
Uni�cation for Subformula Linking under Quanti�ers

Ike Mulder
Radboud University Nijmegen

Netherlands
me@ikemulder.nl

Robbert Krebbers
Radboud University Nijmegen

Netherlands
mail@robbertkrebbers.nl

Abstract

Subformula linking is a technique that allows one to sim-
plify proof goals by identifying subformulas of hypotheses
that share atoms with the goal. It has been used by recent
prototypes for gesture-based interactive theorem proving,
but also for theorem proving in separation logic.

When linking formulas, we should avoid information loss,
i.e., subformula linking should succeed preciselywhen a prov-
able simpli�cation can be generated. Avoiding information
loss is challenging when quanti�ers are involved. Existing
approaches either generate simpli�cations that involve equal-
ities, or determine substitutions for variables via uni�cation.
The �rst approach can produce unprovable simpli�cations,
while the second approach can fail to �nd desired links.

We propose a third approach, called Quantifying on the

Uninstantiated (QU), which is also based on uni�cation and
lies between the two existing approaches. We show that QU
has practical applications for proof automation, by improv-
ing tactics for resource framing in the Iris framework for
separation logic in Coq.

CCS Concepts: • Theory of computation→Automated

reasoning;Logic and veri�cation; Separation logic;Higher
order logic.

Keywords: Coq, subformula linking, uni�cation, higher-order
logic, separation logic, program veri�cation

ACM Reference Format:

Ike Mulder and Robbert Krebbers. 2024. Uni�cation for Subfor-

mula Linking under Quanti�ers. In Proceedings of the 13th ACM

SIGPLAN International Conference on Certi�ed Programs and Proofs

(CPP ’24), January 15–16, 2024, London, UK. ACM, New York, NY,

USA, 14 pages. h�ps://doi.org/10.1145/3636501.3636950

1 Introduction

Suppose you are faced with the following proof obligation:

(∀G . %G → ∃~. &G~) ⊢ ∃~. ∃I. & (5 I)~. (1)

CPP ’24, January 15–16, 2024, London, UK

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0488-8/24/01

h�ps://doi.org/10.1145/3636501.3636950

What is the easiest simpler proof obligation with which you
could prove this entailment? After some inspection, one can
see that ∃I. % (5 I) su�ces. But how does one compute this
in general, given a single hypothesis and goal? In particular,
interdependencies of variables can be quite challenging.
We follow Chaudhuri [4] and call this problem subfor-

mula linking. Subformula linking is used for recent work
on ‘gestural’ theorem proving for intuitionistic �rst-order
logic, which continues work on proof by pointing by Bertot
et al. [2]. One gestural prover is ProfInt [5, 6], where one can
link two subformulas by selecting them with a mouseclick.
Another gestural prover is Actema [13], where one can drag
and drop a hypothesis on a goal, prompting the system to
link subformulas, and compute a remaining proof obligation.

A variant of subformula linking also shows up in other log-
ics. The framing problem [1, 22] in separation logic is about
canceling occurrences of the same atom in the hypothesis
and goal. For example, we may wish to cancel out (or ‘frame’)
the atom ' in ' ∗& ⊢ ∃G . (G ∗ ', and continue by proving
& ⊢ ∃G . (G . The Iris framework for concurrent separation
logic in Coq [18, 19, 21, 24–26] has a tactic called iFrame,
which can perform the above framing. The implementation
of this tactic essentially solves a subformula linking problem.

The previous examples all originate from interactive the-
orem proving. However, subformula linking is also useful
in the setting of automated theorem proving. Diaframe [27,
29, 30]—a recent tool for automated proofs of concurrent
programs using Iris in Coq—also makes (implicit) use of sub-
formula linking. Consider a (slightly simpli�ed)1 veri�cation
goal in Diaframe that occurs in the veri�cation of Courtois
et al. [8]’s classic readers-writer lock:

(∀'. ' −∗ ∃W . is lockW E ') ⊢ ∃W1W2. is lockW1 E ((W2). (2)

This entailment is similar to the previous example, but it
uses higher-order quanti�cation and the magic wand (−∗),
which is the substructural version of implication (→) in sep-
aration logic. The is lock predicate [12, 16] states that value
E is a lock with name W , and guards resource '—although
the precise semantics does not matter for now: it should be
viewed as an abstract predicate. The key characteristic of
Equation (2) is that we want to simplify it to ∃W2 . (W2, a goal
that Diaframe can prove automatically.

1Iris’s update modality |⇛ is omitted from Equation (2) and the remaining

proof obligation |⇛∃W2 . (W2. Because |⇛(W ′
2
is not provable for any con-

stant W ′
2
, it is crucial that we keep the existential quanti�cation, and do not

prematurely instantiate W2 with an evar.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

75

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-9926-9736
https://orcid.org/0000-0002-1185-5237
https://doi.org/10.1145/3636501.3636950
https://doi.org/10.1145/3636501.3636950
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3636501.3636950&domain=pdf&date_stamp=2024-01-09

CPP ’24, January 15–16, 2024, London, UK Ike Mulder and Robbert Krebbers

Unfortunately, previous work on subformula linking does
not produce satisfactory solutions for these examples. In the
realm of �rst-order logic, Actema [13] cannot establish a
link for Equation (1) and thus fails. While ProfInt [5, 6] can
establish links, there are many candidate links, and not all of
them are provable (i.e., some are equivalent to ⊥). We could
backtrack on all candidate links, but that would be detrimen-
tal for performance when applied to proof automation for
concurrent programs [27]. In the realm of separation logic,
the examples are simply out of scope of Iris’s iFrame because
it does not consider subterms of the hypothesis.

Quanti�ers pose problems for existing approaches to sub-
formula linking. To understand why, we brie�y discuss the
setup of existing approaches for linking under quanti�ers.
ProfInt and Actema have recursive procedures that traverse
the hypothesis and goal to �nd a shared atom. When both
the hypothesis and goal are a logical connective (i.e., not an
atom), one needs to choose to either proceed in the hypothe-
sis or goal. While this choice is unspeci�ed in the mathemat-
ical presentation of these systems (as a non-deterministic
inductive relation), an implementation needs to make a con-
crete choice. This choice matters—just like it matters in
which order the ordinary proof rules for introduction and
elimination are used—and might result in �nding di�erent
links, or no links at all. As the paper on ProfInt [5, §2.1]
remarks, this is a challenging problem:

Resolving this ambiguity is going to be as hard as
fully automated proof search, which will there-
fore not be recursively solvable as soon as we
introduce quanti�ers.

Nonetheless, to make subformula linking usable—for exam-
ple to develop better approaches for automated program
veri�cation—one should try to rule out as many useless or
blatantly false linkings. We describe how ProfInt and Actema
deal with this problem in the context of quanti�ers, their
limitations, and how we address these.

ProfInt establishes unwanted links due to scoping is-

sues. ProfInt [5] links atoms by posing equality constraints.
Syntactically equal predicates are linked by requiring the
user to prove that all their arguments are equal, e.g., % G ⊢ % ~
will be reduced to G � ~. Although this reduction seems in-
nocent, it means that ProfInt can establish links under quan-
ti�ers regardless of whether the order of traversal respects
variable scoping. For example, ProfInt can establish two links
for ∃G . % G ⊢ ∃~. % ~. The �rst link produces the tautology
∀G . ∃~. G � ~ as its simpli�cation. The second link produces
∃~. ∀G . G � ~, which is logically equivalent to false (if the
domain of quanti�cation is non-trivial). To use subformula
linking in automated theorem proving, it would be helpful
if such unwanted links are simply ruled out altogether. In
particular, if there are no sensible links at all, this means
that the automation can immediately move on to the next
hypothesis without having to backtrack.

Actema cannot establish desired links. Actema [13]
rules out some of ProfInt’s unwanted links, but it actually
rules out too many links. Actema uses uni�cation to deter-
mine the appropriate order to traverse below quanti�ers. If
two atoms are not uni�able, they cannot be linked: % G ⊢ % ~
will thus not be reduced to G � ~ if G and ~ are di�erent vari-
ables. When linking the previous example ∃G . % G ⊢ ∃~. % ~,
Actema will unify ~ on the right-hand side (i.e., introduce
the ∃ in the goal) with the G obtained from the left-hand side
(i.e., by eliminating the ∃ in the hypothesis). This can only

be done if the ∃ in the hypothesis is eliminated �rst—which
rules out the unwanted/ill-scoped linking ProfInt �nds.

Actema uses uni�cation whenever quanti�ers need to be
instantiated with a speci�c term (i.e., ∀-quanti�ers in hy-
potheses/the ‘left’, and ∃-quanti�ers in goals/the ‘right’). For
example, Actema �nds that G in Equation (1) must be of shape
5 ?I for some unknown I, since this causes the arguments of
& to match syntactically. Actema has two rules available to
derive a link: one for when G is uni�ed with a concrete term
C , and one for when G does not get uni�ed at all. Unfortu-
nately, in Equation (1), neither rule is applicable—although
G has been uni�ed with 5 ?I, it contains the uninstantiated
?I, meaning 5 ?I is not a concrete term. As such, Actema
cannot establish a link for Equation (1).

Our approach: Quantifying on the Uninstantiated.

We propose a new system called QU for linking subformulas
under quanti�ers. Like Actema, we use uni�cation to rule out
unwanted links due to scoping errors. However, QU improves
upon Actema by being able to link subformulas with non-
trivial quanti�er instantiation, such as the examples in this
section. Our approach is to Quantify on the Uninstantiated

(QU). Consider Equation (1), where the G gets uni�ed with
5 ?I, and ?I is uninstantiated. QU quanti�es precisely on
this I, i.e., we produce the simpli�cation ∃I. % (5 I). On the
implementation level, we use evars (existential variables)
and convert these back into existential quanti�ers.

Anti goals. QU does not specify if hypothesis-rules (‘left’
rules) or goal-rules (‘right’ rules) should be given priority
when mixing quanti�ers with the propositional connectives
(conjunction, disjunction, implication)—this remains an open
problem in general subformula linking. Both the Actema [13]
and ProfInt [6] implementation use heuristics and/or back-
tracking to make this choice, and so do we. QU nevertheless
helps in eliminating unwanted links from the search space.

Applications. Quanti�ers are problematic for subformula
linking regardless of the logic of the system—i.e., �rst-order,
higher-order, and separation logic systems face essentially
the same problem. The idea of QU is not tied to a speci�c
logic, however. To demonstrate this, we use QU to improve
Iris’s iFrame tactic for higher-order separation logic—making
it strictly more powerful, with comparable performance. We
also explain how Diaframe makes use of QU.

76

Unification for Subformula Linking under �antifiers CPP ’24, January 15–16, 2024, London, UK

Contributions and artifacts.

• We present the QU rules for linking subformulas under
quanti�ers (§3). We formally prove in Coq that our
system lies between Actema and ProfInt, using a deep
embedding of �rst-order logic by Kirst et al. [23].

• We present a simple, shallowly embedded subformula
linking procedure in Coq (§4). This demonstrates that
QU can be implemented and used inside Coq.

• We extend and improve Iris’s iFrame tactic with the QU
rules (§5.1), demonstrating the practical applicability
of our approach.

• We describe how Diaframe [30] uses the QU rules to
verify Courtois et al. [8]’s readers-writer lock (§5.2).

We start with some background on subformula linking (§2).
We conclude with an evaluation of the improved iFrame (§6)
and a discussion of related work (§7). The Coq sources of
these artifacts are in the supplementary material [28].

2 Background on Subformula Linking

To provide background on subformula linking and to com-
pare existing systems, we give a uniform presentation of
subformula linking (§2.1), and formulate ProfInt (§2.2) and
Actema (§2.3) as instances.2 Although many rules are shared
by ProfInt and Actema, their di�erences are signi�cant for
the links they can derive. We give examples where ProfInt
establishes unwanted links due to scoping issues with quan-
ti�ers, and where Actema cannot establish desired links,
before presenting our system QU (§3).

2.1 Subformula Linking Judgment

We consider �rst-order intuitionistic logic with equality (our
implementations in § 4 and 5 scale to higher-order separation
logic). Terms, atoms, propositions, and proof contexts are
inductively de�ned as:

C, B ::= G | 5 ®C

� ::= ⊥ | ⊤ | %®C | C � B

�,�,$::= � | � ∧ � | � ∨ � | � → � | ∀G . � | ∃G . �

Δ ::= · | �,Δ

Predicates % and functions 5 have an arity = and take a list of
terms of length =. If ®C = C1, . . . , C= and ®B = B1, . . . , C= are lists
of the same length, we write ®C � ®B for C1 � B1 ∧ . . . ∧ C= � B= .
If both lists are empty, ®C � ®B is just ⊤.
We interpret the judgment Δ ⊢ � as

∧

� ∈Δ � ⊢ � , where
� ⊢ � is inductively de�ned using the usual rules for intro-
duction and elimination of �rst-order intuitionistic logic.
To provide a uniform formulation of subformula linking,

we consider the linking judgment � ⋏ [$] � � , which says
that given a hypothesis � and goal � , it su�ces to prove the
simpli�cation $ instead of � .

2We discuss di�erences between the original formulation of ProfInt and

Actema and our uni�ed presentation in §7.

We call a derivation of � ⋏ [$] � � a linkage. Each
linkage should satisfy �,$ ⊢ � , which trivially gives us the
following derivable inference rule:

link-apply

� ∈ Δ � ⋏ [$] � � Δ ⊢ $

Δ ⊢ �

In ProfInt and Actema, the user initiates this rule graphically
by pointing out the common subformulas in � and � , or by
dragging and dropping. ProfInt and Actema are then respon-
sible for automatically �nding a linkage with simpli�cation
$, allowing the user to continue with obligation Δ ⊢ $.

The inference rules for establishing� ⋏ [$] � � in Pro�nt
and Actema will be given as inductively-de�ned relations
in § 2.2 and 2.3. These relations should be interpreted as
(non-deterministic) recursive ‘procedures’ that compute an
appropriate $ for a given � and � . That is, the rules will
follow the structure of the hypothesis � and goal � . We
use the convention to put ‘outputs’ of relations, such as $,
between brackets [and]; other parameters are ‘inputs’.

2.2 Rules for ProfInt

The rules for ProfInt’s linking judgment � ⋏ [$] � � are
given in Fig. 1a and 1b. Their purpose is to �nd a shared atom
in� and� that can be linked. The base case isCong-profint
in Fig. 1b. This rule applies if the hypothesis and goal are
the same predicate % , resulting in a simpli�cation that says
their arguments should be equal.
The recursive rules in Fig. 1a traverse the formula in a

non-deterministic fashion to reach the base case. They come
in two categories: ‘left’ rules for the hypothesis � and ‘right’
rules for the goal � . All rules compute a simpli�cation $

based on the simpli�cation for the recursive call.
If the hypothesis is a conjunction�1∧�2, rule L∧ proceeds

in either�1 or�2 and leaves the simpli�cation$ unchanged.
If the hypothesis is a disjunction �1 ∨�2, rule L∨ again pro-
ceeds in either �1 or �2 but adds the conjunct �1 → � or
�2 → � to the simpli�cation $ in order to account for the
other disjunct. If the hypothesis is an implication �1 → �2,
rule L→ adds the premise �1 as a conjunct to the simpli�-
cation $. If the hypothesis is a quanti�er, rules L∃ and L∀
proceed under the quanti�er. They add the opposite quanti-
�er to the output $, since we are in a negative position. The
‘right’ rules are mostly dual to the ‘left’ rules.

Let us demonstrate these rules on an example. Suppose
we have hypothesis (� → (� ∧�)) and goal � ∧ � , where
�, �, � and � are atoms (0-ary predicates), we have:

L→

L∧1

R∧1

Cong-profint
� ⋏ [⊤] � �

� ⋏ [⊤ ∧ �] � � ∧ �

(� ∧�) ⋏ [⊤ ∧ �] � � ∧ �

� → (� ∧�) ⋏ [� ∧ (⊤ ∧ �)] � � ∧ �

77

CPP ’24, January 15–16, 2024, London, UK Ike Mulder and Robbert Krebbers

L∧
�8 ⋏ [$] � � 8 ∈ {1, 2}

(�1 ∧ �2) ⋏ [$] � �

L∨
�8 ⋏ [$] � � 8 ∈ {1, 2}

(�1 ∨ �2) ⋏ [$ ∧ (�3−8 → �)] � �

L→
�2 ⋏ [$] � �

(�1 → �2) ⋏ [�1 ∧$] � �

L∃
∀G . � ⋏ [$] � �

(∃G . �) ⋏ [∀G . $] � �

L∀
∀G . � ⋏ [$] � �

(∀G . �) ⋏ [∃G . $] � �

R∧
� ⋏ [$] � �8 8 ∈ {1, 2}

� ⋏ [$ ∧�3−8] � �1 ∧�2

R∨
� ⋏ [$] � �8 8 ∈ {1, 2}

� ⋏ [�3−8 ∨$] � �1 ∨�2

R→
� ⋏ [$] � �2

� ⋏ [�1 → $] � �1 → �2

R∀
∀G . � ⋏ [$] � �

� ⋏ [∀G . $] � ∀G . �

R∃
∀G . � ⋏ [$] � �

� ⋏ [∃G . $] � ∃G . �

(a) Rules that are shared by Actema and ProfInt.

Cong-profint

%®C ⋏
[

®C � ®B
]

� %®B

(b) Subformula rules speci�c to ProfInt.

Asmp-actema

� ⋏ [⊤] � �

L∀=-actema

� [C/G] ⋏ [$] � �

(∀G . �) ⋏ [$] � �

R∃=-actema

� ⋏ [$] � � [C/G]

� ⋏ [$] � ∃G . �

(c) Subformula rules speci�c to Actema.

Figure 1. Subformula rules in ProfInt and Actema.

When using ProfInt’s implementation [6], the user does not
have to construct this derivation by hand. Instead, the user
clicks on the occurrences of � in� and� . This click instructs
the implementation to derive the linking judgment, and to
transform goal � ∧ � into � ∧ (⊤ ∧ �) with link-apply.
(Both ProfInt and our implementation in § 5 remove the
super�uous occurrence of ⊤, i.e., give � ∧ � . We ignore
these simpli�cations for brevity’s sake.) This example shows
that by clicking on the occurrences of � in � and � , ProfInt
essentially eliminates an implication and a conjunction.

Non-determinism. Linking is non-deterministic, i.e., for
the same hypothesis� and goal� one can �nd di�erent sim-
pli�cations$1 and$2 with� ⋏ [$1] � � and� ⋏ [$2] � � .
In the above derivation, we could have used R∧1 �rst, result-
ing in the simpli�cation ((�∧⊤)∧�). In this case, the choice
is immaterial, since the simpli�cations are equiderivable, i.e.,
(� ∧ ⊤) ∧ � ⊣⊢ � ∧ (⊤ ∧ �).
In general, the rule order matters. Consider �nding an $

with (� → �) ⋏ [$] � (� → �) ∨ � . By prioritizing the
‘left’ rules, we �nd $1 = � ∧ (� ∨ (� → ⊤)) using L→,
R∨1, R→. By prioritizing the right rules, we �nd $2 = � ∨
(� → (�∧⊤)) using R∨1, R→, L→. The �rst simpli�cation
results in information loss:$1 is equivalent to�. The second
simpli�cation $2 is equivalent to ⊤, and thus desired.
Picking the right order of rules is non-trivial. In this ex-

ample we see that R∨ (disjunction introduction) should take
priority over L→ (implication elimination), but this does
not hold in general. For many examples, one also wants
to prioritize L∨ (disjunction elimination) over R∨ (disjunc-
tion introduction)—but what if the disjunction to eliminate
resides in the conclusion of an implication? (For example,
consider ((� → �) → (� ∨�)) ⋏ [$] � � ∨� .)

The implementations of Pro�nt, Actema andQUuse heuris-
tics to determine the rule order. Our goal is not to improve
these heuristics, but to design rules for quanti�ers that ex-
clude linkages that are blatantly false due to scoping issues.

Problem: Pro�nt establishes unwanted links due to

scoping issues. Suppose we want to construct a linkage
(∀G . ∃~. &G~) ⋏ [$] � ∃I. &CI. Using the following deriva-
tion we �nd $ = ∃G . ∀~. ∃I. G � C ∧ ~ � I:

L∀
∀G .

L∃
∀~.

R∃
∀I.

Cong-profint
&G~ ⋏ [G � C ∧ ~ � I] � &CI

&G~ ⋏ [∃I. G � C ∧ ~ � I] � ∃I. &CI

(∃~. &G~) ⋏ [∀~. ∃I. G � C ∧ ~ � I] � ∃I. &CI

(∀G . ∃~. &G~) ⋏ [∃G . ∀~. ∃I. G � C ∧ ~ � I] � ∃I. &CI

This is the desired simpli�cation, since it is a tautology (pick
G = C and I = ~). In fact, ProfInt has additional simpli�cation
rules that can reduce $ to just ⊤.

Unfortunately, the heuristics of ProfInt’s implementation
prioritize the ‘right’ rules, resulting in:

R∃
∀I.

L∀
∀G .

L∃
∀~.

Cong-profint
&G~ ⋏ [G � C ∧ ~ � I] � &CI

(∃~. &G~) ⋏ [∀~. G � C ∧ ~ � I] � &CI

(∀G . ∃~. &G~) ⋏ [∃G . ∀~. G � C ∧ ~ � I] � &CI

(∀G . ∃~. &G~) ⋏ [∃I. ∃G . ∀~. G � C ∧ ~ � I] � ∃I. &CI

This is problematic, since this simpli�cation is logically equiv-
alent to ⊥ (assuming the domain is non-trivial). There is no
way we could pick a I that is equal to every ~. This is the
result of a blatant scoping issue: we have mistakenly used
existential introduction (R∃) before existential elimination
(L∃). We would like this derivation to be ruled out.

78

Unification for Subformula Linking under �antifiers CPP ’24, January 15–16, 2024, London, UK

2.3 Rules for Actema

Actema takes a di�erent approach for linking subformulas
under quanti�ers than Pro�nt. This approach avoids scoping
issues, but results in a failure to �nd other desired links.
The rules for Actema’s linking judgment � ⋏ [$] � �

are given in Fig. 1a and 1c. Instead of generating a simpli-
�cation that involves equalities, Actema uses uni�cation to
determine appropriate ways to eliminate universal quanti-
�ers, and introduce existential quanti�ers. The base case
Asmp-actema requires the atoms to match exactly. This re-
quirement can be met under quanti�ers since Actema has the
rules L∀=-actema and R∃=-actema. The premises of these
rules allow one to instantiate the quanti�er with a speci�c
term C , which we are free to choose. For example, Actema
can directly �nd % C ⋏ [⊤] � ∃G . % G with R∃=-actema and
Asmp-actema by instantiating G with C .

This begs the question: how does one automatically �nd
appropriate terms for R∃=-actema? This can be done using
evars (existential variables), which we denote as ?C . Instead
of choosing a concrete term C in R∃=-actema upfront, evars
allow one to postpone this choice. As soon as we learn an
appropriate concrete term B for ?C , we instantiate ?C with B—
and the derivation behaves as if we had chosen B all along.
The Asmp-actema rule prompts appropriate instantia-

tions of evars. Crucially, an evar ?C can only be instantiated
with term B if the variables mentioned by B were in scope
when ?C was created—instantiation fails otherwise. Such fail-
ures are crucial for determining an appropriate rule order. It
means that ill-scoped linkages are ruled out by construction.

Let us reconsider the example from §2.2 of �nding a link-
age (∀G . ∃~. &G~) ⋏ [$] � ∃I. &CI. If one were to start
with R∃=-actema, one needs to instantiate the evar ?I with
a variable ~, which is not in scope when R∃=-actema was
used. This fails, prompting Actema to try the correct rule
order, i.e., prioritizing the ‘left’ rules, resulting in the desired
simpli�cation $ = ∀~. ⊤.

Uni�cation guides Actema in the search for an appropriate
rule order. In some cases, uni�cation rules out a bad linkage
completely. Consider (∀G . ∃~. ' G ~) ⋏ [$] � ∃I. ∀G ′. ' G ′ I.
ProfInt would propose an unprovable simpli�cation$, while
Actema fails to establish a linkage. From a proof automation
point of view (e.g., for our applications in § 5), Actema’s
behavior of failing instead of �nding an unprovable linkage
is preferable. It prompts the automation to consider another
hypothesis for �nding a linkage.

Problem: Actema cannot establish desired links. We
have seen that uni�cation allows Actema to rule out inap-
propriate linkages. Unfortunately, it rules out linkages too
aggressively—some linkages that one might expect to obtain
are also ruled out. This can happen when the order of related
quanti�ers in hypothesis and goal do not match, like in:

(∀G . %G →∃~. &G~) ⋏ [$] � ∃I. ∃G ′. & (5 G ′) I (3)

One would expect to �nd $ = ∃G . % (5 G) for Equation (3),
but this linkage is not derivable in Actema, and neither is
any other$. To see why, note that the desired I in the goal is
obtained from the existentially quanti�ed~ in the hypothesis.
This means we must start with a ‘left’ rule for the universal
quanti�er, choosing between L∀=-actema and L∀. A linkage
does not exist for every G , so L∀ fails. We would like to
use L∀=-actema with some C = 5 ?G ′, but no appropriate
instance for ?G ′ is in scope. We can only get access to such
an instance by �rst using R∃ twice—which means we have a
circular dependency.

Note that ProfInt is able to derive a linkage for this exam-
ple. However, similar to the example in the previous section,
it might use rules in the wrong order and �nd unprovable
simpli�cations $ (i.e., a simpli�cation that is logically equiv-
alent to ⊥ if the domain is non-trivial).

3 Quantifying on the Uninstantiated

We present our system Quantifying on the Uninstantiated
(QU). Compared to Actema, we do not choose between in-
stantiation or quanti�cation—rather, we quantify precisely
on the parts that remain uninstantiated. We start by dis-
cussing the rules of QU (§3.1) and explain how QU is used
on examples (§3.2). We �nally discuss the proof-theoretic
properties of QU (§3.3)—we show that the strength of the
linkages from QU lies between Actema and ProfInt.

3.1 Rules for QU

QU features the rules from Fig. 1a, except L∀ and R∃. We
have Asmp-actema as a base case, and the following rules
for existential and universal quanti�ers:

R∃&*

∀®~. � ⋏ [$] � � [C/G]

� ⋏ [∃®~. $] � ∃G . �

L∀&*

∀®~. � [C/G] ⋏ [$] � �

(∀G . �) ⋏ [∃®~. $] � �

We write ®~ for a (possibly empty) list of variables, and the
term C can mention these variables.

To provide an intuition for these rules, let us show that our
new rule L∀&* generalizes Actema’s L∀ and L∀=-actema
(dually, R∃&* generalizes R∃ and R∃=-actema):

L∀
∀G . � ⋏ [$] � �

(∀G . �) ⋏ [∃G . $] � �

L∀=-actema

� [C/G] ⋏ [$] � �

(∀G . �) ⋏ [$] � �

Similar to L∀, the premise of L∀&* is quanti�ed. Similar
to L∀=-actema, we instantiate the quanti�er with a term C .
We retain the expressivity of Actema. If we take ®~ to be the
empty list, L∀&* reduces directly to L∀=-actema. If we take
®~ to be the list with just G ′, and C = G ′, L∀&* is precisely L∀.
The other quanti�er rules L∃ and R∀ stay the same, since

these correspond to reversible inference rules.

79

CPP ’24, January 15–16, 2024, London, UK Ike Mulder and Robbert Krebbers

L∀&* (®~ = [D], C = 5 D)
∀D.
L→

L∃
∀~.

R∃&* (®~ = [], C = ~)

R∃&* (®~ = [], C = D)

Asmp-actema
& (5 D) ~ ⋏ [⊤] � & (5 D) ~

& (5 D) ~ ⋏ [⊤] � ∃G ′. & (5 G ′) ~

& (5 D) ~ ⋏ [⊤] � ∃I. ∃G ′. & (5 G ′) I

(∃~. & (5 D) ~) ⋏ [∀~. ⊤] � ∃I. ∃G ′. & (5 G ′) I

(% (5 D) →∃~. & (5 D) ~) ⋏ [% (5 D) ∧ ∀~. ⊤] � ∃I. ∃G ′. & (5 G ′) I

(∀G . %G →∃~. &G~) ⋏ [∃D. % (5 D) ∧ ∀~. ⊤] � ∃I. ∃G ′. & (5 G ′) I

Figure 2. An example linkage in QU.

3.2 QU by Example

We show how QU goes beyond Actema by deriving the link-
age from the example in §2.3:

(∀G . %G →∃~. &G~) ⋏ [$] � ∃I. ∃G ′. & (5 G ′) I

The full derivation is included in Fig. 2. The key step is the
use of L∀&* , where we pick ®~ = [D] and C = 5 D. Intuitively,
this choice makes the arguments of& in hypothesis and goal
match precisely, so that the Asmp-actema can be applied in
the base case. We also use R∃&* twice with empty quanti�er
list (i.e., ®~ = []), which simpli�es to Actema’s R∃=-actema.

The application of L∀&* with ®~ = [D] and C = 5 D in Fig. 2
is not expressible in Actema, and crucial for getting the
desired linkage in this example. However, it is reliant upon
somehowmaking the correct choice for ®~ and C . Additionally,
so far we have only seen cases where ®~ is a list of length at
most 1. We will consider another example to demonstrate
how we can determine appropriate choices for ®~ and C , and
that we sometimes need ®~ to be a longer list. We will discuss
the actual implementation that chooses ®~ and C in Coq in §4.
The example is as follows:

(∀G . ∃~. & G ~) ⋏ [$] � ∃I. ∃D. ∃E . & (6D E) I (4)

Consider the following partial derivation of a linkage:

L∀&*

∀®~.
L∃

∀~. & ?C ~ ⋏ [. . .] � ∃I. ∃D. ∃E . & (6D E) I

(∃~. & ?C ~) ⋏ [. . .] � ∃I. ∃D. ∃E . & (6D E) I

(∀G . ∃~. & G ~) ⋏ [. . .] � ∃I. ∃D. ∃E . & (6D E) I

We have chosen to instantiate C in L∀&* with an evar ?C ,
delaying the choice for a concrete term. We still have to
choose the ®~ overwhich L∀&* should quantify.Whatever our
choice, the next steps in the derivation of the linkage would
be to applyR∃&* three times. In the base case,Asmp-actema
will produce two uni�cation problems for the arguments of
& , the easy ?I [~] = ~, and the harder:

?C [] = 6 ?D [~] ?E [~]

Here, we write ?B [®G] for an evar ?B which has variables ®G in
scope. We cannot instantiate ?C to be 6 ?D [~] ?E [~], since the
evars ?D and ?E have ~ in scope, and ?C does not. To proceed,
the uni�cation algorithm now prunes the term on the right-
hand side [39, §4.3.1]. This comes down to �rst creating new
evars ?D ′[] and ?E ′[], then instantiating ?D [~] = ?D ′[] and
?E [~] = ?E ′[]. At that point, the uni�cation algorithm instan-
tiates ?C [] = 6 ?D ′[] ?E ′[]. Let us return to our derivation,
with ?C �lled in:

L∀&*

∀®~. (∃~. & (6 ?D ?E) ~) ⋏ [∀~. ⊤] � . . .

(∀G . ∃~. & G ~) ⋏ [∃®~. ∀~. ⊤] � . . .

We nowwant to quantify on the uninstantiated. That is, ®~ will
contain a variable for each evar that remained uninstantiated
in C .3 Here we pick ®~ to be the two-element list [D ′′; E ′′] and
instantiate ?D ′[] = D ′′ and ?E ′[] = E ′′. This results in the
following derivation:

L∀&*

∀D ′′, E ′′. (∃~. & (6D ′′ E ′′) ~) ⋏ [∀~. ⊤] � . . .

(∀G . ∃~. & G ~) ⋏ [∃D ′′. ∃E ′′. ∀~. ⊤] � . . .

We will explain how this can be done automatically in §4.3.

3.3 Comparison to ProfInt and Actema

We prove some results about the relative strength of Pro�nt,
Actema and QU. We have mechanized these results in Coq
using the library for �rst-order logic by Kirst et al. [23]. This
library provides a deep embedding of terms, connectives,
propositions, and proofs. We inductively de�ne the three
linking judgments, which we disambiguate using subscripts.
For example, � ⋏ [$] �actema � is the inductively-de�ned
linking judgment of Actema.
First, we prove that all linkage systems are sound:

Theorem 3.1 (Soundness).

(a) If � ⋏ [$] �actema � , then �,$ ⊢ � .
(b) If � ⋏ [$] �profint � , then �,$ ⊢ � .
(c) If � ⋏ [$] �q � , then �,$ ⊢ � .

3A reviewer pointed out that this idea is similar in spirit to the let gen-

eralization step in Hindley-Milner type inference. Indeed, type inference

for ‘let 5 := (_G. G) in 4’ will infer the type scheme ∀U. U → U for 5 ,

by quantifying over all the uninstantiated/free type variables. It would be

interesting to �nd a more formal connection between the two.

80

Unification for Subformula Linking under �antifiers CPP ’24, January 15–16, 2024, London, UK

Next, we prove that all linkages that can be established by
Actema, can also be established by our system QU.

Theorem 3.2 (Actema vs. QU). If � ⋏ [$] �actema � , then
� ⋏ [$] �q � .

This theorem holds because the quanti�er rules R∃&* and
L∀&* of QU generalize those of Actema (§3.1).
Note that this theorem states that Actema linkages are

expressible in QU, which does not guarantee that the proce-
dure we informally describe in §3.2 actually �nds Actema’s
solution. This would be harder to formalize because it de-
pends on Coq’s uni�cation algorithm. We nevertheless think
our solutions would agree with Actema. Actema only uses
L∀=-actema if it can unify term C with a concrete term. Con-
crete terms do not contain evars/uninstantiated terms, so we
�nd the same solution. If instead Actema uses L∀, the term C

must have remained an evar, and so our approach chooses
precisely that evar to quantify on.
The relation between QU and ProfInt is more di�cult to

formalize. Simpli�cations $ produced by a ProfInt linkage
�⋏ [$] �profint � involve equalities, which are absent in the
simpli�cations produced by QU. This means that the linkage
systems do not produce syntactically equal simpli�cations$.
To properly relate two linkages with di�erent simpli�cations,
we furthermore need to ensure that ProfInt and QU apply
rules in the same order. We will write a superscript ? to
indicate that a linking judgment is derived by applying the
rules in ? in order. For example:

(� ∧ �) ⋏ [⊤ ∧�] �
[L∧1;R∧1]
profint (� ∧�).

We can then relate the linkages from QU and ProfInt.

Theorem 3.3 (QU vs. ProfInt). Let ? be a sequence of linking

rules. If � ⋏ [$] �
?
q � , then there is a unique $ ′ for which

� ⋏ [$ ′] �
?
profint � , and additionally $ ⊢ $ ′.

In other words, for a given rule order, if QU can derive a
linkage, then ProfInt can also derive a linkage. Additionally,
QU’s simpli�cation$ is at least as hard to prove as ProfInt’s
simpli�cation $ ′. Another way to read Theorem 3.3 is that
the instantiations made by QU are guaranteed to satisfy the
equalities from ProfInt.

However, we would rather have something stronger: that
the simpli�cations produced by QU are not harder than those
produced by ProfInt, i.e.,$ ⊣⊢ $ ′. When L∀&* and R∃&* are
used as intended (i.e., they quantify precisely on the uninstan-
tiated terms), we conjecture that this is indeed the case. The
way that L∀&* is currently stated does not guarantee this.
Indeed, by picking a particular constant for the term C , we
could derive a linkage that is too specialized, and thus harder
to prove. Formally proving this conjecture would require a
veri�ed uni�cation algorithm for the deeply embedded logic
we consider, and a corresponding restriction on the terms C
in L∀&* . We leave this endeavor for future work.

Completeness. Chaudhuri [5] showed that the full ProfInt
linkage system is complete. The full ProfInt system di�ers
from the presentation in §2.2 in two regards: one can link
two hypotheses, and one can also link within formulas. Sub-
formula linking within formulas allows ProfInt to prove
entailments such as

� ∨ � ⊢ ((� → ⊥) → ⊥) ∨ ((� → ⊥) → ⊥)

since � → ⊥ and ⊥ can be linked within the left disjunct.
This entailment is out of reach for our linkage system, since
no subformula of the hypothesis � ∨ � can be linked to a
subformula of the goal (note that our system only considers
subformulas of the right-hand side of an implication). This
incompleteness is acceptable for the application we have in
mind, i.e., proof automation for (higher-order) separation
logic—implications do not frequently occur inside disjunc-
tions in this setting [27].

4 Implementation

We demonstrate that QU can be e�ectively implemented in
the Coq proof assistant. We start by de�ning linkages and
linkage rules for the propositions Prop of Coq’s higher-order
logic (§ 4.1). (This makes it di�erent from § 3.3 where we
performed meta-theoretic reasoning on a deep embedding
of �rst-order logic.) We then de�ne simple telescopes (§4.2),
which form a building block for representing =-ary functions
and =-ary quanti�cation. Telescopes allow us to state the
L∀&* and R∃&* rules properly and to implement custom
Ltac [11] code that assists in solving the uni�cation prob-
lems arising in QU (§4.3). Finally, we make the link-apply
inference rule available as a Coq tactic (§4.4).

4.1 Linkages in Coq

We start by de�ning linkages semantically in Coq:

Class Link (H O G : Prop) :=

link sound : H ∧ O → G.

This de�nes a type class [36] called Link, for which we will
de�ne the notation LINK H⋏ [O] � G. To construct an instance
LINK H ⋏ [O] � G, one must prove H ∧ O → G (i.e., soundness).
A semantic de�nition like this makes it particularly easy to
de�ne linkage rules as type class instances:

Instance link asmp actema A :

LINK A ⋏ [True] � A.

Proof. unfold Link; firstorder eauto. Qed.

Instance link l and 1 H1 H2 O G :

LINK H1 ⋏ [O] � G →

LINK (H1 ∧ H2) ⋏ [O] � G.

Proof. unfold Link; firstorder eauto. Qed.

Instance link l exists {A} (H O : A → Prop) G :

(∀ a, LINK (H a) ⋏ [O a] � G) →

LINK (∃ a, H a) ⋏ [∀ a, O a] � G.

Proof. unfold Link; firstorder eauto. Qed.

81

CPP ’24, January 15–16, 2024, London, UK Ike Mulder and Robbert Krebbers

Instances for the other rules from Fig. 1b are similar. The key
step is to de�ne an appropriate instance for our new rule
L∀&* . Let us repeat the statement from §3.1:

∀®~. � [C/G] ⋏ [$] � �

(∀G . �) ⋏ [∃®~. $] � �

Remember that the term C can mention the variables ®~. We
will �rst express the rule in a form where we allow C to
depend on exactly one variable ~:

Lemma link l forall qu v1 {A} (H : A → Prop) G

{Y} (t : Y → A) (O : Y → Prop) :

(∀ (y : Y), LINK (H (t y)) ⋏ [O y] � G) →

LINK (∀ a, H a) ⋏ [∃ (y : Y), O y] � G.

Proof. unfold Link; firstorder eauto. Qed.

We have to address two issues to turn this 1-ary lemma into
an instance that produces good simpli�cations and can be
applied automatically by type class search.
The �rst issue is that while the =-ary version can be de-

rived from 1-ary function through currying, this results in a
complicated simpli�cation. We want the resulting simpli�-
cation to be an =-ary existential quanti�cation, instead of a
unary quanti�cation on a product . . In particular, we want
to avoid a useless quanti�cation over u : unit if no variables
are needed. Generating an =-ary existential quanti�cation is
important to show readable goals to the user and to aid au-
tomation in making further progress. We address this issue
using telescopes to write an =-ary rule (§4.2).

The second issue is that of determining appropriate terms
for Y, t and O. We can use evars ?Y, ?t and ?O when apply-
ing this lemma, but instantiating these evars is challenging.
At some point we want to unify e.g., ?t y with a concrete
term—while also instantiating the type ?Y of y. We do not
know of any existing uni�cation algorithm that supports this
kind of problem. Indeed, Coq’s default uni�cation algorithm
rightfully refuses to solve this problem. We address this issue
using a custom tactic written in Ltac (§4.3).

4.2 Simple Telescopes in Coq

Telescopes [10] can represent (the type of) sequences of
variables with possibly dependent types. For the applications
in §5, we use the formalization of (dependent) telescopes
provided by the coq-std++ library [38].4 For brevity, the
telescopes in this section do not allow dependent types.
We use telescopes to formalize =-ary existential quanti�-

cation in QU. For example, for ∃(G : -) (~ : .) . % G ~, we use
‘[- ;.] : tele’. Telescopes give us a generic uncurried version

% : [-1; . . . ;-=] → Prop of % : -1 → · · · → -= → Prop, and

a generic telescopic ®∃% that simpli�es (i.e., is de�nitionally
equal) to the =-ary existential quanti�cation.

4The coq-std++ library [38] de�nes tele as a custom inductive type to

handle dependent types. Furthermore, by making this inductive type uni-

verse polymorphic [37], coq-std++ avoids universe constraints that would

otherwise restrict the usage of telescopes in larger developments.

In the non-dependent setting, we can represent telescopes
as a simple list of Types:

Definition tele : Type := list Type.

Definition teleS : Type → tele → tele := cons.

Definition teleO : tele := nil.

Notation "[tele X ; .. ; Z]" :=

((teleS X (.. (teleS Z teleO) ..))).

We can treat such lists themselves as a Type, by taking the
product of all the Types in the list. We can construct this
product by folding over the list:

Definition tele arg (T : tele) : Type :=

fold right prod unit T.

Coercion tele arg : tele >-> Sortclass.

Check ((1, (false, tt)) : [tele nat; bool]).

After registering tele arg as a Coercion, the preceding Check
indeed goes through. This relies on Coq doing a type-level
computation: it checks that tele arg [nat; bool] is con-
vertible to the type nat * (bool * unit). Therefore, we have
that (1, (false, tt)) is of type tele arg [nat; bool].

The function type T → Propwith T : tele corresponds to
an uncurried =-ary function. We can do =-ary quanti�cation
on such functions by recursion on the list T:

Fixpoint tele ex {T : tele} : (T → Prop) → Prop :=

match T with

| [] ⇒ fun g : unit → Prop ⇒ g tt

| X :: T’ ⇒ fun g : (X × tele arg T’) → Prop ⇒

∃ (x : X), tele ex (fun r ⇒ g (x, r))

end.

Lemma tele ex exists {T : tele} (g : T → Prop) :

tele ex g ↔ ∃ (a : T), g a.

We have included some type annotations in tele ex to illu-
minate what is going on. In the 0-ary case, we simply pass
the unit element to the function of type unit → Prop. In the
(= + 1)-ary case, we existentially quantify on the �rst projec-
tion of the pair, and recursively call tele ex to existentially
quantify on the second projection.

Lemma tele ex exists shows that tele ex is equivalent
to regular existential quanti�cation. Remember that to for-
malize R∃&* and L∀&* we want to avoid a regular (unary)
existential quanti�cation on a complicated type like T : tele,
and instead generate = nested existential quanti�ers.

4.3 Quantifying on the Uninstantiated with Ltac

We are now ready to state a version of L∀&* with proper
=-ary quanti�cation:

Lemma link l forall qu v2 {A} (H : A → Prop) G

{Y : tele} (t : Y → A) (O : Y → Prop) :

(∀ (y : Y), ∃ (t’ : A) (O’ : Prop),

LINK (H t’) ⋏ [O’] � G

∧ t’ = t y ∧ O’ = O y) →

LINK (∀ a, H a) ⋏ [tele ex O] � G.

This lemma di�ers from link l forall qu v1 in §4.1 in its
use of Y : tele and tele ex.

82

Unification for Subformula Linking under �antifiers CPP ’24, January 15–16, 2024, London, UK

Furthermore, to address the problem of unifying ?t y with
a concrete term, we swap t y with a new variable t’, and
require these two to be equal (and similarly for O). This means
that when we use Coq’s type class search to establish the
LINK premise, it does not need to worry about (and is in fact
oblivious of) the fact that t’ and t y should be equal. This
change also allows us to solve the uni�cation problem for Y
manually: we can determine an appropriate value for Y with
some meta-programming in Ltac when proving t’ = t y.

Let us consider the proof obligations spawned by applying
link l forall qu v2. Suppose we would like to prove LINK

(∀ a, H a) ⋏ [?O] � G. To proceed, we apply the lemma,
introduce y and make fresh evars for t’ and O’ with tactic:

eapply link l forall qu v2; intros; do 2 eexists.

After the application of this tactic, our goal is:

LINK (H ?t’) ⋏ [?O’] � G ∧ ?t’ = ?t y ∧ ?O’ = ?O y

Since the argument to H is a simple evar ?t’, the �rst con-
junct can be handled by a recursive call to the linking pro-
cedure (i.e., type class search). In particular, in the base case
Asmp-actema can instantiate ?t’ with an appropriate term
if necessary. This would not be possible for ?t y.

Let us now repeat Equation (4) from §3.2 and consider our
proof obligations. We are trying to derive:

(∀G . ∃~. & G ~) ⋏ [. . .] � ∃I. ∃D. ∃E . & (6D E) I.

The combination of tactics discussed previously will �ll in
an evar ?t’ for G . The linking procedure will (recursively)
establish LINK (H ?t’) ⋏ [?O’] � G and in the process unify
?t’ with 6 ?u ?v. The equality we thus wish to prove is

6 ?u ?v = ?t y, (5)

where y is of type ?Y. The full uni�cation problem we face is

∃(. : Type) . ∃(C : . → �). ∀(~ : .). ∃D E. 6D E = C ~.

We want to quantify on the uninstantiated, so our goal
is to infer Y = [tele U; V]. Evars ?u and ?v should be uni-
�ed with projections of y, so that the remaining uni�cation
problem can be solved by Coq. This is what the Ltac script
solve evar tele equality from Fig. 3 does.

If we call solve evar tele equality on Equation (5), line 3
in Fig. 3 will store the left-hand side of the equality in l, and y

in arg. We then read the telescope Y into variable T’ (line 16),
and call retcon tele arg T’. This will ‘retcon’ (for retroac-
tive continuity) the telescope T’ to be a list of the types of all
uninstantiated evars in l. Additionally, it will unify all evars
with projections of arg. The recursive retcon tele achieves
this by scanning l for evars (lines 4–6),5 and then unifying T’

to be a list that starts with the type of this evar (lines 8–10).

5The match context combination with is evar in lines 4–6 may seem to

be an ine�cient way of �nding all evars in a term l, since it traverses all

subterms of l. However, our experiments showed it to be more e�cient

than an alternative implementation using unshelve.

We then unify the evar with a projection of arg (line 11), and
repeat the process until no more evars are found (line 12
and 13). If we �nd an evar that does not have arg in scope, the
uni�cation on line 11 will fail and cause Ltac to backtrack and
continue with the next evar. This is desired: it means such
evars should either not be quanti�ed on, or be quanti�ed on
by some earlier application of L∀&* .
We still need to prove the equality once this is �nished.

The equality in Equation (5) has been reduced to

6 (fst y) (fst (snd y)) = ?t y.

and ‘exact (eq refl)’6 can make quick work of this: Coq’s
uni�cation algorithm [39, step 4 on page 186] is able to infer
an appropriate value for t now.

4.4 Linkage Tactic

We now have all ingredients in place to construct an instance
for L∀&* that Coq’s type class search can understand.
To call the custom Ltac from § 4.3 we do not register

link l forall qu v2 as a regular instance. Instead we add
an external hint to the type class database:

Hint Extern 4 (LINK (∀ a,) ⋏ [] �) ⇒

eapply link l forall qu v2; intros ?; do 2 eexists;

split; [solve [typeclasses eauto] |];

split; [solve evar tele equality |];

exact (eq refl) : typeclass instances.

This hint applies our specially crafted lemma, runs type
class search on LINK H ?t ⋏ [?O] � G, and then quanti�es on
uninstantiated evars in ?t. The exact (eq refl) tactic takes
care of the remaining equality on ?O.

Pu�ing it all together. With type class instances for all
the linkage rules in place, we obtain a very simple implemen-
tation of a linkage system in Coq—in about 250 lines of code
in total. This includes the straightforward implementation
of a tactic link to that performs link-apply, omitted here.
All linkages that were discussed before have the desired re-
sult. In the supplementary material [28], we have included
solutions to some of the exercises in Actema’s course on
�rst-order logic, to demonstrate our linkage system.

Non-determinism. We have not speci�ed a heuristic that
determines in what order the linkage rules should be applied.
By implementing the linkage rules as type class Instances,
we implicitly rely on the backtracking semantics of type
class search—all orders will be considered. This means link-
ing only fails after all possible orders of linking rules have
been considered, which is not great from a performance per-
spective. Similar to ProfInt and Actema, we use heuristics
to determine the rule order in our applications, and thereby
avoid this ine�ciency. We either have no ‘left’ rules (iFrame
in §5.1), or we prioritize ‘left’ rules (Diaframe in §5.2).

6It is crucial to use exact or refine, instead of reflexivity or apply. As

mentioned here, exact uses Coq’s newer ‘evar conv’ uni�cation algorithm,

which often performs better than the older ‘w unify’ uni�cation algorithm.

83

https://github.com/coq/coq/issues/5387#issuecomment-337551717

CPP ’24, January 15–16, 2024, London, UK Ike Mulder and Robbert Krebbers

Ltac solve evar tele equality :=1

lazymatch goal with2

| ⊢ ?l = ?f ?arg ⇒3

let rec retcon tele the arg T := (* we receive the arg : tele arg T *)4

match l with5

| context [?term] ⇒ (* look through all subterms of l *)6

is evar term; (* check that the subterm term of l is an evar *)7

let X := type of term in8

let T’ := open constr:() in (* creates a new evar T’ *)9

unify T (teleS X T’); (* instantiates T to be X :: T’ *)10

unify term (fst the arg); (* instantiates term to be fst arg, which now has type X *)11

retcon tele (snd the arg) T’ (* .. now repeat this for other evar subterms of l *)12

| ⇒ unify T teleO (* if l has no remaining evars, instantiate T to be the empty list [] *)13

end14

in15

let T’ := lazymatch type of arg with tele arg ?T ⇒ T end in16

retcon tele arg T’;17

exact (eq refl) (* uni�cation can now instantiate f *)18

end.19

Figure 3. Ltac code for QU.

5 Applications

We demonstrate that the QU approach has practical appli-
cations outside pure intuitionistic logic. First, we apply QU
to the framing problem [1, 22] from separation logic in the
context of the Iris framework for concurrent separation logic
in Coq [18, 19, 21, 24–26] (§5.1). Second, we apply QU to the
Iris-based proof automation framework Diaframe [27, 29, 30]
(§5.2), where we show that the automatic veri�cation of a
classical readers-writer lock crucially relies on the QU rules
for subformula linking under quanti�ers.

5.1 Framing under Quanti�ers in Separation Logic

Separation logic [31] is an extension of Hoare logic that
allows one to reason modularly about the correctness of
stateful programs. We focus on the assertion language of
separation logic, which extends ordinary logic with two
logical connectives that enable this modular reasoning: the
separating conjunction (∗) and magic wand (−∗). Separating
conjunction can be seen as a substructural version of con-
junction (∧), which means that we cannot use separation
logic propositions % more than once—in particular, % ⊢ % ∗ %
does not hold in general. The introduction rule of separating
conjunction thus requires one to split the list of hypotheses
over the conjuncts:

Δ1 ⊢ % Δ2 ⊢ &

Δ1,Δ2 ⊢ % ∗&

During program veri�cation with separation logic, one
often faces proof obligations of the form Δ, % ⊢ % ∗� . In this
case, there is an obvious choice for splitting the environment:
one ‘frames’ % away, and continues with Δ ⊢ � (i.e., take
Δ1 = % and Δ2 = Δ). In an interactive proof setting, one
should not have to spell out the precise environments.

Iris comes with an interactive proof mode and accompany-
ing tactics [24, 26], whose iFrame tactic can be used to frame
away hypotheses in the goal. This tactic is implemented with
a type class Frame, exactly like Link from §4.1. The (slightly
simpli�ed) de�nition of Frame is:

Class Frame {PROP : bi} (H G O : PROP) :=

frame : H ∗ O ⊢ G.

Compared to Link, the Frame class involves the separating
conjunction (∗) instead of the regular conjunction (∧). Fur-
thermore, Frame works in a generic object logic PROP of type
bi. Thismakes the Frame type class applicable in any Bunched
Implication logic [32, 33], i.e., logics that satisfy the relevant
axioms for ∗ and −∗.
When trying to frame resource H in goal G, Iris runs a

type class search for Frame H G O. If successful, it removes
resource H from the environment, and replaces the goal with
O. Instances of the Frame type class are ‘just’ subformula
linking rules in separation logic. This is evident by comparing
the following instances to Asmp-actema and R∧:

Global Instance frame here A : Frame A A emp.

Global Instance frame sep l H G1 G2 O :

Frame H G1 O →

Frame H (G1 ∗ G2) (O ∗ G2).

Framing under existential quanti�cation. To frame
beneath quanti�ers, one faces problems similar to those de-
scribed in §2. However, there are also some di�erences that
we discuss �rst. When framing, we only look for hypotheses
that appear (nearly) verbatim in the goal—meaning there are
only right rules for Frame. The existing implementation for
framing under existential quanti�ers only provides R∃ and
not R∃=-actema. This means that framing could not instanti-
ate quanti�ers, and so framing fails on e.g., % 1 ⊢ (∃=. % =)∗& .

84

Unification for Subformula Linking under �antifiers CPP ’24, January 15–16, 2024, London, UK

Having a single instance was a conscious design choice
of the Iris Proof Mode: by having two applicable Instances
when the goal is existentially quanti�ed, (failing) type class
search would run twice on very similar subgoals. An =-ary
existential quanti�cation would do this 2= times, which be-
comes unacceptably slow.

By quantifying on the uninstantiated, we can allow fram-
ing to instantiate quanti�ers without this exponential slow-
down. Additionally, remember that the QU rule R∃&* is
strictly more general than having both R∃=-actema and R∃.
We use the following Frame instance, similar to the linking
instance link l forall qu v2 from §4.3.

Lemma frame exist qu {A : Type} (G : A → PROP) H

{Y : tele} (t : Y → A) (O : Y → PROP) :

(∀ (y : Y), ∃ (t’ : A) (O’ : PROP),

Frame H (G t’) O’

∧ t’ = t y ∧ O’ = O y) →

Frame H (∃ a, G a) (bi texist O).

Themain di�erence is the use of bi texist, which does=-ary
existential quanti�cation in PROP. We also reuse the tactics
from §4.3 for proving the equalities on t’ and O’.

5.2 Automatic Veri�cation of a Readers-Writer Lock

The proof automation provided by Diaframe also relies on
subformula linking, and as such faces the same problems
regarding quanti�ers. Diaframe has been using the QU ap-
proach since before this paper, but the technique and its use
were not described anywhere.

Let us consider the automatic veri�cation of the classic
readers-writer lock by Courtois et al. [8] in Diaframe. A lock
is a data structure from concurrent programming, in charge
of sharing access to a resource ' among multiple threads. It
guarantees that at all times, at most a single thread can access
resource '. A readers-writer lock generalizes a regular lock:
it guarantees that either there are zero or more ‘readers’,
i.e., threads with read-only access to ', or there is a single
‘writer’ thread that can mutate '.

The classic readers-writer lock implementation by Cour-
tois et al. [8] is built from two regular locks. We shall con-
sider the veri�cation of allocating a new readers-writer lock,
which �rst allocates two regular locks. Let us �rst consider
two speci�cations for allocating a regular (spin) lock:7

{'} new lock() {E . ∃W . is lockW E '} (6a)

{True} new lock() {E . (∀'. ' −∗ ∃W . is lockW E ')} (6b)

Speci�cation (6a) states that executing new lock() is safe,
and returns a value E for which ∃W . is lockW E ' holds—if
we have given up resource ' before executing new lock.
Parameter W ensures we can distinguish between di�erent
locks. The is lock predicate is part of the precondition of the
other lock methods.

7We omit Iris’s update modality |⇛ from (6b) since it poses orthogonal prob-

lems with automation that are addressed by Mulder et al. [30] in Diaframe.

Speci�cation (6b) di�ers from (6a) in that one does not
have to give up resource ' directly. Rather, it returns a more
complicated proposition, which allows clients to choose and
hand in ' at a later point in the program execution.
Although (6a) is the standard lock speci�cation [12, 16],

(6b) is strictly stronger. One can (manually) verify the readers-
writer lock with (6a), but (6b) is more useful for proof au-
tomation. When an automated veri�er symbolically executes
new lock with speci�cation (6a), it does not have any syn-
tactic indication for an appropriate choice for resource '.
A wrong choice can easily lead to a failing veri�cation [9].
With speci�cation (6b), the automation can wait for a proof
obligation with shape is lockW E (to choose ' equal to (.

This is precisely what happens when verifying the alloca-
tion of Courtois et al. [8]’s readers-writer lock. The allocation
function �rst allocates two regular locks, for which we will
use speci�cation (6b). To prove that the readers-writer lock
is successfully allocated, we are faced with goal:

(∀'. ' −∗ ∃W . is lockW E ') ⊢ ∃W1W2. is lockW1 E (% W2).

Here, % W2 encodes the protocol for accessing the readers-
writer lock. Since Diaframe uses the QU rules, it can simplify
this entailment to ∃W2 . % W2, which Diaframe’s automation
can subsequently discharge. The QU rules are crucial: during
subformula linking, ' will be uni�ed with % ?W2, where ?W2
remains uninstantiated. By quantifying precisely on this W2,
we obtain the desired linkage.

Finally, note that the readers-writer lock veri�cation in-
volves quanti�cation over propositions '. This shows that
the QU approach scales to higher-order logic.

6 Evaluation of iFrame

We evaluate the scalability of QU by testing our improved
iFrame tactic.We test the improved tactic on four Iris projects
to verify it does not cause performance regressions or in-
troduce failures where it succeeded before (§6.1). We report
on the results of a more arti�cial benchmark that compares
the performance of the new ∃ rule to the rules for other
connectives (§ 6.2). This benchmark shows that the Ltac
implementation from §4.3 has acceptable complexity. We
cannot conduct an evaluation of Diaframe, since there exists
no baseline version of Diaframe without QU.

6.1 Subformula Linking with iFrame in Practice

Table 1 contains the results of our evaluation of the improved
iFrame tactic. We investigate four Iris-based repositories of
signi�cant size: Iris itself, ReLoC [14, 15], RustBelt [17], and
Iris’s ‘examples’ repository. We compare the total compila-
tion time of each repository with and without the improved
iFrame. We also report the total number of changed lines that
were required to patch these repositories. Existing proofs
might break because iFrame is more powerful in the sense
that it can frame more hypotheses and even solve a goal
entirely that was not solved before.

85

CPP ’24, January 15–16, 2024, London, UK Ike Mulder and Robbert Krebbers

Table 1. Evaluation data of iFrame. For each project, we list the total number of lines, the number of lines that use iFrame,
and the number of lines that needed to be changed for the new iFrame. We also list the total compilation time of the project,
and the change in compilation time with the new iFrame.

repository total lines iFrame lines lines changed total time time changed %

Iris [18] 60156 543 - 2 8:29 -1.0%
iris-examples [20] 22912 800 -14 10:03 -1.2%
ReLoC [14, 15] 14092 505 - 5 4:54 -2.0%
RustBelt [17] 19889 840 -33 14:09 +0.3%

total 117049 2688 -54 37:37 -0.7%

We �nd that overall, the e�ect on compilation time (0.7%
faster) is hardly distinguishable from noise. This is a positive
result because the improved iFrame is strictly stronger, with-
out being noticeably slower. The 2% speedup in ReLoC may
be due to the fact that the QU instance uses a Hint Extern

with a pattern, meaning the framed goal must be an existen-
tial quanti�cation syntactically. The previous Instance for
framing under existential quanti�ers would also trigger on
goals that are not syntactically an existential quanti�cation,
but can be unfolded to one.
The lines of code reduction by the improved iFrame are

modest, but not insigni�cant: a reduction of 54 lines on a
total of about 2700 lines using iFrame. (Note that we have
omitted the addition of ±150 lines of implementation of the
QU rule in Iris.) These numbers can be improved—we have
only �xed broken proofs, not optimized existing proofs. In
some of the changed lines, a single call to the improved
iFrame has replaced a combination of �ve tactics.

We have not investigated the e�ect of the improved iFrame
on writing new proofs. However, our impression is that the
additional strength of the tactic makes it easier for users to
write proofs: more parts can be automatically discharged. A
frequently occurring pattern is a proof obligation of shape
Δ, % G ⊢ ∃~. % ~ ∗ � with Δ ⊢ � requiring a manual proof.
Such situations were typically tackled with the combination
‘iExists ;iFrame’, but a single call to the improved iFrame

now su�ces.

6.2 Comparing Performance of Linkage Rules

We conduct a more arti�cial benchmark to check that the
QU rule for ∃ performs acceptably in comparison to the
linkage rules for other connectives—even in the presence of
large terms or many quanti�ers. We consider the following
framing problem in which we vary the number =:

% ∗& ∗ ' ∗ (C . . . C ⊢ ∃= ®G . ! ∗ ' ∗& ∗ (®G ∗ % .

Here, ∃= is an =-ary existential quanti�cation (®G has length
=), and (has= arguments. We consider two variants (1) frame
(small) % away, which preserves all = existential quanti�ers
in the goal; and (2) frame (large) (C . . . C away, which instan-
tiates all quanti�ers in the goal. These cover the frequent
use cases of keeping a quanti�er and instantiating it.

To compare the rule for existentials to other connectives,
we consider the following variant:

% ∗& ∗ ' ∗ (C . . . C ⊢ $= (! ∗ ' ∗& ∗ (?®G ∗ %),

Here,$ is an element of {∀ . ·, (' −∗ ·), (' ∗ ·), (' ∧ ·)}.8 We
consider the same variants as before (frame % or frame ().
In the second variant we must also unify (?®G with (C . . . C .
The previous problem is thus very similar to this one, apart
from the connectives being framed under.
We pick C to be a term of signi�cant size, and test the

performance with ! being a large and small term. This means
we compare the performance of four framing problems in
total: framing (small) hypothesis % or (large) hypothesis (in
a goal with a small or large !.

Results. The benchmarks show that the performance of
the QU rules for ∃ are as fast as those for other connectives
in 3/4 problems, namely when framing large (and/or large % .
When framing small % in large ! and= < 60, the performance
is about equal to that of ∧, and up to four times as slow as −∗
(the fastest connective). At = = 150, the QU rules for ∃ are
twice as slow as ∧, and seven times slower than −∗. We have
included some of the running times for the small hypothesis,
small goal framing under ∃ and ∧ below:

= 6 12 30 60 150

runtime for ∃ (seconds) 0.07 0.15 0.33 0.9 5.5
runtime for ∧ (seconds) 0.07 0.13 0.32 0.76 2.8

This shows that the QU rules perform acceptably, even with
=-ary existential quanti�cation for large = (the authors have
not seen = > 10 in existing Iris projects). There is an observ-
able di�erence in performance only when = ≥ 60, but we
conjecture that the time Coq spends on proof checking is a
much more in�uential factor than the runtime of iFrame.

7 Related Work

Subformula linking. The notion of subformula linking
has been introduced introduced as part the Profound system
by Chaudhuri [4]. Profound is a predecessor of ProfInt [5, 6]
that involves �rst-order classical linear logic instead of �rst-
order intuitionistic logic.

8We do not consider disjunction, since its framing rule in Iris requires a

link on both sides.

86

Unification for Subformula Linking under �antifiers CPP ’24, January 15–16, 2024, London, UK

Prior works on subformula linking di�er mostly from this
work in their application. The ProfInt [5, 6] and Actema [13]
gesture-based interactive theorem provers use subformula
linking to simplify proof states by letting the user graphically
indicate what subformulas to link. (A further predecessor
of gesture-based theorem proving is ‘proof by pointing’ by
Bertot et al. [2].) Aside from the di�erence in applications,
there are some notable di�erences in the formal systems:

• Besides hypothesis-goal links, ProfInt and Actema also
consider hypothesis-hypothesis links. ProfInt even
considers links within a single formula. We do not
consider such links, because hypothesis-goal links are
the only relevant links for our application of backward-
chaining proof search—which always takes the goal as
starting point. Hypothesis-hypothesis links are essen-
tial for the completeness of ProfInt.

• The original presentation of Pro�nt [5] uses a weaker
subformula linking rule than R∨. This weaker rule
makes the rule order immaterial for the propositional
fragment, but sometimes produces links that are harder
to prove than links withR∨. The rule order still matters
when two hypotheses are linked.

• Actema supports ‘rewriting’ through subformula link-
ing with an additional linkage rule G � ~⋏ [% G] � % ~.
Such a rule can be added as an instance to a QU-based
system. It would be interesting to explore applications
of such linkages, especially in combination Coq’s gen-
eralized rewriting [35], which is used extensively in
Iris to rewrite with relations other than equality.

Framing in separation logic. Various approaches have
been proposed to (automatically) solve the ‘framing’ or ‘frame
inference’ problem [1, 22] in separation logic. We focus on
approaches that are implemented in proof assistants.

The VST framework in Coq [3] comes with a cancel tactic
for frame inference, which contrary to Iris’s iFrame does not
proceed below existential quanti�ers in the goal. VST also
provides the more powerful entailer tactic, which is aimed
at fully solving an entailment rather than making partial
progress in an interactive proof.

The automation of the Bedrock [7, §3, step 6] and Re�nedC
[34, §4, step 5] frameworks in Coq instantiates existentially
quanti�ed goals with evars after having eliminated existen-
tials in hypotheses. This is an e�ective approach for the
veri�cation of sequential problems. However, in the con-
text of the veri�cation of concurrent programs in Iris, exis-
tentials require a more careful treatment, as also argued in
Diaframe [30]. We achieve this through subformula linking.

8 Future Work

We have presented QU, an approach for subformula linking
under quanti�ers using uni�cation, and demonstrated its use
by improving Iris’s iFrame tactic for resource framing. We
see several possible directions for future work.

Both Actema and ProfInt come with prototypes for graph-
ical interactive theorem proving. It would be interesting to
build such a prototype for QU, or to change an existing pro-
totype to use the QU rules for quanti�ers.
All systems we have considered here (Actema, ProfInt,

and QU) leave the order of linking rules unspeci�ed, while
these are crucial for the quality of the resulting simpli�cation.
In particular, the systems use a heuristic to decide whether
to prioritize left- or right-rules. It would be interesting to
design a formal inference system that rules out information
loss entirely.

Acknowledgments

We thank the reviewers for their useful feedback.

References
[1] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. 2005. Sym-

bolic Execution with Separation Logic. In Programming Languages and

Systems (LNCS). 52–68. h�ps://doi.org/10.1007/11575467_5

[2] Yves Bertot, Gilles Kahn, and Laurent Théry. 1994. Proof by Pointing.

In Theoretical Aspects of Computer Software (LNCS). 141–160. h�ps:

//doi.org/10.1007/3-540-57887-0_94

[3] Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and

Andrew W. Appel. 2018. VST-Floyd: A Separation Logic Tool to Verify

Correctness of C Programs. J Autom Reasoning 61, 1 (2018), 367–422.

h�ps://doi.org/10.1007/s10817-018-9457-5

[4] Kaustuv Chaudhuri. 2013. Subformula Linking as an Interaction

Method. In ITP (LNCS). 386–401. h�ps://doi.org/10.1007/978-3-642-

39634-2_28

[5] Kaustuv Chaudhuri. 2021. Subformula Linking for Intuitionistic Logic

with Application to Type Theory. In CADE (LNCS). 200–216. h�ps:

//doi.org/10.1007/978-3-030-79876-5_12

[6] Kaustuv Chaudhuri. 2023. ProfInt Prototype. h�ps://chaudhuri.info/

research/profint/

[7] Adam Chlipala. 2011. Mostly-Automated Veri�cation of Low-Level

Programs in Computational Separation Logic (PLDI). 234–245. h�ps:

//doi.org/10.1145/1993498.1993526

[8] Pierre-Jacques Courtois, F. Heymans, and David Lorge Parnas. 1971.

Concurrent Control with "Readers" and "Writers". CACM 14, 10 (1971),

667–668. h�ps://doi.org/10.1145/362759.362813

[9] Thibault Dardinier, Gaurav Parthasarathy, and Peter Müller. 2023.

Veri�cation-Preserving Inlining in Automatic Separation Logic Veri-

�ers. PACMPL 7, OOPSLA1 (2023), 102:789–102:818. h�ps://doi.org/

10.1145/3586054

[10] Nicolaas Govert de Bruijn. 1991. Telescopic Mappings in Typed

Lambda Calculus. Information and Computation 91, 2 (1991), 189–

204. h�ps://doi.org/10.1016/0890-5401(91)90066-B

[11] David Delahaye. 2000. A Tactic Language for the System Coq. In LPAR

(LNCS). 85–95. h�ps://doi.org/10.1007/3-540-44404-1_7

[12] Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew J.

Parkinson, and Viktor Vafeiadis. 2010. Concurrent Abstract Predicates.

In ECOOP (LNCS). 504–528. h�ps://doi.org/10.1007/978-3-642-14107-

2_24

[13] Pablo Donato, Pierre-Yves Strub, and Benjamin Werner. 2022. A Drag-

and-Drop Proof Tactic. In CPP. 197–209. h�ps://doi.org/10.1145/

3497775.3503692

[14] Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2018. ReLoC: A

Mechanised Relational Logic for Fine-Grained Concurrency (LICS).

442–451. h�ps://doi.org/10.1145/3209108.3209174

87

https://doi.org/10.1007/11575467_5
https://doi.org/10.1007/3-540-57887-0_94
https://doi.org/10.1007/3-540-57887-0_94
https://doi.org/10.1007/s10817-018-9457-5
https://doi.org/10.1007/978-3-642-39634-2_28
https://doi.org/10.1007/978-3-642-39634-2_28
https://doi.org/10.1007/978-3-030-79876-5_12
https://doi.org/10.1007/978-3-030-79876-5_12
https://chaudhuri.info/research/profint/
https://chaudhuri.info/research/profint/
https://doi.org/10.1145/1993498.1993526
https://doi.org/10.1145/1993498.1993526
https://doi.org/10.1145/362759.362813
https://doi.org/10.1145/3586054
https://doi.org/10.1145/3586054
https://doi.org/10.1016/0890-5401(91)90066-B
https://doi.org/10.1007/3-540-44404-1_7
https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.1145/3497775.3503692
https://doi.org/10.1145/3497775.3503692
https://doi.org/10.1145/3209108.3209174

CPP ’24, January 15–16, 2024, London, UK Ike Mulder and Robbert Krebbers

[15] Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2021. ReLoC

Reloaded: A Mechanized Relational Logic for Fine-Grained Con-

currency and Logical Atomicity. LMCS Volume 17, Issue 3 (2021).

h�ps://doi.org/10.46298/lmcs-17(3:9)2021

[16] Aquinas Hobor, AndrewW. Appel, and Francesco Zappa Nardelli. 2008.

Oracle Semantics for Concurrent Separation Logic. In ESOP (LNCS).

353–367. h�ps://doi.org/10.1007/978-3-540-78739-6_27

[17] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.

2018. RustBelt: Securing the Foundations of the Rust Programming

Language. PACMPL 2, POPL (2018), 66:1–66:34. h�ps://doi.org/10.

1145/3158154

[18] Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2016.

Higher-Order Ghost State (ICFP). 256–269. h�ps://doi.org/10.1145/

2951913.2951943

[19] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars

Birkedal, and Derek Dreyer. 2018. Iris from the Ground up: A Modular

Foundation for Higher-Order Concurrent Separation Logic. JFP 28

(2018). h�ps://doi.org/10.1017/S0956796818000151

[20] Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna

Rapoport, Amin Timany, Derek Dreyer, and Bart Jacobs. 2020. The

Future Is Ours: Prophecy Variables in Separation Logic. PACMPL 4,

POPL (2020), 45:1–45:32. h�ps://doi.org/10.1145/3371113

[21] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron

Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris: Monoids and

Invariants as an Orthogonal Basis for Concurrent Reasoning (POPL).

637–650. h�ps://doi.org/10.1145/2676726.2676980

[22] Ioannis T. Kassios. 2006. Dynamic Frames: Support for Framing, De-

pendencies and Sharing Without Restrictions. In FM (LNCS). 268–283.

h�ps://doi.org/10.1007/11813040_19

[23] Dominik Kirst, Johannes Hostert, Andrej Dudenhefner, Yannick

Forster, Marc Hermes, Mark Koch, Dominique Larchey-Wendling,

Niklas Mück, Benjamin Peters, Gert Smolka, and Wehr, Dominik. 2022.

A Coq Library for Mechanised First-Order Logic. In Coq Workshop.

h�ps://github.com/uds-psl/coq-library-fol

[24] Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti,

Jan-Oliver Kaiser, Amin Timany, Arthur Charguéraud, and Derek

Dreyer. 2018. MoSeL: A General, Extensible Modal Framework for

Interactive Proofs in Separation Logic. PACMPL 2, ICFP (2018), 77:1–

77:30. h�ps://doi.org/10.1145/3236772

[25] Robbert Krebbers, Ralf Jung, Aleš Bizjak, Jacques-Henri Jourdan,

Derek Dreyer, and Lars Birkedal. 2017. The Essence of Higher-

Order Concurrent Separation Logic. In ESOP (LNCS). 696–723. h�ps:

//doi.org/10.1007/978-3-662-54434-1_26

[26] Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive

Proofs in Higher-Order Concurrent Separation Logic (POPL). 205–217.

h�ps://doi.org/10.1145/3009837.3009855

[27] Ike Mulder, Łukasz Czajka, and Robbert Krebbers. 2023. Beyond Back-

tracking: Connections in Fine-Grained Concurrent Separation Logic.

PACMPL 7, PLDI (2023), 161:1340–161:1364. h�ps://doi.org/10.1145/

3591275

[28] Ike Mulder and Robbert Krebbers. 2023. Artifact of ‘Uni�cation for

Subformula Linking under Quanti�ers’. Zenodo. h�ps://doi.org/10.

5281/zenodo.10364816

[29] Ike Mulder and Robbert Krebbers. 2023. Proof Automation for Lineariz-

ability in Separation Logic. PACMPL 7, OOPSLA1 (2023), 91:462–91:491.

h�ps://doi.org/10.1145/3586043

[30] Ike Mulder, Robbert Krebbers, and Herman Geuvers. 2022. Diaframe:

Automated Veri�cation of Fine-Grained Concurrent Programs in Iris

(PLDI). 809–824. h�ps://doi.org/10.1145/3519939.3523432

[31] Peter O’Hearn, John Reynolds, and Hongseok Yang. 2001. Local Rea-

soning about Programs That Alter Data Structures. In CSL (LNCS).

1–19. h�ps://doi.org/10.1007/3-540-44802-0_1

[32] Peter W. O’Hearn and David J. Pym. 1999. The Logic of Bunched

Implications. Bulletin of Symbolic Logic 5, 2 (1999), 215–244. h�ps:

//doi.org/10.2307/421090

[33] David J. Pym. 2002. The Semantics and Proof Theory of the Logic of

Bunched Implications. Applied Logic Series, Vol. 26. Kluwer.

[34] Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan

Memarian, Derek Dreyer, and Deepak Garg. 2021. Re�nedC: Automat-

ing the Foundational Veri�cation of C Code with Re�ned Ownership

Types (PLDI). 158–174. h�ps://doi.org/10.1145/3453483.3454036

[35] Matthieu Sozeau. 2009. A New Look at Generalized Rewriting in

Type Theory. Journal of Formalized Reasoning 2, 1 (2009), 41–62.

h�ps://doi.org/10.6092/issn.1972-5787/1574

[36] Matthieu Sozeau and Nicolas Oury. 2008. First-Class Type Classes. In

TPHOLs (LNCS). 278–293. h�ps://doi.org/10.1007/978-3-540-71067-

7_23

[37] Matthieu Sozeau and Nicolas Tabareau. 2014. Universe Polymorphism

in Coq. In ITP (LNCS). 499–514. h�ps://doi.org/10.1007/978-3-319-

08970-6_32

[38] The Coq-std++ Team. 2023. An Extended "Standard Library" for Coq.

h�ps://gitlab.mpi-sws.org/iris/stdpp

[39] Beta Ziliani and Matthieu Sozeau. 2015. A Uni�cation Algorithm

for Coq Featuring Universe Polymorphism and Overloading (ICFP).

179–191. h�ps://doi.org/10.1145/2784731.2784751

Received 2023-09-19; accepted 2023-11-25

88

https://doi.org/10.46298/lmcs-17(3:9)2021
https://doi.org/10.1007/978-3-540-78739-6_27
https://doi.org/10.1145/3158154
https://doi.org/10.1145/3158154
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/3371113
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1007/11813040_19
https://github.com/uds-psl/coq-library-fol
https://doi.org/10.1145/3236772
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1145/3591275
https://doi.org/10.1145/3591275
https://doi.org/10.5281/zenodo.10364816
https://doi.org/10.5281/zenodo.10364816
https://doi.org/10.1145/3586043
https://doi.org/10.1145/3519939.3523432
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.2307/421090
https://doi.org/10.2307/421090
https://doi.org/10.1145/3453483.3454036
https://doi.org/10.6092/issn.1972-5787/1574
https://doi.org/10.1007/978-3-540-71067-7_23
https://doi.org/10.1007/978-3-540-71067-7_23
https://doi.org/10.1007/978-3-319-08970-6_32
https://doi.org/10.1007/978-3-319-08970-6_32
https://gitlab.mpi-sws.org/iris/stdpp
https://doi.org/10.1145/2784731.2784751

	Abstract
	1 Introduction
	2 Background on Subformula Linking
	2.1 Subformula Linking Judgment
	2.2 Rules for ProfInt
	2.3 Rules for Actema

	3 Quantifying on the Uninstantiated
	3.1 Rules for QU
	3.2 QU by Example
	3.3 Comparison to ProfInt and Actema

	4 Implementation
	4.1 Linkages in Coq
	4.2 Simple Telescopes in Coq
	4.3 Quantifying on the Uninstantiated with Ltac
	4.4 Linkage Tactic

	5 Applications
	5.1 Framing under Quantifiers in Separation Logic
	5.2 Automatic Verification of a Readers-Writer Lock

	6 Evaluation of iFrame
	6.1 Subformula Linking with iFrame in Practice
	6.2 Comparing Performance of Linkage Rules

	7 Related Work
	8 Future Work
	Acknowledgments
	References

