Search for first-generation scalar leptoquarks in pp collisions at $\sqrt{s}=1.96$ TeV

We report on a search for pair production of first-generation scalar leptoquarks (LQ) in pp collisions at $\sqrt{s}=1.96$ TeV using an integrated luminosity of 252 pb$^{-1}$ collected at the Fermilab Tevatron collider by the D0 detector. We observe no evidence for LQ production in the topologies arising from $LQLQ \rightarrow l\bar{l}eqq$ and $LQLQ \rightarrow l\bar{l}eq\bar{q}$, and derive 95% C.L. lower limits on the LQ mass as a function of β, where β is the branching fraction for $LQ \rightarrow eq$. The limits are 241 and 218 GeV/c2 for $\beta=1$ and 0.5, respectively. These results are combined with those obtained by D0 at $\sqrt{s}=1.8$ TeV, which increases these LQ mass limits to 256 and 234 GeV/c2.

PACS numbers: 14.80.-j, 13.85.Rm

Several extensions of the standard model (SM) include leptoquarks (LQ) which carry color, fractional electric charge, and both lepton (l) and quark (q) quantum numbers and would decay into a lepton and a quark [1]. The H1 and ZEUS experiments at the e^+p collider HERA at DESY published [2] lower limits on the mass of a first-generation LQ that depend on the unknown leptoquark-$l-q$ Yukawa coupling λ. At the CERN LEP collider, pair
production of leptoquarks could occur in e^+e^- collisions via a virtual γ or Z boson in the s-channel. At the Fermilab Tevatron collider, leptoquarks would be produced dominantly through $q\bar{q}$ annihilation (for $M_{LQ} > 100$ GeV/c^2) and gluon fusion. Such pair production mechanisms are independent of the coupling λ. Experiments at the LEP collider [3] and at the Fermilab Tevatron collider [4, 5, 6] set lower limits on the masses of leptoquarks. In this Letter, we present a search for first-generation scalar leptoquark pairs produced in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV for two cases: when both leptoquarks decay to an electron and a quark with a branching fraction $(Br)\beta^2$, where β is the leptoquark branching fraction into an electron and a quark, and when one of the leptoquarks decays to an electron and a quark and the other to a neutrino and a quark with $Br = 2\beta(1-\beta)$. The final states consist of two electrons and two jets (eejj) or of an electron, two jets, and missing transverse energy corresponding to the neutrino which escapes detection (ejjj).

The D0 detector [7] comprises three main elements. A magnetic central-tracking system, which consists of a silicon microstrip tracker and a central fiber tracker, is located within a 2 T superconducting solenoidal magnet. Three liquid-argon/uranium calorimeters, a central section (CC) covering pseudorapidities $|\eta|$ up to ≈ 1 and two end calorimeters (EC) extending coverage to $|\eta| \approx 4$ [9], are housed in separate cryostats. Scintillators between the CC and EC cryostats provide sampling of developing showers for $1.1 < |\eta| < 1.4$. A muon system is located outside the calorimeters.

The data used in this analysis were collected from April 2002 to March 2004. The integrated luminosity for this data sample is 252 ± 16 pb$^{-1}$. Events were required to pass at least one of a set of electron triggers based on the requirement of one electromagnetic trigger tower to be above threshold and on shower shape conditions. The efficiencies of the trigger combinations used in the eejj and ejjj analyses have been measured using data. They are $\sim 100\%$ for two electrons of transverse energy (E_T^{EM}) above 25 GeV, and for one electron above 40 GeV. The small loss of events due to the trigger inefficiencies for E_T^{EM} below 40 GeV is taken into account using proper weighting for Monte Carlo (MC) events.

Electrons are reconstructed as calorimeter electromagnetic clusters which match a track in the central-tracking system. Electromagnetic (EM) clusters are identified by the characteristics of their energy deposition in the calorimeter. Cuts are applied on the fraction of the energy in the electromagnetic calorimeter and the isolation of the cluster in the calorimeter. EM clusters are marked as tight when they satisfy a shower shape condition and loose otherwise. Jets are reconstructed using the iterative, midpoint cone algorithm [10] with a cone size of 0.5. The energy measurement of the jets has been calibrated as a function of the jet transverse energy and η by balancing energy in photon plus jet events. The missing transverse energy (E_T^m) is calculated as the vector sum of the transverse energies in the calorimeter cells, removing contributions from detector noise.

For both channels, the background arising from multijet events is determined from a sample of data events (QCD sample) that satisfy the main cuts used in the analysis except that each EM cluster is loose instead of tight. A QCD normalization factor is extracted for this sample in a part of the phase space where the LQ contribution is expected to be negligible. The QCD sample normalized by this factor is used to derive the multijet contribution in the relevant part of the phase space. To evaluate the Z boson/Drell-Yan (Z/DY) and the W boson background contributions, samples of MC events generated with ALPGEN [11] or PYTHIA [12] were used. Samples of PYTHIA tt events ($m_t = 175$ GeV/c^2) were used to calculate the top quark background. $LQLQ \rightarrow eejj$ and $LQLQ \rightarrow ejjj$ MC samples were generated using PYTHIA for LQ masses from 120 to 280 GeV/c^2 in steps of 20 GeV/c^2. All MC events were processed using a full simulation of the detector based on GEANT [13] and the complete event reconstruction. The efficiencies of the various cuts, measured using the data, were taken into account using proper weightings of the MC events.

The eejj analysis requires two tight EM clusters with $E_T^{EM} > 25$ GeV and at least two jets with $E_T > 20$ GeV within $|\eta| < 2.4$. At least one of the EM clusters should spatially match an isolated track and at least one should be in the CC fiducial region. The major SM background sources that mimic the eejj decay of a LQ pair are multijet events (where two of the jets are misidentified as EM objects), Z/DY production, and top quark pair production. To suppress background from Z boson production, events with a di-electron mass (M_{EE}) compatible with the Z boson mass (80 GeV/$c^2 < M_{EE} < 102$ GeV/c^2) are rejected. Finally $S_T > 450$ GeV is also required, where S_T is the scalar sum of the transverse energies of the two electrons and the two leading jets. In Fig. 1a, the S_T distributions for data and background after applying the Z boson mass cut are shown. This choice of the cut-off has been optimized using MC signal and background events to get the best expected mass limit. The total efficiencies for a LQ signal are summarized in Table I. The multijet background is estimated from two samples of events with two EM clusters $E_T^{EM} > 15$ GeV which have at least one matched track and no reconstructed jets. Both EM clusters are tight in one sample and loose in the other. The QCD normalization factor is determined by the normalization of the M_{EM} distributions of the two samples below 75 GeV/c^2. The Z/DY and top quark contributions are normalized to the integrated luminosity. Table II lists the number of events in the data and the number of expected events from SM background sources.

Systematic uncertainties on the background are deter-
The jet energy scale is determined by varying the correction section using a Bayesian approach.

Table I: Efficiencies after all cuts and 95% C.L. upper limits on production cross section \times branching fraction Br, as a function of M_{LQ}, for the two channels.

<table>
<thead>
<tr>
<th>M_{LQ}(GeV/c^2)</th>
<th>$eejj$</th>
<th>$evjj$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\epsilon(%)$</td>
<td>$\alpha \times Br$(pb)</td>
</tr>
<tr>
<td>120</td>
<td>2.2±0.9</td>
<td>0.950</td>
</tr>
<tr>
<td>140</td>
<td>4.5±0.9</td>
<td>0.444</td>
</tr>
<tr>
<td>160</td>
<td>8.9±1.7</td>
<td>0.223</td>
</tr>
<tr>
<td>180</td>
<td>12.6±2.4</td>
<td>0.156</td>
</tr>
<tr>
<td>200</td>
<td>18.5±3.0</td>
<td>0.102</td>
</tr>
<tr>
<td>220</td>
<td>24.6±3.5</td>
<td>0.075</td>
</tr>
<tr>
<td>240</td>
<td>30.3±3.9</td>
<td>0.060</td>
</tr>
<tr>
<td>260</td>
<td>34.0±4.0</td>
<td>0.053</td>
</tr>
<tr>
<td>280</td>
<td>36.0±4.0</td>
<td>0.050</td>
</tr>
</tbody>
</table>

Table II: Number of events in data compared with background expectation at different stages of the $eejj$ analysis.

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Z boson veto $S_T > 450$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$eejj$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total background</td>
<td>400 ± 100</td>
<td>92 ± 17</td>
</tr>
<tr>
<td>Z/DY + jets</td>
<td>342 ± 99</td>
<td>41 ± 11</td>
</tr>
<tr>
<td>Multijet</td>
<td>59 ± 16</td>
<td>47 ± 13</td>
</tr>
<tr>
<td>$t\bar{t}$ production</td>
<td>4.7 ± 0.4</td>
<td>3.8 ± 0.3</td>
</tr>
</tbody>
</table>

The S_T distributions for the $eejj$ events (a) and $evjj$ events (b) from data (triangles) compared to the SM background (solid histograms). The dot-dashed histograms are the expected distributions for a 240 GeV/c^2 LQ signal (a) and for a 200 GeV/c^2 LQ signal (b).

The S_T distributions for the $eejj$ events (a) and $evjj$ events (b) from data (triangles) compared to the SM background (solid histograms). The dot-dashed histograms are the expected distributions for a 240 GeV/c^2 LQ signal (a) and for a 200 GeV/c^2 LQ signal (b).
jets, and the \(\mathcal{E}_T \). The distribution of the variable \(S_T \) for the data and the total background is shown in Fig. 1b after applying the \(M_{T}^{\mu} \) cut. The choice of the cutoff has been optimized as above. The total efficiency of these cuts for a LQ signal is given in Table I. To determine the multijet background we use a data sample that passed all the preceding cuts but with a loose EM cluster matching spatially a track. The QCD normalization factor is determined using the ratio of the number of events with \(\mathcal{E}_T < 10 \text{ GeV} \) in this and in the search samples. The \(W \) boson background is normalized to the data at transverse mass \(60 \text{ GeV}/c^2 < M_{T}^{\mu} < 100 \text{ GeV}/c^2 \). The top quark background is normalized to the integrated luminosity using the NNLO theoretical cross section. The number of events which survive the cuts and the number of predicted background events are summarized in Table III.

Systematic uncertainties associated with the QCD normalization factor (9%) and \(W \) boson normalization factor (5.7%) are determined by the limited statistics of the samples and the choice of kinematical domain over which the normalization is done. The jet energy scale uncertainty introduces uncertainties equal to 25% for \(W \) boson production and 8.5% for the top-quark-pair production. For the \(W \) boson background an uncertainty equal to 33% is associated to the shape of the \(\mathcal{E}_T \) distribution. A 25% error has been included as systematic uncertainty on the top quark cross section. Finally, there is an uncertainty of 3.8% on the particle-ID acceptance. Three systematic uncertainties are determined on the signal acceptance: 3.8% comes from the uncertainty on the particle-ID, 5% is due to the jet energy scale uncertainty, and 5.4% corresponds to the acceptance variations for different PDF parameterizations.

As no excess of data over background is found in the \(e\nu jj \) channel, an upper limit on the production cross section for a first-generation scalar leptoquark is derived and shown in Fig. 2b and in Table I. A comparison of these limits to theoretical calculations of the cross section [15], performed as described above, gives a lower limit on the first-generation scalar LQ mass of 208 GeV/c\(^2\) for \(\beta = 0.5 \).

Combination of the limits obtained in the searches in the \(eejj \) and \(e\nu jj \) channels is done using a Bayesian likelihood technique [17], with correlated uncertainties taken into account. The limits on the cross sections obtained at the 95% C.L. for the combination of the two channels and different values of \(\beta \) are compared with the NLO LQ pair production cross section [15] and lower mass limits are derived and given, as a function of \(\beta \), in Table IV and shown in Fig. 3. In Table IV are also shown the Run I mass limits based on an integrated luminosity \(\sim 120 \text{ pb}^{-1} \) obtained by DØ [4], using the three channels \(eejj \), \(e\nu jj \) and \(\nu\nu jj \), and CDF [5] (\(eejj \) channel). This analysis sets a 95% C.L. limit on the first-generation leptoquark mass of \(M_{LQ} > 218 \text{ GeV}/c^2 \) for \(\beta = 0.5 \), and \(M_{LQ} > 241 \text{ GeV}/c^2 \) for \(\beta = 1 \). The DØ Run II and Run I results are combined, using the same method, and the results are shown in Table IV and in Fig. 3. The 95% C.L. limits on the first-generation leptoquark mass are \(M_{LQ} > 234 \text{ GeV}/c^2 \) for \(\beta = 0.5 \), and \(M_{LQ} > 256 \text{ GeV}/c^2 \) for \(\beta = 1 \).

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the Department of Energy and National Science Foundation (USA), Commissariat à l’Energie Atomique and CNRS/Institut National de Physique Nucléaire et de Physique des Particules (France), Ministry of Education and Science,

Table III: Number of events in data compared with background expectation at different stages of the \(eejj \) analysis

<table>
<thead>
<tr>
<th>(\mathcal{E}_T > 30)</th>
<th>(M_T^{\mu} > 130)</th>
<th>(S_T > 330)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>900</td>
<td>14</td>
</tr>
<tr>
<td>Total background</td>
<td>902 ± 21</td>
<td>13.9 ± 4.4</td>
</tr>
<tr>
<td>(W + \text{jets})</td>
<td>811 ± 21</td>
<td>10.0 ± 4.4</td>
</tr>
<tr>
<td>Multijet</td>
<td>76 ± 7</td>
<td>2.3 ± 0.5</td>
</tr>
<tr>
<td>(t\bar{t}) production</td>
<td>147.2 ± 2.9</td>
<td>1.6 ± 0.37</td>
</tr>
</tbody>
</table>

Table IV: 95% C.L. lower limits on the first-generation scalar leptoquark mass (in GeV/c\(^2\)), as a function of \(\beta \)

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1.</th>
</tr>
</thead>
<tbody>
<tr>
<td>eejj</td>
<td>158 180 203 220 232 241</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>evjj</td>
<td>169 193 203 207 208 207 203 193 169</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comb. Run II</td>
<td>110</td>
<td>204</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DØ Run I</td>
<td>225</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DØ Runs I & II</td>
<td>183 206 218 227 234 239 244 248 252 256</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDF Run I</td>
<td>213</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3: Excluded regions (shaded area) at the 95% C.L. in the \(\beta \) versus LQ mass plane for the production of first-generation scalar leptoquarks.
Agency for Atomic Energy and RF President Grants Program (Russia), CAPES, CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil), Departments of Atomic Energy and Science and Technology (India), Colciencias (Colombia), CONACyT (Mexico), KRF (Korea), CONICET and UBACyT (Argentina), The Foundation for Fundamental Research on Matter (The Netherlands), PPARC (United Kingdom), Ministry of Education (Czech Republic), Canada Research Chairs Program, CFI, Natural Sciences and Engineering Research Council and West-Grid Project (Canada), BMBF and DFG (Germany), A.P. Sloan Foundation, Research Corporation, Texas Advanced Research Program, and the Alexander von Humboldt Foundation.

[*] Visitor from University of Zurich, Zurich, Switzerland.

 H1 Collaboration, C. Adloff et al., Phys. Lett. B 523, 234 (2001);

 OPAL Collaboration, G. Abbiendi et al., Phys. Lett. B 526, 233 (2002);

[8] \eta = - \ln(\tan(\theta/2)) where \theta is the polar angle measured relative to the proton beam direction.

 D. Stump et al., JHEP 0310 (2003) 046.