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Abstract

We have measured the branching fractions for the hadronic � decays, � !

�=K n�� � (0 � n � 3), with the L3 detector at LEP. Multiphoton �nal states
are analyzed using the �ne-grained, high-resolution electromagnetic calorimeter.

The decay channels are identi�ed using a neural network method. The results are:
BR(� ! �=K �) = (11:82 � 0:26 � 0:43)%, BR(� ! �=K �� �) = (25:05 � 0:35 �
0:50)%, BR(� ! �=K 2�� �) = (8:88 � 0:37 � 0:42)%, BR(� ! �=K 3�� �) =

(1:70� 0:24� 0:38)%, where the �rst error quoted is statistical, the second system-
atic.
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Introduction

Twenty years after the discovery of the � lepton [1] the � hadronic decay modes and branching

ratios are still a subject of debate [2]. It is not clear whether all hadronic � decays have

actually been observed experimentally or whether the measured branching fractions leave room

for decay modes not predicted by the standard model. In addition, the measurements of �

hadronic branching ratios constitute important tests for some theoretical calculations [3].

The high center of mass energy of LEP facilitates the selection of � -pair events and the

rejection of background from hadron events. In addition, the high luminosity of LEP and the

large � -pair production cross section at the Z pole provide high statistics. In particular, the high

resolution and �ne granularity of the L3 electromagnetic calorimeter allows a clean separation

and analysis of decay modes with one or more neutral pions.

In this study, we present results for hadronic � decays into a single charged particle, h (��

or K�), plus n ��, where (0 � n � 3). We use data collected with the L3 detector at LEP in

the 1992 running period. The sample corresponds to an integrated luminosity of 21.68 pb�1

after restriction to periods where all relevant parts of the detector and triggers were active.

The L3 detector

The L3 detector is designed to measure electrons, photons, muons and jets produced in e+e� re-
actions with good spatial and energy resolution. Starting from the interaction point, the L3 de-
tector is composed of the following sub-detectors: a central tracking chamber (13� < � < 167�)
consisting of a time expansion chamber (TEC) and z-chambers; a �ne-grained electromagnetic
calorimeter (ECAL) consisting of a barrel (42� < � < 138�) and endcaps (10� < � < 37� and

143� < � < 170�), composed of Bismuth Germanium Oxide crystals; a hadron calorimeter
(HCAL) with uranium absorber and proportional wire chambers (5� < � < 175�); a muon
spectrometer (MUCH) consisting of multi-wire drift chambers (35:8� < � < 144:2�). These
detectors are installed in a 12 m inner diameter solenoidal magnet which provides a uniform
magnetic �eld of 0.5 T along the beam direction. A detailed description of the detector and its

performance is given in ref. [4].

Selection of one-prong tau decays

The analysis is restricted to the barrel part of the detector, which has an acceptance of
j cos �j < 0:7, where � is the polar angle of the thrust axis of the event. We require that

the polar angles of the thrust axis of the two jets from both tau decays must be in the �ducial

region. A Monte Carlo calculation gives a geometrical acceptance of 57.8 % in the �ducial
region. The �+�� events are generated with the KORALZ program, version 3.8 [5], with full
simulation of the L3 detector response [6]. The simulation uses the default KORALZ branching

fractions. The reaction e+e� ! �+�� is identi�ed by selecting low-multiplicity �nal states in

the central tracking chamber as well as the calorimeters, following the preselection of Ref. [7].

Other low-multiplicity reactions are then rejected as follows:

� e+e� ! e+e� are rejected by requiring the total energy in the electromagnetic calorimeter

to be smaller than 65 GeV and the energies of the two most energetic clusters to be both
smaller than 40 GeV.
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� e+e� ! �+�� are rejected if one hemisphere of the event has a muon identi�ed in the

muon detector as well as a minimum ionizing signature in the calorimeters and the other

hemisphere has a muon candidate.

� Final states from two-photon reactions are rejected by requiring a minimum total calori-

metric energy of 13 GeV.

Every � -pair event is then divided into two hemispheres by the plane perpendicular to

the thrust axis of the event. Each � -decay hemisphere is now considered separately. In a

hemisphere, we require exactly one charged particle which is well measured by the central

tracking chamber in both the r� and z projections. The Monte Carlo simulation of the e�ciency

of the central tracking chamber was checked using data samples of e+e� ! e+e� and �+��

events.

The selection e�ciency of one-prong tau decays is 67.3% within the �ducial region. After

this selection, we are left with 24776 decays. The sample purity is (97:2 � 0:1)%; the main

backgrounds are: (1:5� 0:1)% from �+�� �nal states, and (1:2� 0:1)% from e+e� �nal states.

The backgrounds from the two-photon reactions are negligible.

Selection of one-prong hadronic tau decays

The charged particle is required to be inconsistent with a reconstructed muon (de�ned as a

track in the muon detector accompanied by a minimum ionizing signature in the calorimeters).
We reject electrons by requiring that the shower pro�le of the charged particle be inconsistent
with that of an electromagnetic shower. The shower left by the tau decay in the electromag-
netic calorimeter is then analyzed as a single charged hadron and a variable number of neutral
clusters. For this purpose, we use the average transverse pro�le of hadronic and electromag-

netic showers in the electromagnetic calorimeter as a function of energy and impact point [7]
determined using a combination of L3 data and test beam data. First, the average hadronic
shower energy is subtracted from each crystal in the jet from tau decay, as predicted on the
basis of the impact point extrapolated from the central tracking chamber and the energy mea-
sured in the impacted crystal. Each local maximum in the remaining shower is then identi�ed

as a neutral cluster whose shower has a pro�le predicted by the L3 data and whose energy
corresponds to that of the local maxima. Leakage from electromagnetic showers into hadronic
showers and vice versa is then recalculated. The procedure is iterated, varying the energies
and centers of the shower components, until the energies and centers of the shower components

stabilize to an optimum description of the calorimetric objects in the hemisphere. Usually,

the algorithm converges after 3 to 4 iterations. The neutral clusters in a tau decay are then

ordered by decreasing energy. The minimum energy requirements (En) for neutral clusters are

between 400 MeV and 500 MeVdepending on the number of neutral clusters. The distribution
of the numbers of hadronic one-prong tau decays as a function of the number of neutral clusters

detected is shown in Fig. 1. The branching fractions from the �nal �t in this measurement
were used in the �gure. We observe good agreement between data and Monte Carlo.

After rejecting electrons and muons in � decays, we �nd 2829 decays with no neutral clusters,
6526 with one neutral cluster, 3769 with two neutral clusters, 1034 with three neutral clusters,

309 with four neutral clusters and 97 with �ve neutral clusters. The decays containing one or

more neutral clusters are subjected to analysis using neural networks below.
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Decays without neutral clusters

When no neutral cluster is found in the hemisphere, we apply more stringent criteria to reject

leptonic �nal states. The longitudinal and transverse shower pro�les in the calorimeters are

required to be incompatible with those of an electron or minimum ionizing particle. In addition,

the energy transverse to the charged particle direction in the electromagnetic calorimeter is

limited to eliminate accompanying electromagnetic showers.

Decays with one or more neutral clusters

The analysis of the decay modes with one or more neutral clusters was carried out using a feed-

forward neural network [8]. Back-propagation was used for training the networks [9]. There is a

network for each combination of number of observed neutral clusters and number of generated

neutral particles. All neural networks have three layers: one input layer, one hidden layer,

and one output layer. The networks have 17, 18, 21 and 22 input variables for n = 1, 2, 3

and 4 reconstructed neutral clusters, respectively. The hidden layers have the same number of

nodes as the input layer. Each output layer has only one node, the output of which determines

whether or not the decay is selected for a particular decay channel.
As examples of the neural network input, Fig. 2 shows the distributions in the energy of

the charged particle, the neutral particles and the energy in the electromagnetic calorimeter

transverse to the charged particle direction. Fig. 3 shows the distributions of the angles
between charged hadron and neutral clusters, as well as the angle between the neutral clusters
in the sample h 2��. Also shown in the two �gures are the contributions to these distributions
from the decay channels under study and the background as predicted by the Monte Carlo
after adjustment of the branching fractions to our �nal results. The Monte Carlo description

of details of the shower shape is in good agreement with data. Each of the networks is then
trained on a Monte Carlo sample of known � -decay channels. The training sample of 250 000
�+�� events is generated with the KORALZ program.

The data sample is then subjected to selection and rejection by the networks using the
training relevant to the signal and major background channels. A hemisphere is classi�ed into

a signal channel if it is selected by only one network. Hemispheres that are not selected by any
network are rejected.

Results

The background from � decays into �K0
L� in the selected sample of h� (with one neutral or

without neutrals) is suppressed by requiring the ratio of the energy deposited in the calorimeters
to the momentum measured in TEC to be less than 2.8. Thus we select 2967, 6613, 1060 and

293 decays in the four decay channels h, h ��, h 2�� and h 3�� respectively. The distribution

of the total hadronic invariant mass in the last three categories is shown in Fig. 4 together

with the respective Monte Carlo result for signal and background after adjustment of our �nal

branching fractions. The slight shift in the mass spectra in Figs. 4b-c may indicate small defects
in the simulation. These deviations are small and their inuence on the detection e�ciencies

has been included in the systematic errors.
The selection e�ciency of an event with a given number of neutral clusters into one of the

decay channels is determined by applying the selection procedure to a Monte Carlo sample of

110 000 �+�� events which is independent of the sample used for training. The e�ciencies are
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Selection E�ciency (%)

Source h h �� h 2�� h 3��

�=K � 56.56 3.33 0.30 0.03

�=K �� � 2.50 65.09 1.23 0.15

�=K 2�� � 0.24 9.73 26.14 3.78

�=K 3�� � 0.09 2.09 9.22 21.28

�=K 4�� � { 0.71 3.00 20.20

�=K ��� � { 1.20 3.40 15.60

�K0
L� 27.36 17.72 0.84 0.18

e � � 0.98 0.79 0.21 {

� � � 0.80 0.61 0.02 {

3-prong 0.08 0.21 0.06 {

e+e� 0.03 0.004 { {

�+�� 0.26 0.04 { {

Table 1: E�ciencies to select a given �nal state in each of the four experimental categories.

These e�ciencies are calculated within the �ducial region by Monte Carlo on a test sample of
events.

shown in Table 1. The e�ciencies include both the e�ciencies in the �+�� event selection and

the e�ciencies in the decay mode identi�cation by the neural network method. The probabilities
to accept an event from the two main background sources are also shown.

Determination of branching fractions

Branching fractions are determined using the relation

N exp
i = N�

X

j=1;10

BRj�
i
j +
X

k=1;2

Nbg

k �ik (1)

N
exp
i is the number of events expected in an decay channel i, N� is the total number of �

decays, calculated from the integrated luminosity and measured �+�� cross section from the
L3 experiment in the �ducial region [10]. N

bg

k is the number of background events. The
branching fractions BRj are determined using a �2 �t which compares the predicted number

and the observed number of decays in the four decay channels. No constraint is used on the sum

of the branching fractions. The index i runs over the number of neutral clusters, j over the ten

� decay channels considered as speci�ed in Table 1 and k over the main background channels.
�ij is the detection e�ciency for an event with i observed neutral clusters which results from a

decay with j generated neutral particles as speci�ed in Table 1. The results are:

BR(�=K �) = (11:82 � 0:26 � 0:43)%

BR(�=K �� �) = (25:05 � 0:35 � 0:50)%

BR(�=K 2�� �) = (8:88 � 0:37 � 0:42)%

BR(�=K 3�� �) = (1:70 � 0:24 � 0:38)%

The �rst error quoted is statistical, the second systematic. The correlation matrix from the �t

is listed in Table 2.
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h h �� h 2�� h 3��

h 1:00 �0:11 0:00 0:00

h �� �0:11 1:00 �0:19 0:06

h 2�� 0:00 �0:19 1:00 �0:48

h 3�� 0:00 0:06 0:48 1:00

Table 2: The correlation matrix of the �t.

Contributions to the systematic error for each decay channel are listed in Table 3. The

systematic uncertainties in the �+�� selection for each decay channel are listed in �rst row.

The contribution from the normalization uncertainty are listed in the second row. We estimate

uncertainties in the selection of �+�� events by varying the primary selection cuts by �10%

and taking the maximum observed change in the branching fraction as the contribution to

the systematic error. The only exception is the cut in the energy of electromagnetic clusters

which is varied by 5%. Since all branching fractions are determined by normalizing to the total

number of produced �+�� �nal states, a normalization error arises from the uncertainty in the
measured �+�� total cross section (0.7%) and the luminosity (0.5%) [10].

Source �BR(�=K �) �BR(�=K �� �) �BR(�=K 2�� �) �BR(�=K 3�� �)

�� selection 0.14 0.20 0.11 0.17

N� 0.10 0.22 0.08 0.02

MC statistics 0.18 0.26 0.18 0.15

En threshold 0.03 0.07 0.07 0.10

NN output 0.04 0.13 0.22 0.18
NN input 0.29 0.28 0.22 0.20
h selection cuts 0.16 { { {

Form factor { { 0.18 0.09

h 4�� { { 0.02 0.06
h � �� { { 0.01 0.02
�K0

L� 0.08 0.03 0.01 {

Total 0.43 0.50 0.42 0.38

Table 3: Breakdown of the systematic error (in %) on the four measured branching fractions.

The sources of systematic error are explained in the text.

The dominant contribution to the systematic error comes from the procedure identifying

the �nal states and from the e�ciency determination. The �rst part in this error is taken from

the statistical uncertainties of the e�ciencies predicted by Monte Carlo. The energy cuts En on
neutral clusters were varied by�10% to estimate the systematic uncertainty. More important is
the systematic uncertainty due to the neural network selection. We estimate this �rst by varying

the cut on each neural network's output by 10%. In addition, we identify the input variables

which have the largest inuence on the networks' decisions by applying a shift or a scale factor
to the inputs one by one. This variation is applied to the inputs from the data only, while

the network training and the Monte Carlo inputs stay constant. By observing the systematic

changes in the extracted branching fractions, we �nd that the momentum, electromagnetic and
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hadronic energies and the transverse electromagnetic energy, as well as the energies and angles

of the three most energetic neutral clusters (via the reconstructed invariant masses used as

inputs) have the largest inuence on the result. We determine the allowed shifts and scale

factors of these inputs by calculating the �2 of the �t of the experimental distribution to the

corresponding Monte Carlo prediction. A ��2 of one between the optimum shift and scale

and the maximum allowed shift gives the errors quoted in Table 3. For events with no neutral

clusters which were not subject to network selection, we estimate the error on the selection

e�ciency by varying all cuts by �10% and assigning the largest deviation observed.

In addition, the D-wave contribution to the a1 amplitude and the � substructure of the

�=K 3�� � modes are not modeled correctly by the Monte Carlo event generation which could

lead to small errors in the calculated selection e�ciency by changing the correlations between

the network input variables. The ratio of D- to S-wave amplitudes has been measured by

ARGUS [11] to be �0:11 � 0:02 and we estimate this could lead to a maximum of a 2% error

in the selection e�ciency calculation for the �=K 2�� � mode. This error also includes any

contribution from other resonant substructure. The presence of � substructure in the �=K 3�� �

mode has also been measured by ARGUS [12] and we estimate the largest error from this source

to be 5% . Both of these errors have been included in the systematic errors.

A �nal type of error arises from the decay channels �K0
L, h 4�� and h � ��, where �

decays into neutrals. We take the inclusive branching fraction into �K0 of 1.3% from the HRS
measurement [14], and assume that 50% of the K0 are K0

L. We assign the branching fractions

into h 4�� and h � �� to those measured by the CLEO experiment [15, 16]. We take the
measurement errors to estimate our systematic errors.

As an independent cross-check on the analysis technique, a separate analysis [13] was per-
formed using cuts in the quantities with most separation power between channels. The results
are consistent with the values obtained by the neural network method.

Conclusions

The branching fractions for the hadronic � decays, � ! �=Kn��� with n between zero and
three, have been measured with the L3 detector at LEP. Multiphoton �nal states are identi�ed

by a neural network method. The results are:

BR(�=K �) = (11:82 � 0:26 � 0:43)%

BR(�=K �� �) = (25:05 � 0:35 � 0:50)%

BR(�=K 2�� �) = (8:88 � 0:37 � 0:42)%

BR(�=K 3�� �) = (1:70 � 0:24 � 0:38)%

These results are in agreement with the current world averages [17]. They also agree with more

recent determinations from OPAL [18] and CLEO [15].
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Figure Captions

� Figure 1: The distribution of the number of neutral clusters in � decays. The contributions

of the various sources are indicated. Also shown is the case for �ve neutral clusters whose

composition is determined from the branching ratios measured from events with four or

fewer neutral clusters.

� Figure 2: The energy input variables to the neural networks. The contributions of the

various sources are indicated. a) The energy distribution of ��; b) the energy distribution

of neutral clusters; c) the distribution of the energy in the electromagnetic calorimeter

transverse to the charged particle direction.

� Figure 3: The angular input variable to the neural networks in the sample of h 2��. The

contributions of the various sources are indicated. a) The angle between the charged pion

and the highest energy neutral cluster. b) The angle between the pion and the second

highest energy neutral cluster. c) The angle between the highest and the second highest

energy neutral clusters.

� Figure 4: The invariant mass distributions for selected events, assuming the �� mass for

charged clusters. The contributions of the various sources are indicated. The deviations
in Fig. 4b and 4c may be result from slight imperfections in the simulation.
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