Tunnelling between two-dimensional electron gases up to 25 T

K.M. Browna, J.T. Nichollass-a,*, B. Tiekeb, S.A.J. Wiegerson, P.J.M. van Bentumb,
E.H. Linfield a, M. Pepper a, D.A. Ritchiec, G.A.C. Jonesa

a Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE, UK
b High Field Magnet Laboratory, University of Nijmegen, Toernooiveld, NL-6525 ED Nijmegen, The Netherlands

Abstract

We have measured the tunnelling between 2 two-dimensional electron gases at magnetic fields B up to 25 T. When the carrier densities of the two electron layers are matched and for filling factors \(v < 1 \), we observe a clear gap in the differential conductance \(\frac{dI}{dV} \) as a function of the voltage \(V_{sd} \) applied between the layers. We have measured tunnelling peak positions and fitted gap parameters \(\Delta \) that are proportional to \(B \) and do not depend on the carrier concentration of the two layers. These results suggest that we are observing a gap that is different in origin to that proposed by current theories.

Following recent experimental work [1–3] there has been much theoretical interest in the tunnelling of electrons out of a two-dimensional electron gas (2DEG) in a strong magnetic field [4–9]. Following on from experiments of Demmerle et al. [2], Eisenstein et al. [3, 10] measured the tunnelling from one 2DEG to a similar parallel 2DEG, the two being separated by a 175 Å barrier. In zero magnetic field there is resonant tunnelling between the two 2DEGs when their carrier densities are equal. In a strong magnetic field however, the current–voltage (I–V) characteristics between the two layers exhibit a gap when the filling factor \(v \) is less than unity. This suppression of tunnelling has been interpreted as evidence for electron–electron interactions within a 2DEG, and the resulting gap was labeled a “Coulomb gap”. It was also suggested [3] that, at high magnetic fields, electron–electron interactions are responsible for lowering the effective mass of electrons in the lowest Landau level (LL).

In this paper we extend earlier investigations [11] of the gap of a double 2DEG to magnetic fields up to 25 T. We observe a gap in the tunnelling characteristics, but we shall show that the gap and the associated tunnelling peak do not follow the \(\sqrt{B} \) behavior predicted by current theories. Instead we observe a gap and a tunnelling peak that are both linear in \(B \).

Double quantum wells and buried patterned back gates were fabricated by in situ ion beam lithography and molecular beam epitaxy regrowth. These techniques allow patterned back gates to be grown into the wafer structure, the details of which have been published elsewhere [12–14]. Subsequent optical lithography was used to define a Hall bar mesa, and to deposit Au Schottky gates aligned with the back gates. The device was put into the tunnelling configuration by applying negative voltages to side front and back gates. The two electron gases then overlap in a 100 μm x 150 μm area. The carrier densities of the top \((n_1) \) and bottom \((n_2) \) 2DEGs in the tunnelling area were controlled by voltages applied to the top \((V_{g1}) \) and bottom \((V_{g2}) \) gates, respectively.

*Corresponding author.
In contrast to our previous study [11], we measure the differential conductance \(\frac{dI}{dV} \) as a function of the voltage \(V_{sd} \) applied between the two 2DEGs. The sample was cooled in a dilution fridge and high magnetic fields were provided by the hybrid magnet. Fig. 1 shows vertically offset sweeps of the differential conductance \(\frac{dI}{dV} \) versus \(V_{sd} \) measured when \(n_1 = n_2 = 1.86 \times 10^{11} \text{ cm}^{-2} \) from \(B = 9\text{ to } 25 \text{ T} \). Around zero bias the conductance is suppressed and then showed a maximum and then a NDR region as the voltage \(V_{sd} \) is increased. In previous studies [10, 11] the \(I-V \) sweeps have been successfully fitted to the form \(I = I_0 \exp \left(- \frac{\Delta}{V} \right) \) over a large voltage range. Mathematically the peak-to-peak distance across zero bias (see Fig. 1) of \(\frac{dI}{dV} \) is equal to \(\Delta \), and in the inset to Fig. 1 we have plotted \(\Delta \) as a function of the magnetic field \(B \). Except for the peaked structure near the quantum Hall states at filling factors \(v = \frac{1}{2} \) and \(v = 1 \), the gap \(\Delta \) follows the straight line fit \(\Delta = 0.43 \hbar \omega_c \). The differential measurements contain the same information as the DC \(I-V \) sweeps, except that the tunnelling peak that was observed at \(0.3 \hbar \omega_c \) in the \(I-V \) sweeps is seen as a peak at \(\Delta/2 \approx 0.2 \hbar \omega_c \) in \(dI/dV \).

By tuning \(n_1 \) and \(n_2 \) with the top and bottom gates we can adjust the filling factor in the two 2DEGs in a magnetic field to any desired value; Fig. 2 shows the differential conductance measured at \(v = \frac{1}{2} \) from \(B = 9\text{ to } 25 \text{ T} \). At the lowest magnetic field (\(B = 9 \text{ T} \)) there is a conductance peak at 20 mV, as the magnetic field was increased this structure moved linearly to higher magnetic field. This peak (labelled \(E_2 \)) is an inter LL transition that was first observed by Demmerle et al. [2] The inset of Fig. 2 shows the \(E_2 \) peak position and the value of \(\Delta \) as a function of magnetic field \(B \). The two data sets can be fit by the functional forms \(E_2 = 1.16 \hbar \omega_c \) and \(\Delta = 0.44 \hbar \omega_c \), where \(\hbar \omega_c = 1.67 \text{ meV/T} \) for GaAs. In previous studies [11] the \(E_2 \) peak was fit to the form \(E_2 = 1.3 \hbar \omega_c \), in this particular case the lower value of 1.16 is obtained because we are measuring a peak in the differential conductance \(dI/dV \) rather than in the DC current \(I \).

Fig. 3 shows sweeps of \(dI/dV \) versus \(V_{sd} \) when \(n_2 = 3.3 \times 10^{11} \text{ cm}^{-2} \) and \(B \sim 16 \text{ T} \). The \(E_2 \) tunnelling peak at 35 mV (\(\approx 1.2 \hbar \omega_c \) at 16 T) was invariant as the top 2DEG carrier concentration \(n_1 \) was varied from 3.3 to
The differential conductance $\frac{dI}{dV}$ versus V_{sd} measured at $n_2 = 3.3 \times 10^{11} \text{ cm}^{-2}$ and $B = 16 \text{ T}$, as n_1 was varied from 3.3 to $1.3 \times 10^{11} \text{ cm}^{-2}$ in ten equal steps. Successive sweeps are vertically offset.

In a classical theory [8] of the gap it has been suggested that the electrons in one layer anti-correlate with the electrons in the other layer. This situation is readily visualized when the carrier concentrations are equal, however it is hard to imagine such anti-correlations existing over the large mismatch of carrier concentrations that we have measured in Fig. 3.

In conclusions, with the benefit of our high field measurements we can confirm that the gap only depends on the magnetic field B, and does not depend on the filling factor v.

Acknowledgements

We wish to thank the Engineering and Physical Sciences Research Council (UK) for supporting this work. JTN acknowledges support from the Isaac Newton Trust, and DAR acknowledges support from Toshiba Cambridge Research Centre. The experiments at the High Field Magnet Laboratory were sponsored by the Large Installations Plan of the European Union.

References