jets to be larger than 3.0 and one jet (designated as j_1) to contain a muon with $p_T > 4$ GeV. We refer to this sample as the "tight dijet sample," where j_1 is not required to be SVT-tagged. Using the same techniques as for the tight dijet sample, we find that $x_\mu = (19 \pm 2)\%$ and the same fraction of charge flipping processes as for the tight dijet sample. We refer to P_{μ^+} and P_{μ^-} as the observed p.d.f.'s for q_{jet} on the probe jet in the loose dijet sample, when the tag muon is positive (negative). Thus we can write

$$P_{\mu^+} = 0.69 P_b + 0.30 P_b + 0.01 P_c$$
$$P_{\mu^-} = 0.30 P_b + 0.69 P_b + 0.01 P_c.$$ \hspace{1cm} (1)

P_{μ^+} and P_{μ^-} are distributions observed in data and are admixtures of the quark charge distributions. Equations 1 are not sufficient to extract the four probability density functions (p.d.f.'s) P_f. Therefore we define a "loose dijet sample," where j_1 is not required to be SVT-tagged. Using the same techniques as for the tight dijet sample, we find that $x_\mu = (19 \pm 2)\%$ and the same fraction of charge flipping processes as for the tight dijet sample. We refer to P_{μ^+} and P_{μ^-} as the observed p.d.f.'s for q_{jet} on the probe jet in the loose dijet sample, when the tag muon is positive (negative). Thus we can write

$$P_{\mu^+}' = 0.567 P_b + 0.243 P_b + 0.19 P_c$$
$$P_{\mu^-}' = 0.243 P_b + 0.567 P_b + 0.19 P_c.$$ \hspace{1cm} (2)

We solve Eqs. 1 and 2 to obtain the P_f for b, b, c, and c-quark jets.

The P_f's are dependent on the jet p_T, since p_T correlates with track multiplicity in the jet, and on the jet y, since the tracking efficiency is rapidity-dependent. Therefore we must account for the different jet p_T and y spectra between the probe jets of the dijet samples and the b-quark jets in preselected tt events. The P_f's obtained above are corrected by weighting the data events to the p_T and y spectra of SVT-tagged jets in tt events. Figure 1(a) shows the resulting P_b and P_b by applying the assignment procedure between the SVT-
tagged jets and the \(b_h, b_t \) quarks on simulated \(t\bar{t} \) events using our calculated \(P_f \)'s. The true flavor \(f \) of the SVT-tagged jets is determined from the simulation information. The values of \(q_{b_h} \) and \(q_{b_t} \) are obtained by randomly sampling the distribution of \(P_f \) for the corresponding flavors. About 1% of \(t\bar{t} \) candidate events contain a SVT-tagged light-flavor jet. In this case the p.d.f. for \(q_{\text{jet}} \) is taken from simulation. In the case of a \(|q| = 4e/3 \) exotic quark, the expected distributions of exotic quark charge are derived by computing \(Q_1 = | - q_e + q_{b_h} | \) and \(Q_2 = | q_e + q_{b_t} | \), following the same procedure as for the SM top quark. The uncertainty on the mass of the top quark \([21]\) is propagated as a systematic uncertainty.

The expected distributions of \(Q_1 \) and \(Q_2 \) for the background are obtained by \(i \) performing the assignment procedure between SVT-tagged jets and the \(b_h, b_t \) quarks on \(Wb_b \) simulated events, \(ii \) using the true jet flavors \(f \) to sample the corresponding \(P_f \)'s. The resulting distributions of \(Q_1 \) and \(Q_2 \) for the background are added to the top charge distributions in the SM and exotic cases. We denote \(P_{SM}(P_{ex}) \) the p.d.f.'s for \(Q_i \) and \(Q_2 \) including the background contributions in the SM (exotic) case.

For 16 of the 21 selected lepton-plus-jet events, the kinematic fit converges and we can assign the SVT-tagged jets to the \(b_t \) and \(b_h \) quarks, thus providing 32 measurements of the top quark charge. Figure 1(b) shows the 32 observed values of \(Q_1 \) and \(Q_2 \) overlaid with the SM and exotic charge distributions.

To discriminate between the SM and the exotic hypotheses, we form the ratio of the likelihood of the observed set of charges \(q_i \) arising from a SM top quark to the likelihood for the set of \(q_i \) arising from the exotic scenario, \(\Lambda = \frac{\prod_i P_{SM}(q_i)}{\prod_i P_{ex}(q_i)} \). The subscript \(i \) runs over all 32 available measurements. The value of the ratio is determined in data and compared with the expected distributions for \(\Lambda \) in the SM and exotic scenarios. We find that the observed set of charges agrees well with those of a SM top quark. The probability of our observation is 7.8% in the case where the selected sample contains only exotic quarks with charge \(|q| = 4e/3 \), including systematic uncertainties. Thus, we exclude at the 92.2% C.L. that the selected data set is solely composed of an exotic quark with \(|q| = 4e/3 \). The corresponding expected C.L. is 91.2%. Table I summarizes the dominant systematic uncertainties and their cumulative effect on the C.L.

It is not excluded that the data contain a mixture of two heavy quarks, one with \(|q| = 2e/3 \) and one with \(|q| = 4e/3 \). We perform an unbinned maximum likelihood fit to the observed set of \(q_i \) in data to determine the fraction \(\rho \) of exotic quark pairs. The likelihood of the observed set of \(q_i \) can be expressed as a function of \(\rho \) by

\[
L(\rho, q) = \prod_{i=1}^{N_{\text{data}}} (1 - \rho) P_{SM}(q_i) + \rho P_{ex}(q_i) \tag{3}
\]

Figure 1(c) shows \(-\ln L\) as function of \(\rho \). We fit \(\rho = -0.13 \pm 0.66(\text{stat}) \pm 0.11(\text{syst}) \), consistent with the SM. Using a Bayesian prior equal to one in the physically allowed region \(0 \leq \rho \leq 1 \) and zero otherwise, we obtain \(0 \leq \rho \leq 0.52 \) at the 68% C.L. and \(0 \leq \rho \leq 0.80 \) at the 90% C.L.

In summary, we present the first experimental discrimination between the \(2e/3 \) and \(4e/3 \) top quark electric charge scenarios. The observed top quark charge is consistent with the SM prediction. The hypothesis that only an exotic quark with charge \(|q| = 4e/3 \) is produced has been excluded at the 92% C.L. We also place an upper limit of 0.80 at the 90% C.L. on the fraction of exotic quark pairs in the double tagged lepton-plus-jets sample.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CAPES, CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); PPARC (United Kingdom); MSMT (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); Research Corporation; Alexander von Humboldt Foundation; and the Marie Curie Program.

\[\text{Reference [22]}\]

\[\text{Table I: Expected and observed confidence levels as function of the cumulative systematic uncertainties.}\]

<table>
<thead>
<tr>
<th>Systematic</th>
<th>Observed</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical uncertainty only</td>
<td>95.8</td>
<td>95.3</td>
</tr>
<tr>
<td>+ Fraction of cc events</td>
<td>95.8</td>
<td>95.2</td>
</tr>
<tr>
<td>+ Charge-flipping processes</td>
<td>95.7</td>
<td>95.2</td>
</tr>
<tr>
<td>+ Weighting w.r.t. (pT) and (y) spectra</td>
<td>94.4</td>
<td>94.1</td>
</tr>
<tr>
<td>+ Fraction of flavor creation</td>
<td>93.7</td>
<td>93.4</td>
</tr>
<tr>
<td>+ Statistical error on (p_T)</td>
<td>93.3</td>
<td>93.1</td>
</tr>
<tr>
<td>+ Jet energy calibration(^a)</td>
<td>92.4</td>
<td>91.8</td>
</tr>
<tr>
<td>+ Top quark mass</td>
<td>92.2</td>
<td>91.2</td>
</tr>
</tbody>
</table>

\(^a\) Reference [22].
FIG. 1: (a) b and \bar{b} jet charge distributions derived from dijet data, (b) the 32 measured values of the top quark charge compared to the expected distributions in the SM and exotic cases, and (c) likelihood fit of the fraction of exotic quark pairs in the selected data sample.

[5] Impact parameter is defined as the distance of closest approach (d_{cc}) of the track to the primary vertex in the plane transverse to the beamline. Impact parameter significance is defined as $d_{cc}/\sigma_{d_{cc}}$, where $\sigma_{d_{cc}}$ is the uncertainty on d_{cc}.
[6] Rapidity y and pseudorapidity η are defined as functions of the polar angle θ and parameter β as $y(\theta, \beta) = \frac{1}{2} \log(\frac{1 + \beta \cos \theta}{1 - \beta \cos \theta})$ and $\eta(\theta) = y(\theta, 1)$, where β is the ratio of a particle’s momentum to its energy.
[9] Decay length L_{xy} is defined as the distance from the primary to the secondary vertex in the plane transverse to the beamline. Decay length significance is defined as $L_{xy}/\sigma_{L_{xy}}$, where $\sigma_{L_{xy}}$ is the uncertainty on L_{xy}.
[10] ΔR is defined as a cone in pseudorapidity- and ϕ-space, $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$, where ϕ is the azimuthal angle.