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Abstract. The main result of this paper asserts that it suffices to prove the
Jacobian Conjecture for all polynomial maps of the form x + H, where H is
homogeneous (of degree 3) and JH is nilpotent and symmetric. Also a 6-
dimensional counterexample is given to a dependence problem posed by de
Bondt and van den Essen (2003).

Introduction

Let F = (F1, . . . , Fn) : Cn → Cn be a polynomial map, i.e. each Fi is a polyno-
mial in n variables over C, and denote by JF := (∂Fi

∂xj
)1≤i,j≤n the Jacobian matrix

of F . Then the Jacobian Conjecture asserts that if detJF ∈ C∗, then F is in-
vertible. It was shown in the classical papers [1] and [13] by Bass-Connell-Wright
and Yagzhev, respectively, that it suffices to prove the Jacobian Conjecture for all
n ≥ 2 and all polynomial maps of the form F = x + H , where H is homogeneous
(of degree 3) and JH is nilpotent.

In [12] and [7] the cubic homogeneous cases in dimension 3 (resp. 4) were treated
by Wright (resp. Hubbers).

Recently, in [6] Washburn and the second author treated one more special case,
namely they showed that if n ≤ 4, then the Jacobian Conjecture holds for all
polynomial maps of the form F = x+H , where JH is homogeneous, nilpotent and
symmetric.

At first glance the condition that JH is symmetric seems rather special. However
the main result of this paper, Theorem 1.1, asserts that it suffices to prove the
Jacobian Conjecture for all n ≥ 2 and all polynomial maps of the form F = x + H ,
where JH is homogeneous, nilpotent and symmetric!

The technique to obtain this result is used in section 2 to give a negative answer
in dimension 6 to a dependence problem posed in [2] (which, if true, would have
implied the Jacobian Conjecture). We refer to section 2 for more details. Finally
we would like to mention that in [3] the authors have obtained the following exten-
sions of the results from [6]: the Jacobian Conjecture holds for all F of the form
x + H , where JH is nilpotent and symmetric in the case n ≤ 4 (H need not be
homogeneous) and in the case n = 5 when H is homogeneous.
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1. Reduction to symmetric matrices

Throughout this paper we use the following notation:
C[x] := C[x1, . . . , xn] is the polynomial ring in n variables over C and H :=

(H1, . . . , Hn) : Cn → Cn is a polynomial map. Its Jacobian matrix is denoted by
JH . It follows from the Poincaré lemma (see for example [5], 1.3.53) that JH is
symmetric iff there exists f ∈ C[x] such that H = (fx1 , . . . , fxn) or equivalently
such that JH = ( ∂2f

∂xi∂xj
), the Hessian matrix of f . We denote this matrix by

h(f).
Observe that

(1) h(f) = J(fx1 , . . . , fxn).

For A ∈ Mn(C) we put f ◦ A := f(Ax). It is well known that

(2) h(f ◦ A) = Ath(f)|AxA.

Now we introduce n new variables y1, . . . , yn and to H as above we associate the
polynomial fH ∈ C[x, y] defined by

(3) fH := (−i)H1(x1+iy1, . . . , xn+iyn)y1+. . .+(−i)Hn(x1+iy1, . . . , xn+iyn)yn.

So if S is the (invertible) linear map given by

S := (x1 − iy1, . . . , xn − iyn, y1, . . . , yn),

then gH := fH ◦ S = (−i)H1(x)y1 + . . . + (−i)Hn(x)yn.
One readily verifies that h(gH) is of the form

(4) h(gH) =
( ∗ (−i)(JH)t

(−i)JH 0

)
.

In order to formulate the main result of this paper we introduce

Hessian Conjecture HC(n). Let f ∈ C[x]. If h(f) is nilpotent, then F :=
(x1 + fx1 , . . . , xn + fxn) is invertible.

It follows from (1) that if the n-dimensional Jacobian Conjecture is true, then
HC(n) is true as well. The surprising point is now

Theorem 1.1. The Jacobian Conjecture is equivalent to the Hessian Conjecture.
More precisely, if HC(2n) holds, then x + H is invertible for every H : Cn → Cn

with JH nilpotent.

The proof of this result is based on the following lemma.

Lemma 1.2. Let H = (H1, . . . , Hn) : Cn → Cn and let fH ∈ C[x, y] be as defined
in (3). Then JH is nilpotent iff h(fH) is nilpotent.

Proof. Introduce an extra variable z and write f (resp. g) instead of fH (resp. gH).
Then h(f) is nilpotent iff det(zI2n − h(f)) = z2n. Put q := (1/2)

∑n
j=1(x

2
j + y2

j ).
Then h(zq) = zI2n, so

(5) h(zq − f) = zI2n − h(f).

Since det S = 1, it follows from (2) and (5) that

(6) deth(zq ◦ S − g) = deth(zq − f)|S(x,y).
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Since q ◦ S = 1
2

∑n
j=1 x2

j −
∑n

j=1 ixjyj , it follows from (4) that

h(zq ◦ S − g) =
( ∗ −izIn + i(JH)t

−izIn + iJH 0

)
.

Consequently

(7) deth(zq ◦ S − g) = det(zIn − JH) det(zIn − (JH)t).

So by (6) and (7) we obtain

det(zI2n − h(f))|S(x,y) = det(zIn − JH) det(zIn − (JH)t).

Hence h(f) is nilpotent iff det(zI2n − h(f)) = z2n iff det(zIn − JH) = zn iff JH
is nilpotent. �

Proof of Theorem 1.1. Let H = (H1, . . . , Hn) be such that JH is nilpotent and
let fH be as in (3). Then by Lemma 1.2 h(f) is nilpotent. So the assumption
HC(2n) implies that F = (x1 +fx1 , . . . , xn +fxn , y1+fy1 , . . . , yn+fyn) is invertible.
Consequently F ◦ S is invertible. An easy calculation shows that

F ◦ S =


x1 − iy1 − i

∑
j

Hjx1(x)yj , . . . , xn − iyn − i
∑

j

Hjxn(x)yj ,

y1 +
∑

j

Hjx1(x)yj − iH1, . . . , yn +
∑

j

Hjxn(x)yj − iHn


 .

Hence S−1 ◦ F ◦ S = (x1 + H1(x), . . . , xn + Hn(x), ∗, . . . , ∗) is invertible, which in
turn implies that x + H is invertible. �

Corollary 1.3. It suffices to prove the Jacobian Conjecture for all n ≥ 2 and
all F of the form F = (x1 + fx1 , . . . , xn + fxn), where h(f) is nilpotent and f
is homogeneous of degree 4 (or equivalently for all n ≥ 2 and all F of the form
F = x + H with JH nilpotent and symmetric and H homogeneous of degree 3).

Proof. Follows immediately from Theorem 1.1 and Corollary 2.2 of [1]. �

2. Dependence problems

In the search for the Jacobian Conjecture the following problems were formulated
by several authors (see [8], Conjecture 1, p. 80, [10], Conjecture B, p. 135, [11],
Conjecture 11.3, [4] and [5], 7.1.7)

(Homogeneous) Dependence Problem (H)DP(n). Let H := (H1, . . . , Hn)
with H(0) = 0 be (homogeneous of degree d ≥ 1) such that JH is nilpotent. Are
the Hi linearly dependent over C?

One easily verifies that the linear dependence of the Hi is equivalent to the linear
dependence of the rows of JH over C. It is shown in [5], Theorem 7.1.7, that DP(2)
has an affirmative answer and that for each n ≥ 3 there are counterexamples. The
easiest such example is the following:

(8) H1 = x2 − x2
1, H2 = x3 + 2x1(x2 − x2

1), H3 = −(x2 − x2
1)

2.

The homogeneous dependence problem is still open; but in the cases n = 3, d = 3
and n = 4, d = 3, affirmative answers were obtained by Wright in [12] and Hubbers
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in [7]. Recently in [2] the corresponding dependence problems were formulated for
Hessian matrices, i.e.

(Homogeneous) Symmetric Dependence Problem (H)SDP(n). Let H with
H(0) = 0 be (homogeneous of degree d ≥ 1) such that JH is nilpotent and sym-
metric. Are the Hi linearly dependent over C?

The importance of these problems becomes clear if one combines Theorem 1.1
with the following result of [2].

Theorem 2.1 ([2, Theorem 2.1]). i) If SDP(p) has an affirmative answer for all
p ≤ n, then HC(n) holds.

ii) If SDP(p) has an affirmative answer for all p ≤ n − 2 and HSDP(p) for
p = n − 1 and p = n, then HC(n) holds for all homogeneous f ∈ C[x].

The aim of this section is to relate the dependence problems stated before with
the symmetric dependence problems. As a consequence we obtain a negative answer
to SDP(6). More precisely

Example. Let H = (H1, H2, H3) be as in (8). Then JH is nilpotent and H1, H2, H3

are linearly independent over C. Now let fH be as in (3). Then it follows from
the next result and the fact that DP(2) holds, that h(fH) is a counterexample to
SDP(6).

Proposition 2.2. If n is minimal such that (H)DP(n) does not hold, then
(H)SDP(2n) does not hold either.

Proof. i) Suppose (H)DP(n) does not hold and n is minimal with this property.
Then there exists H : Cn → Cn with H(0) = 0 such that JH is nilpotent and the
rows of JH are independent over C.

Claim. The columns of JH are also independent over C.

Namely, if the columns of JH are dependent over C, then there exists 0 �= v ∈ Cn

with JH · v = 0. Let T ∈ Gln(C) be such that its last column equals v. Then
the last column of JH · T equals zero. So if we put H̃ := T−1 ◦ H ◦ T , then
JH̃ = T−1JH(Tx)T is nilpotent and also its last column equals zero. In particular
H̃1, . . . , ˜Hn−1 ∈ C[x1, . . . , xn−1]. Finally put H∗ := (H̃1, . . . , ˜Hn−1). Since the last
column of JH̃ is zero, it follows readily that JH∗ is nilpotent and that the rows
of JH∗ are linearly independent over C (since the rows of JH̃ are because those of
JH are by hypothesis). So H∗ contradicts the minimality of n.

ii) Therefore, the colums of JH are independent over C. Let gH and fH be as
above. Then h(gH) has the form (4).

Claim. The rows Rj of h(gH) are independent over C: namely suppose that
∑2n

j=1

cjRj = 0 for some cj ∈ C. Since the rows of (−i)(JH)t are independent over C

(since the columns of JH are by i)), the zero matrix in the right corner of h(gH)
in (4) implies that c1 = . . . = cn = 0. So

∑2n
j=n+1 cjRj = 0. However the rows of

(−i)JH are also independent over C (by hypothesis), so also cj = 0 if j > n, which
proves the claim.

iii) Finally, since fH = gH ◦ T (T := S−1) it follows from (2) that h(fH) =
T th(gH)|T (x,y)T . Therefore, the rows of h(fH) are also independent over C, which
concludes the proof. �
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3. Final remarks

Almost three months after this paper was submitted, the authors were notified by
David Wright that the paper [9] by Guowu Meng had appeared on the internet, in
which he obtained a result similar to ours. He also formulates a Hessian Conjecture
and shows that the Jacobian Conjecture is equivalent to his Hessian Conjecture.
Meng’s Hessian Conjecture states that the Jacobian Conjecture holds for all gradi-
ent maps ∇f := (fx1 , . . . , fxn). The difference between our Hessian Conjecture and
the one formulated by Meng is that he considers all polynomial maps of the form
∇f with deth(f) ∈ C∗, where we only need to consider all polynomial maps of the
form x + ∇f , with h(f) nilpotent. So our reduction is more refined in the sense
that it preserves the nilpotency as formulated in the classical reduction theorems
of [1] and [13].

Added in proof

In a recent paper the authors gave an affirmative answer to HDP(3). Also, the
first author found counterexamples to HDP(n) for all n ≥ 5.
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