Magnetic field independent capacitance thermometers at very low temperatures

a High Field Magnet Laboratory and Research Institute for Materials, University of Nijmegen, Toernooiveld 1, NL-6525 ED Nijmegen, The Netherlands
b Institute of Solid State Physics and Chemistry, Uzhgorod State University, 29400 Uzhgorod, Ukraine
c Physikalisch-Technische Bundesanstalt, Berlin, Germany

Abstract

We have established the magnetic field independence up to 20 T of two capacitance thermometers based on different dielectric materials: amorphous borosilicate and the incommensurate ferroelectric (Pb0.45Sn0.55)2P2Se6. The obtained sensitivity of the thermometers, d ln C/d ln T, is 8 × 10^{-4} and 5 × 10^{-3} for the borosilicate and the (Pb0.45Sn0.55)2P2Se6 samples, respectively.

1. Introduction

Almost all thermometers used at low temperatures are influenced by the application of a magnetic field, which makes them essentially unsuitable for high field experiments. Clearly, it would be desirable to develop a type of thermometer that is completely magnetic field independent up to the highest presently attainable fields and down to mK temperatures.

Negligible coupling to a magnetic field is expected for dielectric materials where no free electrons or magnetic dipoles are present. For this reason capacitance thermometers based on dielectric materials are the most suitable candidates for low temperature thermometry [1] in high magnetic fields [2]. A second advantage of capacitative thermometers is the low self-heating even with a few volts excitation, which makes these thermometers especially useful for low temperature measurements in a noisy environment.

We have studied the magnetic field dependence of two capacitance thermometers based on different dielectric materials: a crystalline (Pb0.45Sn0.55)2P2Se6 sample which already proved to be a good and sensitive capacitance thermometer for temperatures above 1 K [3] and an amorphous sol-gel derived borosilicate sample, reported in Ref. [4]. The low temperature behaviour of the dielectric constant of (Pb0.45Sn0.55)2P2Se6 is expected to be glass-like. The reason for this is that due to the pinning of the incommensurate modulation of defects induced by the introduction of lead atoms into the cation sub-lattice of the pure compound Sn1P2Se6, the incommensurate phase is transformed to a state which is similar to the so-called cluster glass.
2. Setup

The (Pb_{0.45}Sn_{0.55})_2P_2Se_6 was grown using a Bridge-
man technique. The crystal (typical size 10 mm x 25 mm)
was cut and polished to obtain platelets (size
5 x 5 x 0.8 mm^3) perpendicular to the 1 0 0 direction. The
sample had gold sputtered electrodes and was connected
to SS coaxial wiring with silver paint and a small amount
of epoxy. The borosilicate glass was prepared by the
sol-gel process [4] and also had gold plated electrodes
soldered to SS coaxial wires.

The two samples were mounted inside the mixing
chamber of an adapted SHE dilution refrigerator, placed
in a 20 T Bitter magnet [5]. The original metal mixing
chamber had been replaced by a home-made, Kapton foil
mixing chamber to avoid eddy current heating. The silver
sintered heat exchangers were located about 1 m above
the field centre, where the magnetic field is reduced by
a factor of about 100. The lowest achieved temperature
with this dilution refrigerator at 20 T was 16 mK.

Three types of thermometers were mounted in the
mixing chamber: Speer 100 Ω carbon resistors, a CMN ther-
ometer [6] and a vibrating wire thermometer [7]. Also in the entrance and exit tubes of the mixing chamber
Speer 100 Ω resistors were mounted. The CMN ther-

A reliable but somewhat cumbersome temperature re-
ference in magnetic fields is given by the field independent,
but temperature dependent, viscosity of the ^3He-^4He
mixture in the mixing chamber and this was probed by
the vibrating wire thermometer in magnetic fields above
1 T.

The vibrating wire was a 100 μm manganine wire,
shaped in a semi-circle with radius 2 mm. This device has
a mechanical resonance at a few kHz, which can be
excited by a small alternating current through the wire in
the presence of a magnetic field. The quality factor of the
resonance is a measure of the viscosity of the surrounding
medium. The magnetic field dependent quality factor in
vacuum was measured at 4 K and the quality factor
measured with the mixture present, Q_{3-4}, has been cor-

3. Results and discussion

In Fig. 1, the capacitance of both samples is shown as
a function of the temperature. Our measurements at
different frequencies subscribe to the common behaviour
of dielectric materials extensively reported in the litera-
ture and in our case T_{min} shifts with frequency approxim-
ately as ω^{0.3}. The straight parts of the curves in Fig. 1
to the left of the minimum have sensitivities
\[d \ln C / d \ln T = 5 \times 10^{-3} \]
and
\[8 \times 10^{-4} \]
for the (Pb_{0.45}Sn_{0.55})_2P_2Se_6 and the borosilicate sample, re-
}

Fig. 1. Capacitance versus temperature for the (Pb_{0.45}Sn_{0.55})_2
P_2Se_6 (→) sample at 0.75 V, and the borosilicate sample (→) at
7.5 V, both at 1 kHz.

Fig. 2. The most sensitive part of the (Pb_{0.45}Sn_{0.55})_2
P_2Se_6 sample for different excitation voltages ranging from 0.1 V
(lowest curve), 0.25, 0.75, 1.5, 3.75 to 7.5 V (top curve).
Fig. 3. Capacitance of the borosilicate sample at various magnetic fields: 1 T (○), 5 T (□), 10 T (▽) and 20 T (●), as a function of Q_{3-4}.

In Fig. 2 the most sensitive part of the capacitance curve is plotted for the ferroelectric sample measured at different excitation voltages. The excitation voltage dependence shown in Fig. 2 provides a useful property, namely the tunability of the most sensitive range of the thermometers to other temperature ranges. Alternatively, it should always be kept in mind that the calibration for these thermometers depends on the excitation voltage, at least on the low temperature side of the minimum.

In Figs. 3 and 4 the capacitance of the two samples is shown for magnetic fields ranging from 1 to 20 T as a function of Q_{3-4}, the vacuum corrected quality factor of the resonance of the vibrating wire thermometer. The upper horizontal axis is a conversion of Q_{3-4} to temperature using viscosity data from Ref. [7]. These temperatures are in agreement with the temperatures deduced from the Speer resistor in the exit tube of the mixing chamber and from the zero field calibration of the capacitance thermometers. Furthermore, the values of the capacitances at the minimum do not change from 0 to 20 T.

In conclusion, it has been shown that the capacitance thermometers are field independent for magnetic fields ranging from 0 to 20 T at least down to temperatures of 30 mK.

Fig. 4. Capacitance of the (Pb$_{0.45}$Sn$_{0.55}$)$_2$P$_2$Se$_6$ sample at various magnetic fields: 1 T (○), 5 T (□), 10 T (▽) and 20 T (●), as a function of Q_{3-4}.

Acknowledgements

One of us (M.M.M.) would like to thank the Netherland Organisation for Scientific Research (NWO) for the financial support.

References