Direct soft photon production in K^+p and π^+p interactions at 250 GeV/c

EHS-NA22 Collaboration

1 Inter-University Institute for High Energies, B-1050 Brussels and Dept. of Physics, Universitaire Instelling Antwerpen, B-2610 Wilrijk, Belgium
2 Institut für Hochenergiephysik, O-1615 Berlin-Zeuthen, Federal Republic of Germany
3 Institute of Physics and Nuclear Techniques of the Academy of Mining and Metallurgy and Institute of Nuclear Physics, PL-30055 Krakow, Poland
4 Moscow State University, SU-117234 Moscow, USSR
5 Institute of Nijmegen and NIKHEF-H, NL-6525 ED Nijmegen, The Netherlands
6 Institute for High Energy Physics, SU-142384 Serpukhov, USSR
7 Institute for High Energy Physics, Tbilisi State University, SU-380086 Tbilisi, USSR
8 Institute of Physics, SU-375036 Yerevan, USSR

Received 4 March 1991

Abstract. Inclusive production of direct soft photons is studied in K^+p and π^+p interactions at 250 GeV/c. Total cross sections, Feynman-x and transverse momentum distributions of direct γ's are presented. The measured cross sections are several times larger than expected from QED inner bremsstrahlung, indicating the presence of an anomalous soft photon source. The model of Lichard and Van Hove, based on the "cold quark-gluon plasma" picture, agrees with the data.

1 Introduction

Experiments over the past decade have found persisting evidence for anomalous sources of electromagnetic radiation in hadron collisions. Electron production at low p_T is more abundant than expected from known origins, including hadronic bremsstrahlung and charmed particle decays [1–5]. A dilepton ($e^+e^−$ and $\mu^+\mu^−$) continuum of masses well below 600 MeV/c2 is measured, up to two orders of magnitude larger than estimated from the Drell-Yan process [6–17]. The ratio of prompt e^+ to π^+ production in the rapidity region $|y| < 1$ and $p_T < 0.4$ GeV/c rises approximately linearly with n_{ch}, the charged particle multiplicity of events, indicating that the production rate is proportional to n_{ch} [18]. A possible explanation is "soft annihilation" [19] where lepton pairs are created through annihilation of quarks and antiquarks created during the collision. Alternative explanations are based on thermodynamic models [20–22].

Sea-quark annihilation into virtual photons, observed as lepton pairs, implies that soft real photons must also be produced in the same collision. The first evidence for a direct soft photon signal comes from π^+p experiment at 10.5 GeV/c beam momentum [23]. There, the signal was found to be compatible with hadronic inner bremsstrahlung. However, an excess of direct soft photons, four times larger than expected from this last process, has been measured in K^+p collisions at 70 GeV/c [24].

More recently, the AFS collaboration [25] has also searched for a possible excess of photons. The results are not conclusive, but seem to exclude a strong increase of the γ signal beyond that observed in [24]. Preliminary data from the HELIOS Collaboration [26] (see also [27]) show a prompt-γ signal in the central rapidity region below $p_T < 30$ MeV/c in p Be and p Al collisions at 450 GeV/c. The signal may, however, be compatible with that expected from known sources. Direct soft photons are now also seen by the EMC Collaboration in μp interactions at 200 GeV/c [28]. The anomalous effect is therefore not restricted to hadron collisions. This indicates that a phase transition from hadronic to quark matter is unlikely to be the origin.
The mechanism behind these soft phenomena is at present not understood (see [29] for a critical discussion). In the limit of very small p_γ, the wavelength of the photons is large compared to the hadronic interaction region. Processes confined within this region with a typical size and lifetime of I fermi should not contribute. This was verified in an investigation by Andersson et al. [30] using the space-time structure of the Lund string fragmentation model. Therefore, much larger scales, of the order of several to tens of fermi, seem to be involved.

Recently, several models were proposed to explain the soft photon puzzle by non-standard mechanisms. The model by Shuryak [31] is based on a “pion liquid” picture. Barshay considers soft photon emission from a pion condensate [32]. Lichard and Van Hove [33] suggest that the “ultrasoft” effects may find a common explanation and lifetime of 1 fermi should not contribute. This was verified in an investigation by Andersson et al. [30] using the space-time structure of the Lund string fragmentation model. Therefore, much larger scales, of the order of several to tens of fermi, seem to be involved.

In this paper we present new results on a search for prompt soft photon emission in the reactions

\[K^+ p \rightarrow \gamma + X, \]
\[\pi^+ p \rightarrow \gamma + X; \]

at 250 GeV/c, the highest beam momentum so far reached for positive-meson-proton collisions. The differential γ cross section in Feynman-x and transverse momentum (p_T) shows a clear excess above the background from π^0 decay, electromagnetic (em) decays of other hadrons and from hadronic inner bremsstrahlung. The present analysis confirms the existence of an anomalous prompt photon signal with very similar properties as that seen in $K^+ p$ collisions at 70 GeV/c [24].

In Sect. 2, we describe the data samples and the experimental procedures, and present results on the total inclusive photon cross section in reactions (1)–(2). Section 3 discusses the differential cross section. The method to isolate a prompt γ signal, and results on total and differential prompt photon cross sections are described in Sect. 4. The conclusions are summarized in Sect. 5.

2 Experimental procedure

The results presented below are based on the complete statistics of the experiment NA22 performed at the CERN SPS. For this experiment, the European Hybrid Spectrometer (EHS) was equipped with the Rapid Cycling Bubble Chamber (RCBC) as vertex detector, filled with liquid hydrogen, and exposed to a 250 GeV/c tagged, positive, meson-enriched beam. A minimum bias interaction trigger was used during data taking. Two thin aluminium and gold foils, used in other studies, were mounted behind the entrance window of RCBC within the sensitive volume. Besides RCBC, the full experimental set-up of EHS consisted of a two lever-arm spectrometer and several particle identification devices. Further details on the set-up and on the trigger conditions are given in [34].

The present analysis is based on a sample of γ's observed as $e^+ e^-$ pair conversions in the sensitive volume of RCBC. The so-called “intermediate” and “forward” gamma detectors of EHS are not used in this analysis. The combined acceptance of the gamma detectors limits a study of π^0 production to Feynman-$x \geq 0.025$, outside the small-x region of interest in this paper. Results on inclusive π^0 production derived from these devices, are presented in [35, 36]. As discussed further on, these data permit some cross-check on the differential cross section $d\sigma/dx$ of π^0's.

The events of the sample are selected in a cylindrical fiducial volume of radius $R=\sqrt{X^2+Y^2} \leq 20$ cm for $X > 0$ and $R \leq 40$ cm for $X < 0$; $|Z| \leq 18$ cm, and $|Y| \leq 30$ cm; (X, Y, Z) are the coordinates of the primary event interaction vertex. The origin is chosen at the center of RCBC, the X-axis directed along the spectrometer, and the Z-axis pointing towards the cameras. In addition, we introduce a cut to exclude events with primary vertices located upstream of the Al and Au targets, thus eliminating possible background from γ-conversions in the foils. The selected events are further required to have a well-tagged beam track and to satisfy charge balance. After these cuts, the sample comprises 26910 $K^+ p$ and 78099 $\pi^+ p$ interaction pairs. The scanning efficiency for γ's is close to 97%. The fiducial volume for vertices from γ-conversions and ν^0 decays is defined as above but with a radius $R=33$ cm for $X > 0$.

The secondary e^\pm- and hadron tracks, as well as those from the primary vertex are reconstructed from measurements in RCBC and in the spectrometer. The γ's and ν^0's have been passed through the HYDRA-geometry and HYDRA-kinematics programs and fitted to the hypotheses $K_0^0 \rightarrow \pi^+ \pi^-\gamma$, $A \rightarrow p\pi^+$, $A \rightarrow \bar{p}\pi^+$ and $\gamma \rightarrow e^+ e^-$. For the latter, the $e^+ e^-$ effective mass is left as a free parameter. Kinematic fits are accepted if the corresponding χ^2-probability is larger than 0.01%. Approximately 16% of the γ's are ambiguous with one or more hadron hypotheses. For γ's with energy $E_\gamma < 0.5$ GeV, the ambiguity level is 3.8%. For kinematical reasons, and following standard procedure, all ambiguous fits involving γ's are accepted as γ's. We further require the e^\pm-tracks to have $\Delta p/p < 0.25$ and track residuals to be less than 300 μ in space.

The usual corrections for scanning and measuring losses, Compton scattering, conversions outside the fiducial volume or close to the primary vertex are applied. The minimum distance before conversion is chosen to be 3 cm in the $(X - Y)$ plane. The γ-losses are most significant at low momenta. To minimize systematic errors due to very soft γ's and asymmetric $e^+ e^-$ pairs, we introduce additional cuts requiring $p_x > m_{\gamma}/2$ and $p_x > 25$ MeV/c, were p_{μ} is the lepton momentum, p_x the photon momentum in the laboratory frame. This last cut is corrected for using a momentum-dependent weight-factor based on the known QED electron momentum distri-
The total inclusive γ cross section for reactions (1) and (2) as a function of beam momentum [37-42]. The lines represent fits to the form $a + b \ln (s/s_0)$ ($s_0 = 1 \text{GeV}^2$).

The differential cross sections $d\sigma/d\chi$, for reactions (1)-(2) is shown in Fig. 2 and also given in Table 1. The spectra have a sharp maximum at $x = 0$ and are forward-backward asymmetric. The solid curves in Fig. 2 are FRITIOF (version 2) predictions [45,37] subjected to the same γ-momentum cut. The agreement with the data is quite good for $|x| < 0.1$, except in the very central region $|x| > 0.02$ where a large excess is seen in the data. The model curves exceed systematically the data for $|x| > 0.1$, a feature already noted for π^0 production in [35].

Figures 3-4 and Table 2 present the inclusive differential γ cross section versus p_T^2. The agreement of the model calculations with the data is excellent, except at the smallest p_T^2-values. This is shown in more detail in Figs. 3b-4b. The sharp rise for $p_T^2 < 0.0015 (\text{GeV/c})^2$ is not reproduced by FRITIOF. The γ-excess at small p_T is also visible in Fig. 5 where $d\sigma/dp_T$ is plotted. FRITIOF again agrees with the data except for $p_T < 40$ MeV/c.

The data described here indicate the possible presence of a very soft γ-component in the kinematical regions $|x| < 0.02$ and $p_T < 40$ MeV/c, not present in the FRITIOF model. The next section is devoted to a detailed study of this phenomenon.

4 Direct soft photons

The photons measured in this experiment originate from various sources:

- indirect photons from the em decay of short-lived hadrons.
Table 2. (continued)

<table>
<thead>
<tr>
<th>σ/dx, mb</th>
<th>$K^+p\rightarrow\gamma+X$</th>
<th>$\pi^+p\rightarrow\gamma+X$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.007 ± 0.008</td>
<td>2730 ± 410</td>
<td>4030 ± 540</td>
</tr>
<tr>
<td>0.008 ± 0.009</td>
<td>2320 ± 380</td>
<td>3080 ± 330</td>
</tr>
<tr>
<td>0.009 ± 0.010</td>
<td>2380 ± 350</td>
<td>2860 ± 350</td>
</tr>
<tr>
<td>0.010 ± 0.015</td>
<td>2090 ± 160</td>
<td>2270 ± 130</td>
</tr>
<tr>
<td>0.015 ± 0.020</td>
<td>1165 ± 110</td>
<td>1890 ± 95</td>
</tr>
<tr>
<td>0.020 ± 0.025</td>
<td>1175 ± 130</td>
<td>1360 ± 80</td>
</tr>
<tr>
<td>0.025 ± 0.030</td>
<td>840 ± 110</td>
<td>1020 ± 70</td>
</tr>
<tr>
<td>0.03 ± 0.04</td>
<td>740 ± 70</td>
<td>940 ± 50</td>
</tr>
<tr>
<td>0.04 ± 0.05</td>
<td>530 ± 60</td>
<td>620 ± 40</td>
</tr>
<tr>
<td>0.05 ± 0.06</td>
<td>460 ± 60</td>
<td>470 ± 30</td>
</tr>
<tr>
<td>0.06 ± 0.07</td>
<td>320 ± 40</td>
<td>380 ± 30</td>
</tr>
<tr>
<td>0.07 ± 0.08</td>
<td>304 ± 40</td>
<td>320 ± 25</td>
</tr>
<tr>
<td>0.08 ± 0.09</td>
<td>223 ± 36</td>
<td>260 ± 23</td>
</tr>
<tr>
<td>0.09 ± 0.10</td>
<td>203 ± 37</td>
<td>230 ± 22</td>
</tr>
<tr>
<td>0.10 ± 0.12</td>
<td>143 ± 19</td>
<td>187 ± 15</td>
</tr>
<tr>
<td>0.12 ± 0.14</td>
<td>114 ± 17</td>
<td>153 ± 12</td>
</tr>
<tr>
<td>0.14 ± 0.16</td>
<td>82 ± 14</td>
<td>120 ± 11</td>
</tr>
<tr>
<td>0.16 ± 0.18</td>
<td>84 ± 14</td>
<td>80 ± 9</td>
</tr>
<tr>
<td>0.18 ± 0.20</td>
<td>53 ± 10</td>
<td>64 ± 8</td>
</tr>
<tr>
<td>0.20 ± 0.25</td>
<td>33 ± 5</td>
<td>54 ± 5</td>
</tr>
<tr>
<td>0.25 ± 0.30</td>
<td>24 ± 5</td>
<td>54 ± 4</td>
</tr>
<tr>
<td>0.30 ± 0.35</td>
<td>13 ± 3</td>
<td>26 ± 3</td>
</tr>
<tr>
<td>0.35 ± 0.40</td>
<td>19 ± 4</td>
<td>18 ± 2</td>
</tr>
<tr>
<td>0.40 ± 0.45</td>
<td>12 ± 4</td>
<td>11 ± 2</td>
</tr>
<tr>
<td>0.45 ± 0.50</td>
<td>8.4 ± 2.8</td>
<td>9.3 ± 2.0</td>
</tr>
<tr>
<td>0.50 ± 0.55</td>
<td>3.3 ± 1.6</td>
<td>6.2 ± 1.3</td>
</tr>
<tr>
<td>0.55 ± 0.60</td>
<td>6.2 ± 2.3</td>
<td>5.7 ± 1.5</td>
</tr>
<tr>
<td>0.60 ± 0.70</td>
<td>3.5 ± 1.2</td>
<td>4.7 ± 1.0</td>
</tr>
<tr>
<td>0.70 ± 0.80</td>
<td>0.45 ± 0.33</td>
<td>3.4 ± 1.0</td>
</tr>
<tr>
<td>0.80 ± 0.90</td>
<td>2.1 ± 1.0</td>
<td>2.5 ± 0.7</td>
</tr>
<tr>
<td>0.90 ± 1.00</td>
<td>1.2 ± 0.9</td>
<td>1.2 ± 0.5</td>
</tr>
<tr>
<td>1.00 ± 1.20</td>
<td>0.54 ± 0.32</td>
<td>0.80 ± 0.27</td>
</tr>
<tr>
<td>1.20 ± 1.40</td>
<td>-</td>
<td>0.28 ± 0.16</td>
</tr>
</tbody>
</table>

Fig. 3. The $d\sigma/dp^2$ differential cross section for γ's in reaction (1) at 250 GeV/c together with the FRITIOF prediction.
To isolate the direct soft photon contribution(s) we proceed in several steps. The distribution in Feynman-\(x\) of \(\gamma\)'s is determined using, on the one hand, FRITIOF for non-\(\pi^0\) decays, and the properties of the \(\pi^0 \rightarrow \gamma\gamma\) decay kinematics for the dominant \(\pi^0\) contribution, on the other hand. For the \(p_T\)-distributions we mainly rely on FRITIOF. The method adopted largely follows the one described in [24], which in turn was based on earlier work [23]. We refer to these publications for further details.

We first discuss the differential \(\gamma\) cross section as a function of Feynman-\(x\). In a first step, we subtract from the experimental sample the contribution from non-\(\pi^0\) hadronic \(e^+e^-\) decays using the FRITIOF model cross sections and \(x\)-distributions. This component is shown in Fig. 2 (dashed curves). The \(\gamma\)-spectrum remaining after subtraction is plotted in Fig. 6. It should be noted that the inclusive production cross sections of \(\eta, \eta', \omega, \phi, \ldots\) and, especially \(\pi^0\)'s, and from \(\eta, \eta', \omega, \phi, \ldots\) etc.;

- direct soft photons from QED inner bremsstrahlung of initial and final state charged particles, and, possibly,
- "anomalous" direct soft photons associated with a non-conventional emission process.

We refer to these publications for further details.

summer of 2004
\(\Sigma^0, \Sigma^0 \) are either not measured at all in this experiment (\(\eta^0, \Sigma^0, \Xi^0 \)), or in part of the forward cm hemisphere only (\(\omega, \phi \)). Where possible, we verified that the FRITIOF predicted cross sections for these hadrons are compatible with our data. For \(\pi^0 \) production, preliminary results from this experiment [36] indicate that FRITIOF overestimates the cross section by as much as a factor of two in the \(x \)-region covered by the gamma detectors (\(x > 0.1 \)). The form of its \(x \)-spectrum, however, is compatible with the data in the measured region. The uncertainty on the various meson- and baryon cross sections introduces a systematic error on the prompt photon cross section which is taken into account in the results quoted below.

In a second step, we estimate the (dominant) contribution from \(\pi^0 \rightarrow \gamma \gamma \) decay using the technique proposed in [44] (see also [24]). In this method, the differential cross section \(d \sigma(\gamma)/dx \) is analytically calculated from the parent \(\pi^0 \) distribution \(d \sigma(\pi^0)/dx \). For the latter, a suitable parametrization is chosen and subsequently fitted to the experimental \(d \sigma(\gamma)/dx \) distribution obtained in the first step. The kinematics of \(\pi^0 \rightarrow \gamma \gamma \) decay has the interesting property that the photon data for \(|x_\gamma| \geq 2m_p/\sqrt{s} = 0.012 \) determine the \(\pi^0 \) distribution for all \(x \). This allows to exclude the very central region of the \(\gamma \)-spectrum in the fit-procedure. In practice, we determine the \(\pi^0 \) \(x \)-spectrum using the \(y \) \(x \)-spectrum in the intervals \(-0.4 < x_\gamma < -0.008\) and \(0.008 < x_\gamma < 0.5\). The \(y \)-spectrum derived from this fit is shown in Fig. 6 (dashed lines). It agrees very well with the data in the fitted intervals. With the \(\pi^0 \) \(x \)-spectrum now determined for all \(x \), we are able to calculate the \(\gamma \)-spectrum from \(\pi^0 \) decay in the region \(-0.008 < x_\gamma < 0.008\). Subtraction of this contribution finally yields the prompt photon distribution. It is plotted in Fig. 7. The spectrum at 250 GeV/c is similar in shape to that measured in 70 GeV/c \(K^+p \) collisions [24], also shown in Fig. 7a.

For the interval \(-0.001 < x_\gamma < 0.008\), the experimental \(y \)-cross section for 250 GeV/c \(K^+p \) and \(\pi^+p \) interactions, with the cut \(p_T > m_\pi/2 \), respectively amounts to \((29.5 \pm 1.6) \) mb and \((35.1 \pm 1.6) \) mb. Decays of known hadrons, other than \(\pi^0 \), contribute \((0.94 \pm 0.03) \) mb and \((1.14 \pm 0.04) \) mb. These estimates are derived from FRITIOF. The cross section for \(y \)'s from \(\pi^0 \) decay is equal to \((23.3 \pm 0.7) \) mb and \((28.1 \pm 0.6) \) mb. We thus measure an excess in photon production equal to \((5.3 \pm 1.7) \) mb and \((5.9 \pm 1.7) \) mb, in reactions (1) and (2), respectively. The latter cross sections have an additional estimated systematic uncertainty of 0.5 mb (not included in the quoted errors) mainly related to uncertainties in the hadronic non-\(\pi^0 \) background.

As a (partial) cross-check on the \(y \)-spectrum from \(\pi^0 \) decays, we compared the experimental distribution \(d \sigma(\pi^0)/dx \), derived in [35] from the EHS gamma detectors, to the \(\pi^0 \)-spectrum obtained in the fit-procedure, in the interval \(0.025 < x(\pi^0) < 0.15 \). The two spectra agree with each other within errors (not shown).

The dashed histograms in Fig. 7 are predictions by Lichard and Van Hove [33] derived in the “cold-quark gluon plasma” (CQGP) model. In this model, soft photons are produced via gluon Compton scattering and quark-antiquark annihilation in lowest order QED and QCD. The predictions of this model are entirely compatible with our data.

The QED hadronic inner bremsstrahlung contribution to direct soft photons is also shown in Fig. 7. It is calculated, as explained in [24], from the exact QED formulae in the soft energy limit [46,29] by Monte Carlo

* The detailed formulae and parametrizations are given in [24] eqns. (2-3)

* We chose this interval to allow comparison with the \(K^+p \) data at 70 GeV/c. Note that the experimental resolution in Feynman-\(x \) is \(\sim 2 \times 10^{-4} \) in the interval \(-0.01 < x_\gamma < 0.01 \), and \(\sim 2 \text{ MeV}/c \) in transverse momentum for \(p_T < 100 \text{ MeV}/c \).

* The model predictions of [33] are multiplied by the ratios of total inelastic cross sections at 250 and 70 GeV/c (1.10 \pm 0.01) and (1.30 \pm 0.01) for \(K^+p \) and \(\pi^+p \), respectively.

Fig. 7a, b. The \(d \sigma/dx \) spectrum of \(y \)'s after subtraction of all hadron decays in reaction (1) at 250 GeV/c and 70 GeV/c a and in reaction (2) at 250 GeV/c b. The curves show the hadronic bremsstrahlung contribution and the CQGP model prediction.
sampling over the photon phase space. The QED x-spectrum lies systematically below the data, although its shape is quite similar. The total inner bremsstrahlung cross section with the cut $p_T > m_{\pi^0}/2$ and for $-0.001 < x_{\gamma} < 0.008$ is equal to 1.3 mb for K^+p collisions and 1.6 mb for $\pi^+ p$ collisions.

To extract the prompt photon differential cross section as a function of transverse momentum, we first use FRITIOF to simulate the background sources. As noted in Sect. 3, this model reproduces well the $d\sigma/dp_T^2$ (Figs. 3-4) and $d\sigma/d\rho_T$ (Fig. 5) distributions, except at very small p_T.

From Figs. 3-4 we deduce an excess cross section above the FRITIOF background of (6.0 ± 1.4) mb (Fig. 3b) and (7.7 ± 0.8) mb (Fig. 4b) for $p_T \leq 0.0015$ (GeV/c)2. The signal is plotted in Fig. 8 as a function of p_T. The cross section of anomalous soft photons, for $p_T \leq 40$ MeV/c, amounts to (6.0 ± 1.7) mb in K^+p collisions and (7.6 ± 1.2) mb in $\pi^+ p$ collisions. These values are consistent, within statistical and systematic errors, with those derived from the inclusive x-distribution. The corresponding cross section for 70 GeV/c K^+ interactions is equal to (5.5 ± 0.6) mb. The ratio of these cross sections at 250 and 70 GeV/c is the same, within errors, as that of the total inelastic cross section.

For an independent check of the background subtraction procedure, we have used the experimental data on γ's to simulate "$\gamma^+ \gamma^-$ decays", with the assumption that the p_T spectra of π^0s and π^-'s are identical in the low-p_T region. The "y-spectrum" so obtained was normalized to the measured p_T-spectrum (with non-π^0 hadron decay background removed) in the interval $0.1 < p_T(y) < 1.5$ GeV/c and extrapolated to $p_T = 0$. This yields a prompt photon cross section of (6.6 ± 1.5) mb and (9.4 ± 1.7) mb for K^+p and $\pi^+ p$ collisions in the region $p_T \leq 40$ MeV/c. Combining the results of the two methods, we arrive at a final estimate, including systematic errors, of (6.3 ± 1.6) mb and (8.2 ± 1.5) mb, respectively, for the cross section of prompt photons with $p_T \leq 40$ MeV/c in reactions (1) and (2).

The dashed histograms in Fig. 8 show the CQGP-model predictions. They agree well with the data. In contrast, the inner bremsstrahlung cross section, also plotted in Fig. 8, is several times smaller than the measured direct photon signal. For $p_T \leq 40$ MeV/c, it is equal to 0.98 mb and 1.18 mb for the K^+p and $\pi^+ p$ data, respectively.

We have also attempted to extract the prompt photon cross section as a function of cm rapidity. Using the FRITIOF background p_T-distribution in a given interval of rapidity, we obtain the cross sections given in Table 3. Despite the large errors, these results show that the signal of prompt photons with $p_T < 40$ MeV/c is concentrated in the forward cm hemisphere ($y > 0.25$). It is much weaker, if at all present, in the central and backward regions.

It should be noted that the experimental data points at the smallest p_T-values are slightly overestimated due to resolution smearing. This effect is not included in the FRITIOF background simulation. We have also studied the possible influence on the prompt photon signal of ambiguous γ-fits (see Sect. 2). No enhancement of the fraction of such γ's is seen in the kinematical regions of interest.

Table 3: Inclusive cross section of prompt photons, with $p_T < 40$ MeV/c, as a function of cm rapidity

<table>
<thead>
<tr>
<th>y-interval</th>
<th>$K^+ p \to \gamma + X$</th>
<th>$\pi^+ p \to \gamma + X$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y > 0.25$</td>
<td>4.7 ± 1.2</td>
<td>5.0 ± 0.8</td>
</tr>
<tr>
<td>$-0.25 < y < 0.25$</td>
<td>1.3 ± 0.6</td>
<td>1.0 ± 0.4</td>
</tr>
<tr>
<td>$-0.75 < y < -0.25$</td>
<td>1.0 ± 0.4</td>
<td>1.0 ± 0.4</td>
</tr>
<tr>
<td>$-2.05 < y < -0.75$</td>
<td>0.8 ± 0.7</td>
<td>1.18 ± 0.4</td>
</tr>
</tbody>
</table>

5 Summary and conclusions

In this paper a study is presented of inclusive photon production in K^+p and $\pi^+ p$ interactions at 250 GeV/c beam momentum. The results can be summarized as follows:

- Up to 250 GeV/c, the total inclusive photon cross section increases logarithmically with the square of the cm energy and with the same rate for $K^+ p$ and $\pi^+ p$ collisions.
- For photon energies larger than $m_{\pi^0}/2$, we find that the model FRITIOF reproduces the inclusive p_T^2 and p_T differential cross sections, except for the very small p_T-region: $p_T^2 < 0.0015$ (GeV/c)2, $p_T \leq 40$ MeV/c. The model also describes the differential cross section $d\sigma/dx$ for $x < 0$ and above $x \sim 0.1$, but does not explain the large photon cross section in a very narrow interval around $x = 0$.
- After subtraction of the y-component due to electromagnetic decays of hadrons, we find evidence for an...
“anomalous” direct soft signal with a cross section several times larger than that expected from QED bremsstrahlung.

- Our data on direct photon emission at 250 GeV/c agree with the predictions of Lichard and Van Hove based on the existence of "globs" of cold quark-parton matter.

Acknowledgements. It is a pleasure to thank the operating crews and staff of EHS, our laboratories and H2 beam, as well as the scanning and measuring teams at our laboratories for the invaluable help with this experiment. The contribution of the Aachen, Helsinki, Rio de Janeiro and Warsaw groups to the earlier phase of this experiment is gratefully acknowledged.

References

26. J. Schukraft: Status report on soft photon production from the HELIOS experiment at the CERN SPS, HELIOS internal note 450 (1990) and private communication
36. F. Botterweck et al. (NA22): Inclusive \(\pi^0 \) and \(\eta \) production in \(\pi^- p \) and \(K^- p \) Collisions at 250 GeV/c, to be submitted to Z. Phys. C – Particles and Fields
41. I.V. Ajinenko et al.: Yad. Fiz. 31 (1980) 1214