Suppression of convection using gradient magnetic fields during crystal growth of NiSO\(_4\)·6H\(_2\)O

P. W. G. Poodt and M. C. R. Heijna
IMM, Solid State Chemistry, Radboud University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands and High Field Magnet Laboratory HFML, Radboud University of Nijmegen, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands

K. Tsukamoto
Faculty of Science, Department of Earth and Planetary Material Science, Tohoku University, Aoba-ku Sendai 980-8578, Japan

W. J. de Grip
Department of Biochemistry, NCMLS, University Medical Center Nijmegen, 6500 HB Nijmegen, The Netherlands

P. C. M. Christianen and J. C. Maan
IMM, High Field Magnet Laboratory HFML, Radboud University of Nijmegen, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands

W. J. P. van Enckevort and E. Vlieg\(^a)\)
IMM, Solid State Chemistry, Radboud University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

(Received 12 July 2005; accepted 26 September 2005; published online 15 November 2005)

A magnetic field was successfully used to suppress buoyancy driven convection during solution growth of a NiSO\(_4\)·6H\(_2\)O crystal. The disappearance of the convection plume and the expansion of the depletion zones, typical for crystal growth in the absence of gravity, were observed with schlieren microscopy when the product of magnetic field and field gradient corresponds to the condition that for all relevant concentrations buoyancy is compensated by paramagnetic counterforces. We show both theoretically and experimentally, that levitation of the growth solution is not the correct condition to suppress convection. © 2005 American Institute of Physics. [DOI: 10.1063/1.2133894]

For a wide variety of technical and scientific applications, the availability of high-quality single crystals is of primary importance. For example, in protein structure determination with x-ray diffraction, the crystal quality is often the limiting factor. Crystal quality is largely determined by processes during growth. To nucleate crystals from solution, highly supersaturated solutions are needed. Once crystals have nucleated, their growth depletes the solution in the vicinity of the crystal, resulting in a lower local density. This solution will rise due to buoyancy, which leads to convection that can be observed as a so-called growth plume.\(^1\) Through a relatively thin (typically, 0.1–0.3 mm) laminar flow boundary layer near the crystal surface, the crystal remains in contact with a highly supersaturated solution. Within this boundary layer, diffusion is the only means of mass transport, leading to a thin depletion zone with a high concentration gradient. In a system where mass transport is important, this leads to a fast growth rate which affects crystal quality negatively, because defects have no time to heal. Therefore, microgravity conditions, which suppress buoyancy, are believed to improve crystal quality, since without convection the depletion zone will extend continuously, and crystal growth is automatically slowed down due to much slower mass transport.\(^2\)

A second effect that reduces the crystal quality arises from microcrystals that form at high supersaturations. Sedimentation of such microcrystals occurs in normal gravity and leads to increased mosaicity in the crystal after incorporation.\(^3\) In this case, microgravity conditions should also improve crystal quality. Therefore, crystal growers and protein crystallographers in particular, have performed several growth experiments in space. However, space-based experiments are rare and expensive, and have a low controllability and accessibility. The outcome of these studies on the beneficial effect of microgravity on crystal quality is therefore not conclusive.\(^4\)–\(^6\)

A promising alternative for space-based experiments is the application of magnetic fields.\(^7\) By applying a gradient magnetic field, a magnetic force is generated which can counteract gravity.\(^8\)\(^9\) Although many crystal growth experiments have been performed in magnetic fields, no experiment has yet shown that simulated microgravity in magnetic fields indeed leads to the suppression of convection. In this letter, we directly show by schlieren microscopy how the growth plume during crystal growth can be suppressed in a suitably chosen magnetic field.

Following a recent analysis of Ramachandran and Leslie\(^10\) we first briefly discuss the forces acting on a body in a magnetic field. The net force \(F_z\) per unit volume along the \(z\) direction on an object in a gradient magnetic field in vacuum or air is the sum of the magnetic force and the gravitational force given by\(^9\)\(^,\)\(^10\)

\[F_z = \nabla_B B \cdot B - \gamma g, \]

where \(\nabla_B B\) is the magnetic field gradient, \(\gamma\) is the gyromagnetic ratio, and \(g\) is the gravitational acceleration.

\(^a)\)Electronic mail: e.vlieg@science.ru.nl
\[F_z = F_{\text{magnetic}} + F_{\text{gravity}} = \frac{X}{\mu_0} B_z B'_z - \rho g, \]
\[(1) \]

where \(B'_z = dB_z / dz \), \(\chi \) is the volume magnetic susceptibility, \(\rho \) is the density, \(\mu_0 \) is the magnetic permeability of the vacuum, \(g \) is the gravitational acceleration in the \(-z\) direction, and \(B_z \) is the magnetic field along the \(z \) direction. To achieve levitation, the magnetic and gravitational force should cancel each other so that \(F_z = 0 \), from which the levitation condition directly follows and which is demonstrated in levitating diamagnetic materials like bismuth,\(^\text{11}\) droplets of ionic solution,\(^\text{12}\) glass,\(^\text{12}\) and even frogs.\(^\text{9}\) However, to obtain a microgravity-like condition for crystal growth where buoyancy-driven convection is suppressed, levitation is not the correct condition. During crystal growth from solution, local variations in concentration occur, and thus also local variations in density and magnetic susceptibility. To achieve suppression of convection, the force acting on different volume elements of the growth solution should be equal, leading to the following condition:

\[B_z B'_z = \frac{\Delta \rho}{\Delta \chi} \mu_0 g, \]
\[(2) \]

where \(\Delta \rho \) and \(\Delta \chi \) are the difference in the density and the volume magnetic susceptibility, respectively, between different solutal volume elements. For small variations in the concentration, the density and susceptibility can be written as \(\rho(c) = \rho_0 + \alpha c \) and \(\chi(c) = \chi_0 + \beta c \), with \(\alpha \) and \(\beta \) as the coefficients of the linear concentration dependence of \(\rho \) and \(\chi \), respectively. Equation (2) then becomes

\[B_z B'_z = \frac{\alpha}{\beta} \mu_0 g. \]
\[(3) \]

\(\alpha \) is usually positive, while for diamagnetic materials \(\chi \) is negative and of the order of \(10^{-6} \), with \(\beta \) usually also negative and small. Therefore, \(B_z B'_z \) has to have a large and negative value, mostly beyond the reach of conventional magnets. For paramagnetic solutions, \(\beta \) is positive and much larger, which makes suppression of convection more easy. Note that Eqs. (2) and (3) show that if \(\beta = 0 \), it is impossible to suppress buoyancy-driven convection, although it is possible to levitate the solution.\(^\text{13,14}\)

Another consequence of the previous analysis is that the criterion to reduce sedimentation is given by Eq. (2), which has been used by Maki et al.,\(^\text{15}\) to grow lysozyme crystals floating in a paramagnetic solution. Unlike in real microgravity, suppression of convection, reducing sedimentation or levitation cannot be done simultaneously using gradient magnetic fields.

For an experimental validation of this method for convection suppression during growth, we investigated the growth of NiSO\(_4\)-6H\(_2\)O crystals from solution in a gradient magnetic field. Nickel sulfate crystals and their solution are paramagnetic. In order to calculate the conditions for convection suppression, we measured the density and volume susceptibility as function of concentration range near the equilibrium concentration of 48.88 wt \% at 25 °C.\(^\text{16}\) The density measurements were performed by weighing a precisely determined volume of solution. The volume susceptibility measurements were performed using a MSB-Auto magnetic susceptibility balance from Sherwood Scientific Ltd. Results for these measurements are shown in Fig. 1. We determined the following values: \(\alpha = 12.1 \pm 0.5 \) kg m\(^{-3}\) wt \%-\(^{-1}\) and \(\beta = (3.8 \pm 0.2) \times 10^{-6} \) wt \%-\(^{-1}\).

With all parameter values known, we can calculate the required \(B_z B'_z \) to suppress convection, stop sedimentation, or to levitate the solution. We have estimated \(\chi_{\text{crystal}} \) to be 3.2 \(\times 10^{-4} \) by extrapolation of the data in Fig. 1. The values are shown in Table I, which also shows the predicted effective \(g \) value for convection.

Our experiments were performed using a 20 T 32 mm bore resistive magnet with a calibrated field profile at the High Field Magnet Laboratory at the Radboud University of Nijmegen. The position in the magnet we chose to perform our experiment has values of \(B_z = 0.434 B_0 \) and \(B'_z = 14.555 B_0 \), where \(B_0 \) is the maximum field at the center of the magnet. The samples were prepared by gluing small single-crystal fragments to a thin copper wire using superglue. These crystals were submerged in a slightly supersaturated solution so that they grew to a size of about 1 mm. The crystals were mounted in a glass cuvet with an inner volume of 7.5 \(\times \) 7.5 \(\times \) 15 mm\(^3\). A long distance schlieren microscope was built to fit inside the magnet bore. With schlieren microscopy, it is possible to visualize concentration gradients in situ because the intensity is proportional to the gradient in concentration along the \(x \) direction, i.e., \(I \propto \partial n / \partial x \propto \partial c / \partial x \).\(^\text{17-19}\) The temperature inside the bore was set to 25 °C and controlled by a double-walled tube connected to a thermostatic waterbath. As a growth solution, a 10.5% supersaturated nickel sulfate hexahydrate solution was used.

Figure 2 shows the main result of our experiment. At \(B_z = 0 \) T, under normal gravity conditions, a growth plume can be seen rising from the crystal [Fig. 2(a)]. At the sides of the crystal, zones of low and high intensities are visible. These are the depletion zones surrounding the crystal. The concentration gradient on the left side of the crystal is posi-

![FIG. 1. Density and susceptibility as function of concentration of an aqueous NiSO\(_4\)-6H\(_2\)O solution.](http://apl.aip.org/apl/copyright.jsp)
have achieved convection suppression. Using gradient magnetic fields combined with in situ optical techniques, such as schlieren microscopy, offers a great opportunity to study the effects of microgravitylike conditions on crystal growth in general and protein crystal growth in particular. Although, unlike in real microgravity, suppression of convection and reducing sedimentation cannot occur simultaneously, the use of gradient magnetic fields can offer a good alternative for microgravity experiments in crystal growth.

The authors thank J. Rook and R. van Stijn for technical support. This work is part of the research programs of the “Stichting voor Fundamenteel Onderzoek der Materie (FOM), and the Council for the Chemical Sciences (CW), financially supported by the Netherlands Organization for Scientific Research (NWO).