PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/28453

Please be advised that this information was generated on 2017-07-16 and may be subject to change.
In this paper we introduce a set, denoted by $D_n(A)$, for every commutative ring A and every positive integer n. It is shown that the elements of this set can be used to give an explicit description of the class $H_n(A)$ introduced in van den Essen and Hubbers [J. Algebra 187 (1997), 214–226]. We deduce that each polynomial map of the form $F = X + H$ with $H \in H_n(A)$ can be written as a finite product of automorphisms of the form $\exp(D)$, where each D is a locally nilpotent derivation satisfying $D^2(X) = 0$ for all i. Furthermore we deduce that all such Fs are stably tame.

1. NOTATION, DEFINITIONS, AND AN EXPLICIT DESCRIPTION OF THE CLASS $H_n(A)$

1.1. Notation

Throughout this paper A denotes an arbitrary commutative ring and $A[X] = A[X_1, \ldots, X_n]$ denotes the polynomial ring in n variables over A. Furthermore if $G = (G_1, \ldots, G_n) \in A[X]^n$ and $S = (S_i(X)) \in M_{p,q}(A[X])$ then $S(G)$ or $S|G$ denotes the $p \times q$ matrix $(S_i(G_1, \ldots, G_n))_{i,j}$. In particular if $F \in A[X]^n$ (= $M_{n,1}(A[X])$) then the composition of the polynomial maps F and G, denoted $F \circ G$, is equal to $F(G)$.

Matrix multiplication will be denoted by the symbol `\cdot'. So if $S, T \in M_{n,1}(A[X])$ then the matrix product of S and T is denoted by $S \cdot T$. By X we denote the column vector $(X_1, \ldots, X_n)^t$. In the sequel we also need another multiplication in $M_{n,1}(A[X])$, which we denote by \triangle. This multipli-
cation is defined as follows:

\[S \triangle T := S(T \ast X) \ast T \]

for all \(S, T \in M_n(A[X]) \).

One easily verifies that this multiplication is associative, so it makes sense to write

\[S_1 \triangle S_2 \triangle \cdots \triangle S_n \]

for each \(n \)-tuple \(S_1, \ldots, S_n \) in \(M_n(A[X]) \). Sometimes we need to extend a vector of length \(1 \leq p \leq n - 1 \) or a \(p \times p \) matrix to, respectively, a vector of length \(n \), or an \(n \times n \) matrix. This is done as follows: let \(1 \leq p \leq n - 1 \), \(c \in A[X]^p \), and \(T \in M_p(A[X]) \). Then \(\tilde{c}^n \) denotes the vector

\[
\tilde{c}^n = \begin{pmatrix} c \\ 0 \\ \vdots \\ 0 \end{pmatrix} \in A[X]^n,
\]

obtained by extending \(c \) by \(n - p \) zeros, and \(\tilde{T}^n \) denotes the matrix

\[
\tilde{T}^n = \begin{pmatrix} T & 0 \\ 0 & I_{n-p} \end{pmatrix} \in M_n(A[X]),
\]

obtained by extending \(T \) with the \((n - p) \times (n - p) \) identity matrix. To simplify the notation we drop the superscript \(n \) and write \(\tilde{c} \) and \(\tilde{T} \), even sometimes when it is clear from the context that we mean \(\tilde{c}^{n-1} \), respectively, \(\tilde{T}^{n-1} \) instead of \(\tilde{c}^n \), respectively, \(\tilde{T}^n \).

Finally the adjoint of a matrix \(T \) is denoted by \(\text{Adj}(T) \) and if \(a_1, \ldots, a_p \) are elements of a (nonnecessary commutative) ring then \(\prod_{i=1}^p a_i \) denotes the element \(a_1 \cdots a_p \).

1.2. \(D_n(A) \) and the class \(H_n(A) \)

In [6] we introduced a new class of polynomial maps, denoted by \(H_n(A) \), and showed that for each \(H \in H_n(A) \) the Jacobian matrix \(JH \) is nilpotent and that the polynomial map \(F = X + H \) is invertible over \(A \) with \(\det(JF) = 1 \).

Let us recall the definition of \(H_n(A) \).

Definition 1.1. First if \(n = 1 \) we define \(H_1(A) = A \). If \(n \geq 2 \) we define \(H_n(A) \) inductively as follows: Let \(H \in A[X]^n \). Then \(H \in H_n(A) \) if and only if there exist \(T \in M_n(A), \ c \in A^n, \text{ and } H_* \in H_{n-1}(A[X_{n-1}]) \) such that

\[
H = \text{Adj}(T) \ast \begin{pmatrix} H_* \\ 0 \end{pmatrix}_{T \ast X} + c. \quad (1)
\]
The main aim of this section is to give an explicit description of the elements of $H_n(A)$. Therefore we introduce some useful objects.

Definition 1.2. Let $n \geq 2$. Then $D_n(A)$ is the set of $(2n - 1)$-tuples $(T, c) := (T_2, \ldots, T_n, c_1, \ldots, c_n)$, where $T_i \in M_i(A)$, $T_i \in M_i(A[X_{i+1}, \ldots, X_n])$ for all $2 \leq i \leq n - 1$, $c_n \in A^n (= M_n(A))$ and $c_i \in M_i(A[X_{i+1}, \ldots, X_n])$ for all $1 \leq i \leq n - 1$.

If $n \geq 3$ we get a natural map $\pi: D_n(A) \to D_{n-1}(A[X_n])$ defined by $\pi((T_2, \ldots, T_n, c_1, \ldots, c_n)) = (T_2, \ldots, T_{n-1}, c_1, \ldots, c_{n-1})$.

Instead of $\pi((T, c))$ we often write (T', c').

Definition 1.3. Let $n \geq 2$ and $0 \leq p \leq n - 2$. Then $E_{n,p}: D_n(A) \to A[X]^n$ is given by

1. $E_{n,0}((T, c)) := \text{Adj}(T_n) \cdot c_{n-1}/T_n \cdot X$ for all $(T, c) \in D_n(A)$.
2. If $n \geq 3$ and $1 \leq p \leq n - 2$, then inductively (with respect to n)

$$E_{n,p}((T, c)) := \text{Adj}(T_n) \cdot \begin{pmatrix} E_{n-1,p-1}((T', c')) \\ 0 \end{pmatrix} |_{T_n \cdot X}$$

Instead of $E_{n,p}((T, c))$ we simply write $E_{n,p}(T, c)$.

Now we are able to give the main result of this section.

Proposition 1.4. Let $n \geq 2$ and $H \in A[X]^n$. Then $H \in H_n(A)$ if and only if there exists $(T, c) \in D_n(A)$ such that

$$H = \sum_{p=0}^{n-2} E_{n,p}(T, c) + c_n.$$

Proof. The proof is by induction on n. The case $n = 2$ is obvious, so let $n \geq 3$. Then

$$H = \text{Adj}(T_n) \cdot \begin{pmatrix} H_* \\ 0 \end{pmatrix} |_{T_n \cdot X} + c_n,$$

where $T_n \in M_n(A)$, $c_n \in A^n$, and $H_* \in H_{n-1}(A[X_n])$. So by the induction hypothesis we have

$$H_* = \sum_{p=0}^{n-3} E_{n-1,p}(T^*, c^*) + c_{n-1}.$$
for some \((T^*, c^*) \in D_{n-1}(A[X_n])\). Put \((T, c) := (T^*, T_n, c^*, c_n)\) and observe that \((T, c) \in D_n(A)\) and \((T', c') = (T^*, c^*)\). So

\[
H = \sum_{p=0}^{n-3} \text{Adj}(T_n) E_{n-1, p}(T', c')|_{T_n \cdot X} + \text{Adj}(T_n) \left(\begin{array}{c} c_n^* \\ 0 \end{array} \right)|_{T_n \cdot X} + c_n
\]

\[
= \sum_{p=1}^{n-2} E_{n, p}(T, c) + E_{n, 0}(T, c) + c_n
\]

\[
= \sum_{p=0}^{n-2} E_{n, p}(T, c) + c_n.
\]

Proposition 1.5. Let \(n \geq 2, 0 \leq p \leq n - 2\), and \((T, c) \in D_n(A)\). Then

\[
E_{n, p}(T, c) = \text{Adj}\left(\tilde{T}_{n-p} \triangle \cdots \triangle \tilde{T}_{n-1} \triangle T_n \right) * \tilde{c}_{n-p-1} * (\tilde{T}_{n-p} \triangle \cdots \triangle \tilde{T}_{n-1}) X.
\]

Proof. The proof is by induction on \(p\). The case \(p = 0\) is obvious. So let \(p \geq 1\). Then

\[
E_{n, p}(T, c) = \text{Adj}(T_n) \left(E_{n-1, p-1}(T', c') \right) |_{T_n \cdot X}
\]

\[
= \text{Adj}(T_n) \left[\text{Adj}(\tilde{T}_{n-p} \triangle \cdots \triangle \tilde{T}_{n-1}) |_{T_n \cdot X} \right]
\]

(by the induction hypothesis)

\[
= \text{Adj}(\tilde{T}_{n-p} \triangle \cdots \triangle \tilde{T}_{n-1} |_{T_n \cdot X} \triangle T_n) * \tilde{c}_{n-p-1} * (\tilde{T}_{n-p} \triangle \cdots \triangle \tilde{T}_{n-1}) X.
\]

Example 1.6. Consider the polynomial map \(F := X + H: \mathbb{C}^4 \to \mathbb{C}^4\), where \(H\) equals

\[
\begin{pmatrix}
-X_2X_3^2 - e_4X_2^2X_4 - \frac{m_4^2}{g_4}X_2X_3X_4 - g_4X_3X_4 - k_4X_3^3 - \frac{m_2}{g_4}X_2X_3^2 - m_4X_3X_4^2 \\
-X_4X_2^2 - e_4X_2^2X_3 + g_4X_2X_3X_4 - k_4X_3^3 + m_4X_2X_3^2 + g_4^2X_3X_4^2 \\
- \frac{1}{3}X_3^3 \\
0
\end{pmatrix}
\]
and $e_3, k_3, e_4, g_4, k_4, m_4 \in \mathbb{C}$ and $g_4 \neq 0$. This F is invertible. In fact if we take $P = P^{-1} = (X_4, X_3, X_2, X_1)$, we have that PFP is one of the eight representatives of the cubic homogeneous maps in dimension 4 as given by Hubbers [7] and also published in [4, Theorem 2.10].

Now consider the following element (T, c) of $D_4(\mathbb{C})$, where

$$T = \begin{pmatrix} 1 & 0 \\ g_4^2 X_3 & g_4 X_4 + m_4 X_3 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

and

$$c = \begin{pmatrix} -\frac{1}{g_4} X_2 \\ -X_3^2(e_4 X_4 + k_4 X_3) \\ -X_3 X_4^2 - e_3 X_4 X_3^2 - k_3 X_3^3 \\ -\frac{1}{3} X_4^3 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Our claim is that

$$H = \sum_{p=0}^{2} E_{4, p}(T, c) + c_4.$$

To prove this we will compute $E_{4,0}$, $E_{4,1}$, and $E_{4,2}$ by the method of Proposition 1.5. Note that $c_4 = 0$. Since $T_4 = \tilde{T}_3 = I_4$, $E_{4,0}$ and $E_{4,1}$ are easy:

$$E_{4,0} = \text{Adj}(T_4) * \tilde{c}_{3|T_4} * X = \tilde{c}_3 = \begin{pmatrix} 0 \\ 0 \\ -\frac{1}{3} X_4^3 \\ 0 \end{pmatrix},$$

$$E_{4,1} = \text{Adj}(\tilde{T}_3 \triangle T_4) * \tilde{c}_{2|I_4} * X = \tilde{c}_2 = \begin{pmatrix} -X_3^2(e_4 X_4 + k_4 X_3) \\ -X_3 X_4^2 - e_3 X_4 X_3^2 - k_3 X_3^3 \\ 0 \\ 0 \end{pmatrix}.$$
Before we compute $E_{4,2}$ we present the following identities:

\[
\begin{align*}
\tilde{T}_2 \triangle \tilde{T}_3 \triangle T_4 &= \tilde{T}_2 = \begin{pmatrix}
1 & 0 & 0 & 0 \\
g_2^2X_3 & g_4X_4 + m_4X_3 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}, \\
\text{Adj}(\tilde{T}_2 \triangle \tilde{T}_3 \triangle T_4) &= \\
\begin{pmatrix}
g_4X_4 + m_4X_3 & 0 & 0 & 0 \\
-g_2^2X_3 & 1 & 0 & 0 \\
0 & 0 & g_4X_4 + m_4X_3 & 0 \\
0 & 0 & 0 & g_4X_4 + m_4X_3
\end{pmatrix}; \\
(\tilde{T}_2 \triangle \tilde{T}_3 \triangle T_4) \ast X &= \\
\begin{pmatrix}
X_1 \\
g_2^2X_1X_3 + g_4X_2X_4 + m_4X_2X_3 \\
X_3 \\
X_4
\end{pmatrix}; \\
\tilde{c}_1(\tilde{T}_2 \triangle \tilde{T}_3 \triangle T_4) \ast X &= \\
\begin{pmatrix}
-X_1X_3 - \frac{1}{g_4}X_2X_3 - \frac{m_4}{g_4^2}X_2X_3 \\
0 \\
0 \\
0
\end{pmatrix}; \\
\text{and finally} \quad E_{4,2} &= \text{Adj}(\tilde{T}_2 \triangle \tilde{T}_3 \triangle T_4) \ast \tilde{c}_1(\tilde{T}_2 \triangle \tilde{T}_3 \triangle T_4) \ast X \\
&= \begin{pmatrix}
-X_4 \left(X_3 + \frac{m_4}{g_4}X_3 \right) \left(g_4X_1X_3 + X_2X_4 + \frac{m_4}{g_4^2}X_2X_3 \right) \\
X_3 \left(g_2^2X_1X_3 + g_4X_2X_4 + m_4X_2X_3 \right) \\
0 \\
0
\end{pmatrix}.
\end{align*}
\]

It is easy to verify that $H = E_{4,0} + E_{4,1} + E_{4,2} + c_4$, which was our claim.

2. NICE DERIVATIONS

Let $B := A[x_1, \ldots, x_n]$ be a finitely generated A-algebra and D a subset of $\text{Der}_A(B)$. By B^D we denote the set of all $b \in B$ such that $d(b) = 0$ for all $d \in D$.
DEFINITION 2.1. Let \(D \subseteq \text{Der}_A(B) \) be a finite subset and \(\tau \in \text{Der}_A(B) \).

1. We say that \(\tau \) is **derived from** \(D \) in at most one step if \(\tau \) is of the form \(\tau = \sum_{d \in D} b_d d \), where \(b_d \in B^0 \) for all \(d \in D \).

2. Let \(m \geq 2 \). We say that \(\tau \) is **derived from** \(D \) in at most \(m \) steps if there exists a sequence of finite subsets \(D = D_0, D_1, D_2, \ldots, D_m \) of \(\text{Der}_A(B) \) such that \(\tau \in D_m \) and all elements of \(D_i \) are derived from \(D_{i-1} \) in at most one step, for all \(1 \leq i \leq m \). If furthermore the elements of \(D \) satisfy \(d_1 d_2(x_i) = 0 \) for all \(d_1, d_2 \in D \) and all \(i \), then \(\tau \) is called **nice of order** \(\leq m \), with respect to \(x_1, \ldots, x_n \) and \(D \).

PROPOSITION 2.2. The notation is as in Definition 2.1. If \(d_1 d_2(x_i) = 0 \) for all \(d_1, d_2 \in D \) and all \(i \), then \(d_1 d_2(x_i) = 0 \) for all \(d_1, d_2 \in D_m \) and all \(i \). In particular \(d^2(x_i) = 0 \) for every nice derivation.

Proof. We use induction on \(m \). The case \(m = 0 \) is obvious since \(D_0 = D \). Now let \(m \geq 1 \). Then \(d_1 = \sum_{d \in D_{m-1}} b_d d \), \(d_2 = \sum_{d' \in D_{m-1}} b_d' d' \) with \(b_d', b_{d'} \in B^{D_{m-1}} \). Then

\[
d_1 d_2(x_i) = \sum_{d,d'} b_d b_d' d(x_i) + \sum_{d,d'} b_d b_d' d'(x_i).
\]

(2)

Now observe that \(d(b_{d'}) = 0 \) since \(b_{d'} \in B^{D_{m-1}} \) and \(d \in D_{m-1} \). Finally the induction hypothesis gives \(d'(x_i) = 0 \) for all \(d, d' \in D_{m-1} \) and all \(i \), so (2) implies \(d_1 d_2(x_i) = 0 \).

We demonstrate these aspects by the so-called Winkelmann derivation. See [11].

EXAMPLE 2.3. Let \(\tau = (1 + X_4 X_3 - X_3 X_2) \partial_{X_1} + X_5 \partial_{X_2} + X_4 \partial_{X_3} \), a derivation on \(B := A[X_1, X_2, X_3, X_4, X_5] \). Let \(D = \{ \partial_{X_1}, \partial_{X_2}, \partial_{X_3} \} \). Then \(\tau \) is nice of order 2 with respect to \(X_1, X_2, X_3, X_4, X_5 \), and \(D \). To show that this is true, we present a sequence of finite subsets of \(\text{Der}_A(B) \),

\[D = D_0, D_1, D_2. \]

Take \(D_1 := \{ \partial_{X_1}, X_5 \partial_{X_2} + X_4 \partial_{X_3} \} \) and \(D_2 := \{ \tau \} \). Note that in Definition
2.1 It is not demanded that the set D_i of this sequence is a subset of D_{i+1}. The only demand is that each D_i is a finite subset of $\text{Der}_A(B)$. Since $X_4, X_5 \in B^D$ it follows immediately that ∂_{X_4} and $X_5 \partial_{X_4} + X_4 \partial_{X_5}$ are derived from D in one step. And from $1 + X_4 X_2 - X_2 X_3 \in B^D$, it follows that τ is derived from D_1 in one step. Obviously we have $d_1 d_2 (X_i) = 0$ for all $d_1, d_2 \in D$ and hence with Proposition 2.2 also $\tau^2 (X_i) = 0$.

3. DERIVATIONS ASSOCIATED WITH POLYNOMIAL MAPS

The main aim of this section is to show that for each $0 \leq p \leq n - 2$ the polynomial map $X + E_{n,p}(T, c)$ (where $(T, c) \in D_n(A)$) is of the form $\exp(d)$, for some nice A-derivation d of $A[X]$. Observe that d is locally nilpotent if d is nice with respect to X, \ldots, X_n since $d^2 (X_i) = 0$ for all i, by Proposition 2.2.

In order to prove this result (see Theorem 3.3), we need to generalise some of the notions of Sect. 1 to arbitrary finitely generated A-algebras. So let $B := A[x_1, \ldots, x_n]$ be a finitely generated A-algebra, and let $\varphi : A[X_1, \ldots, X_n] \to B$ be the A-ring homomorphism defined by $\varphi(X_i) = x_i$ for each i. For each $p, q \geq 1$ consider the natural extension

$$\varphi : M_{p,q}(A[X_1, \ldots, X_n]) \to M_{p,q}(B).$$

Then for each $(T, c) \in D_n(A)$ we define

$$E_{n,p}(T, c)(x) := \varphi(E_{n,p}(T, c)) \in B^n.$$

Now let $(\partial_1, \ldots, \partial_n)$ be an n-tuple of A-derivations of B. With each vector $b = (b_1, \ldots, b_n) \in B^n$ we associate the following A-derivation of B:

$$D(b; \partial_1, \ldots, \partial_n) := b_1 \partial_1 + \cdots + b_n \partial_n = b^t \left(\begin{array}{c} \partial_1 \\ \vdots \\ \partial_n \end{array} \right).$$

To formulate the next lemma we need some more notation: Let $(T, c) \in D_n(A)$. Put

$$(x'_1, \ldots, x'_n) := T_n \ast (x_1, \ldots, x_n)' ,$$

$$(\partial'_1, \ldots, \partial'_n) := (A \partial(T_n))' \ast (\partial_1, \ldots, \partial_n)' ,$$

$$x'' := (x'_1, \ldots, x'_{n-1}),$$

$$(T'', c'') := (T'(X_n = x'_n), c'(X_n = x'_n)) \in D_{n-1}(A[x'_n]).$$
Lemma 3.1. Let \(n \geq 3 \) and \(1 \leq p \leq n - 2 \). Then

\[
D(E_{n,p}(T, c)(x); \partial_1, \ldots, \partial_n) = D(E_{n-1,p-1}(T^n, c^n)(x^n); \partial'_1, \ldots, \partial'_{n-1}).
\]

Proof.

\[
D(E_{n,p}(T, c)(x); \partial_1, \ldots, \partial_n)
\]

\[
= (E_{n,p}(T, c)(x))^t \begin{pmatrix}
\partial_1 \\
\vdots \\
\partial_n
\end{pmatrix}
\]

\[
= \left((E_{n-1,p-1}(T', c')(x'))^t 0\right) * (\text{Adj}(T_n))^t \begin{pmatrix}
\partial_1 \\
\vdots \\
\partial_n
\end{pmatrix}
\]

\[
= \left((E_{n-1,p-1}(T^n, c^n)(x^n))^t 0\right) \begin{pmatrix}
\partial'_1 \\
\vdots \\
\partial'_{n-1}
\end{pmatrix}
\]

\[
= D(E_{n-1,p-1}(T^n, c^n)(x^n); \partial'_1, \ldots, \partial'_{n-1}).
\]

Lemma 3.2. The notation is as above. Let \(a \in A \) and let \(\partial_1, \ldots, \partial_n \) be \(A \)-derivations of \(B \) such that \(\partial_i(x_j) = a \delta_{ij} \) for all \(i, j \). Then \(\partial'_i(x'_j) = a \det(T_n) \delta_{ij} \) for all \(i, j \).

Proof. Denote the \(i \)th column of \(\text{Adj}(T_n) \) by \((t^n_{1i}, \ldots, t^n_{ni})^t\) and the \(j \)th row of \(T_n \) by \((t_{j1}, \ldots, t_{jn})\). Then

\[
\partial'_i(x'_j) = \left(\sum_{s=1}^{n} t^n_{si} \partial_s \right) \left(\sum_{s=1}^{n} t_{js} x_s \right)
\]

\[
= \sum_{s=1}^{n} a t^n_{si} t_{js}
\]

\[
= a(T_n * \text{Adj}(T_n))_{ji}
\]

\[
= a \det(T_n) \delta_{ij}.
\]
Now we are able to prove:

Theorem 3.3. Let $\partial_1, \ldots, \partial_n$ be A-derivations on $A[x_1, \ldots, x_n]$ such that there exists an element $a \in A$ such that $\partial_i(x_j) = a\delta_{ij}$ for all i, j. Let $(T, c) \in D_n(A)$. Then the A-derivation $d := D(E_n, p(T, c))(x); \partial_1, \ldots, \partial_n)$ is nice with respect to x_1, \ldots, x_n and $D_0 := \{\partial_1, \ldots, \partial_n\}$, for all $n \geq 2$ and all $0 \leq p \leq n - 2$.

Proof. 1. The hypotheses on the ∂_i imply that $dd'(x_i) = 0$ for all $d, d' \in D_0$ and all i.

2. First we consider the case $p = 0$. Then

$$E_n, 0(T, c) = \text{Adj}(T_n) = c_n - 1| T_n \ast x.$$

So

$$d = (c_{n-1}| T_n \ast x) \ast (\text{Adj}(T_n))^t \begin{bmatrix} \partial_1 \\ \vdots \\ \partial_n \end{bmatrix}.$$

Write $c_{n-1} = (\gamma_1(x_n), \ldots, \gamma_{n-1}(x_n), 0)$. Then the definition of x_n' and the ∂_i' imply that

$$d = (\gamma_1(x_n'), \ldots, \gamma_{n-1}(x_n'), 0) * (\partial_1', \ldots, \partial_n') = \sum_{i=1}^{n-1} \gamma_i(x_n') \partial_i'.$$ (3)

Put $D_1 := \{\partial_1', \ldots, \partial_{n-1}'\}$ and observe that $D_1 \subset \text{Der}_n(B)$ and that each element of D_1 is derived from D_0 in at most one step. Finally since $\partial_i'(x'_n) = 0$ for all $1 \leq i \leq n - 1$ (by Lemma 3.2) we get that $\gamma_i(x_n') \in B^{D_1}$ for all $1 \leq i \leq n - 1$. So (3) implies that d is derived from D_1 in at most one step. Consequently d is derived from D_0 in at most two steps. So d is nice with respect to x_1, \ldots, x_n and D_0 by case 1.

3. Now we prove the theorem by induction on n. If $n = 2$, then $p = 0$ and we are in case 2. So let $n \geq 3$. By case 2 we may assume that $p \geq 1$. Then by Lemma 3.1 we have

$$d = D(E_{n-1, p-1}(T^n, c^n)(x^n); \partial_1', \ldots, \partial_{n-1}').$$

with $(T^n, c^n) \in D_{n-1}(A[x_n'])$. By Lemma 3.2 we can apply the induction hypothesis to the ring $A[x_n']$ and the $(n - 1)$-tuple of $A[x_n']$-derivations $\partial_1', \ldots, \partial_{n-1}'$ on the $A[x_n']$-algebra $B' := A[x_n'][x_1', \ldots, x_{n-1}']$. So the $A[x_n']$-derivation d on B' is nice with respect to $D_0' := \{\partial_1', \ldots, \partial_{n-1}'\}$ and x_1', \ldots, x_{n-1}'. So there exists a sequence

$$D_0', D_1', \ldots, D_m'$$
of finite subsets of $\text{Der}_{B'}(B')$ such that $d \in D'_m$ and D'_i is derived from D'_{i-1} in at most one step for all $1 \leq i \leq m$. Now observe that $D'_t \subset \text{Der}_A(B)$ and that $B' \subset B$ since by definition obviously $x'_i \in B$ for all i. Consequently if d' is an $A[x']$-derivation of B' derived from D'_0 in at most one step, then $d' \in \text{Der}_A(B)$. Hence $D'_t \subset \text{Der}_A(B)$. Arguing in a similar way we conclude by induction on i that $D'_i \subset \text{Der}_A(B)$ for all $0 \leq i \leq m$. Since as remarked in case 2 above, all elements of D'_0 ($= D_1$ in case 2) are derived from D_0 in at most one step we deduce that d is derived from D_0 in at most $m + 1$ steps. Just define $D_i := D'_{i-1}$ for all $1 \leq i \leq m + 1$. Hence d is nice with respect to x_1, \ldots, x_m and D_0 by 1.

Corollary 3.4. Let $(T, c) \in \mathbb{D}_A(T)$ and $0 \leq p \leq n - 2$. Put

$$D := D\left(\frac{\partial}{\partial X_1}, \ldots, \frac{\partial}{\partial X_n}\right).$$

Then D is nice with respect to X_1, \ldots, x_n and $\{\partial/\partial X_1, \ldots, \partial/\partial X_n\}$. Furthermore we have $\exp(D) = X + \sum_{p=0}^{n-2} E_{n,p}(T, c)$ and the inverse map is given by $\exp(-D) = X - \sum_{p=0}^{n-2} E_{n,p}(T, c)$.

Proof. The first part is an immediate consequence of Theorem 3.3. Furthermore $D^2(X) = 0$ by Proposition 2.2. So $\exp(D)(X) = X + \sum_{p=0}^{n-2} E_{n,p}(T, c)$ and the inverse map is given by $\exp(-D)(X) = X - \sum_{p=0}^{n-2} E_{n,p}(T, c)$.

4. The Main Theorem

In this section we show that for every $H \in H_n(A)$ the polynomial map $F = X + H$ is a product of n polynomial automorphisms of the form $\exp(D)$, where each D is a nice derivation on $A[x]$. More precisely

Theorem 4.1. Let $F = X + H$, where $H = \sum_{p=0}^{n-2} E_{n,p}(T, c) + c_n$, for some $(T, c) \in \mathbb{D}_A(T)$. Then

$$F = \exp\left(D\left(c_n; \frac{\partial}{\partial X_1}, \ldots, \frac{\partial}{\partial X_n}\right)\right) \times \prod_{p=0}^{n-2} \exp\left(D\left(E_{n,p}(T, c); \frac{\partial}{\partial X_1}, \ldots, \frac{\partial}{\partial X_n}\right)\right).$$
Proof. Observe that
\[
\exp \left(-D \left(e_n, \frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n} \right) \right) \cdot F = \sum_{p=0}^{n-2} E_{n,p}(T, c).
\]
So the case \(n = 2 \) follows from Corollary 3.4. Hence we may assume that \(n \geq 3 \). Now Theorem 4.1 follows directly from Proposition 4.2 below and Corollary 3.4.

Proposition 4.2. Let \(n \geq 3, 0 \leq p \leq n - 3 \), and \((T, c) \in D_n(A)\). Then
\[
\exp(-D(E_{n,p}(T, c))) \cdot \left(X + \sum_{q=p}^{n-2} E_{n,q}(T, c) \right) = X + \sum_{q=p+1}^{n-2} E_{n,q}(T, c).
\]

Proof. Put \(G := \exp(-D(E_{n,p}(T, c))) \). So \(G = X - E_{n,p}(T, c) \) (by Corollary 3.4). Hence if we put
\[
U := \bar{T}_{n-p} \triangle \cdots \triangle \bar{T}_{n-1} \triangle T_n
\]
then by Proposition 1.4 we get
\[
G = X - \text{Ad}(U) \ast \tilde{c}_{n-p-1|U} \ast X.
\]
So if we put
\[
f := X + \sum_{q=p}^{n-2} E_{n,q}(T, c)
\]
then
\[
G \cdot f = f - \text{Ad}(U(f)) \ast \tilde{c}_{n-p-1|f}.
\]
Since \(U(f) = f \) (by Corollary 4.4 below, with \(j = 0 \)) we get
\[
G \cdot f = f - \text{Ad}(U) \ast \tilde{c}_{n-p-1|U} \ast f.
\]
Now observe that each component of \(\tilde{c}_{n-p-1} \) belongs to \(A[X_{n-p}, \ldots, X_n] \) and that for each \(i \geq n - p \) \((U \ast f)_i = (U \ast X)_i \) (by Lemma 4.3 below). So \(\tilde{c}_{n-p-1|U} \ast f = c_{n-p-1|U} \ast X \) and hence
\[
G \cdot f = f - \text{Ad}(U) \ast \tilde{c}_{n-p-1|U} \ast X
\]
\[
= f - E_{n,p}(T, c)
\]
(by Proposition 1.4) \]
Lemma 4.3. Let \(n \geq 3, 0 \leq p \leq n - 2, 0 \leq j \leq p, \) and \((T, c) \in D_n(A)\). Put \(f := X + \sum_{q=p}^{n-2} E_{n,q}(T, c) \). Then

\[
\left[f \right]_i = \left[\left(\tilde{T}_{n-p+j} \Delta \cdots \Delta \tilde{T}_{n-1} \Delta T_n \right) \right]_i
\]

for all \(i \geq n - p + j \).

Proof. Put \(U := \tilde{T}_{n-p+j} \Delta \cdots \Delta \tilde{T}_{n-1} \Delta T_n \). It suffices to show that for each \(q \geq p \)

\[
[U \ast E_{n,q}(T, c)]_i = 0
\]

for all \(i \geq n - p + j \). So let \(q \geq p \). Then \(q \geq p - j \).

1. We first treat the case that \(q = p - j \). Then \(j = 0 \) and \(q = p \). Consequently \(U = \tilde{T}_{n-p} \Delta \cdots \Delta \tilde{T}_{n-1} \Delta T_n \), \(E_{n,q}(T, c) = E_{n,p}(T, c) \), and hence by Proposition 1.4

\[
U \ast E_{n,q}(T, c) = U \ast \text{Adj}(U) \ast \tilde{c}_{n-p-1}(U \ast X)
\]

\[
= \text{det}(U) \ast \tilde{c}_{n-p-1}(U \ast X).
\]

Since the last \(p + 1 \) coordinates of \(\tilde{c}_{n-p-1} \) are zero, we obtain that

\[
[U \ast E_{n,q}(T, c)]_i = 0
\]

for all \(i \geq n - p \), which proves the case that \(q = p - j \).

2. Now assume that \(q \geq p - j + 1 \). So \(n - q \leq n - p + j - 1 \). Put \(V := \tilde{T}_{n-q} \Delta \cdots \Delta \tilde{T}_{n-p+j-1} \). Then by Proposition 1.4 we can write

\[
E_{n,q}(T, c) = \text{Adj}(V \Delta U) \ast \tilde{c}_{n-q-1}(V \Delta U) \ast X
\]

\[
= \text{Adj}(V \ast X \ast U) \ast \tilde{c}_{n-q-1}(V \Delta U) \ast X
\]

\[
= \text{Adj}(U) \ast \text{Adj}(V \ast X) \ast \tilde{c}_{n-q-1}(V \Delta U) \ast X.
\]

Consequently

\[
U \ast E_{n,q}(T, c) = \text{det}(U) \ast \text{Adj}(V \ast X) \ast \tilde{c}_{n-q-1}(V \Delta U) \ast X.
\] \hspace{1cm} (5)

Note that \(V \), and hence \(V \ast X \), is of the form \(\tilde{B} \) for some \(B \in M_{n-p+j-1}(A[X]) \). Furthermore \(\tilde{c}_{n-q-1} \) is \(0 \) if \(i \geq n - q \), which implies that \(\tilde{c}_{n-q-1}(V \Delta U) \ast X_i = 0 \) if \(i \geq n - p + j \) (since \(n - p + j > n - q \)). Now the desired result (4) follows from (5). \(\blacksquare \)
Corollary 4.4. The notation is as in Lemma 4.3. Then
\[
\left(\tilde{T}_{n-p+j} \triangle \cdots \triangle \tilde{T}_{n-1} \triangle T_n \right)(f) = \tilde{T}_{n-p+j} \triangle \cdots \triangle \tilde{T}_{n-1} \triangle T_n.
\]

Proof. The proof is by induction on \(N := p - j\). If \(N = 0\) the result is obvious. So let \(N \geq 1\). Then
\[
\left(\tilde{T}_{n-p+j} \triangle \cdots \triangle \tilde{T}_{n-1} \triangle T_n \right)(f)
= \tilde{T}_{n-p+j}(\tilde{T}_{n-p+j+1} \triangle \cdots \triangle \tilde{T}_{n-1} \triangle T_n)(f) \circ f \circ (\tilde{T}_{n-p+j+1} \triangle \cdots \triangle \tilde{T}_{n-1} \triangle T_n)(f)
= \tilde{T}_{n-p+j}(\tilde{T}_{n-p+j+1} \triangle \cdots \triangle \tilde{T}_{n-1} \triangle T_n)(f)
\]
by the induction hypothesis. Finally observe that the matrix elements of \(\tilde{T}_{n-p+j} \triangle \cdots \triangle \tilde{T}_{n-1} \triangle T_n\) depend only on \(X_{n-p+j}, \ldots, X_n\). The result follows immediately from Lemma 4.3 (with \(j + 1\) instead of \(j\)).

5. **Stably Tameness**

With Theorem 4.1 we are now able to prove the stably tame generators conjecture for all maps in our class \(H_n(A)\), and, we will also show that this result is “sharp”: We give an example of an element of our class which is not tame, so in general we cannot get a better result than this stable tameness.

First let us recall the conjecture (it has already been mentioned in [1–4] and [8]):

Conjecture 5.1. For every invertible polynomial map \(F: k^n \to k^n\) over a field \(k\) there exist \(t_1, \ldots, t_m\) such that
\[
F^{[m]} = (F, t_1, \ldots, t_m): k^{n+m} \to k^{n+m}
\]
is tame, i.e., \(F\) is stably tame.

Theorem 5.2. Let \(F = X + H\) with \(H \in H_n(A)\). Then \(F\) is stably tame.

To do this we use the following result due to Martha Smith [10]:

Proposition 5.3. Let \(D\) be a locally nilpotent derivation of \(A[X]\). Let \(a \in \ker(D)\). Extend \(D\) to \(A[X][t]\) by setting \(D(t) = 0\). Note that \(tD\) is locally nilpotent. Define \(\rho \in \text{Aut}_A A[X][t]\) by \(\rho(X_i) = X_{i+1}\), \(i = 1, \ldots, n\), and \(\rho(t) = t + a\). Then
\[
(\exp(aD), t) = \rho^{-1} \exp(-tD) \rho \exp(tD).
\]
Corollary 5.4. Let D and a be as in Proposition 5.3. If D is conjugate by a tame automorphism to a triangular derivation, then $(\exp(aD, t))$ is tame.

Lemma 5.5. Let τ be a nice derivation of order m with respect to X_1, \ldots, X_n and $D := (\partial/\partial X_1, \ldots, \partial/\partial X_n)$ on $A[X]$. Then $\exp(\alpha \tau)$ is stably tame for all $\alpha \in \ker(\tau)$.

Proof. We use induction on m. Consider the case that $m = 1$. Then $\tau = \sum_{d \in D} b_d d$ with $b_d \in A[X]^D = \cap_{d \in D} \ker(d) = A$. Hence $\tau(X_i) \in A$ and clearly τ is on triangular form. So now we can apply Corollary 5.4 and find that $\exp(\alpha \tau)$ is tame.

Now consider the case $m > 1$. We may assume that for all nice derivations $\sigma \in \text{Der}(A[X])$ of order $m - 1$ with respect to D and X_1, \ldots, X_n and for any commutative ring A we have that $\exp(\alpha \sigma)$ is stably tame for all $\alpha \in \ker(\sigma)$. Let τ be nice of order m. Define ρ and extend τ to $A[X][t]$ as in Proposition 5.3 (in fact we extend all derivations of D_i to $A[X][t]$ this way). Now from $(\exp(\alpha \tau), t) = \rho^{-1} \exp(-\alpha \tau) \rho \exp(\alpha \tau)$ it follows that it suffices to see that $\exp(\alpha \tau)$ is stably tame. Now we see that $\alpha \tau = \sum_{d \in D_{m-1}} t b_d d$ with $t b_d \in A[X][t][D_{m-1}]$. But from this it follows that

$$\exp(\alpha \tau) = \exp\left(\sum_{d \in D_{m-1}} t b_d d \right) = \prod_{d \in D_{m-1}} \exp(t b_d d).$$

This last equation follows from Proposition 1.5. Obviously it suffices to prove that each $\exp(t b_d d)$ is stably tame to conclude that $\exp(\alpha \tau)$ is stably tame. But α is a nice derivation of order $m - 1$, $t b_d \in \ker(d)$, and hence we can apply the induction hypothesis to the ring $A[t]$ and find that $\exp(t \alpha \tau)$ is stably tame and hence $\exp(\alpha \tau)$ is stably tame. \[\] Proof of Theorem 5.2. Now if we look at Theorem 4.1 we see that each $F = X + H$ with $H \in H_c(A)$ can be written as the product of a finite number of $\exp(aD_i)$s, where each D_i is a nice derivation with respect to X_1, \ldots, X_n and $(\partial/\partial X_1, \ldots, \partial/\partial X_n)$ and $a_i \in \ker(D_i)$. Applying Lemma 5.5 n times gives us the desired result: F is stably tame. \[\]

Remark 5.6. Note that we do not give an indication of the value of m in Conjecture 5.1. As can be seen from the proof above, this m can be very high. At the highest level we have $n \exp(a_i D_i)$s, but each of these factors can give rise to a great number of extra variables, depending on the “order of niceness” of each D_i.

To conclude this paper we show that in general the automorphisms $F = X + H$ with $H \in H_2(A)$ need not be tame. Actually, this idea was already presented by Nagata [9].

Example 5.7. Let A be a domain, but not a principle ideal domain. Let $a, b \in A$ such that $Aa + Ab$ is not a principal ideal. Let $f(T) \in A[T]$ with $\deg(f) \geq 2$ and let $F = X + H$ with

$$H = \begin{pmatrix}
bf(aX_1 + bX_2) \\
-af(aX_1 + bX_2)
\end{pmatrix}$$

Since $H \in H_2(A)$ F is an automorphism of $A[X_1, X_2]$. However, it is shown in [9] that F is not tame.

References

2. L. M. Drużkowski, The Jacobian conjecture, Preprint 492, Institute of Mathematics, Polish Academy of Sciences, IMPAN, Sniadeckich 8, P.O. Box 137, 00-950 Warsaw, Poland, 1991.