IDENTIFICATION OF A NOVEL PEPTIDE DERIVED FROM THE MELANOCYTE-SPECIFIC GP100 ANTIGEN AS THE DOMINANT EPITOPE RECOGNIZED BY AN HLA-A2.1-RESTRICTED ANTI-MELANOMA CTL LINE

Alexander B.H. Bakker, Marco W.J. Schreurs, Gaalda Tafazzou, Annemie J. de Boer, Yutaka Kawakami, Goos J. ADEMA and Carl G. Fiddor

Department of Tumor Immunology, University Hospital Nijmegen St. Radboud, Nijmegen, The Netherlands; and Surgery Branch, Division of Cancer Treatment, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.

Cytotoxic T lymphocytes (CTL) reactive with human melanoma tumor cells occasionally display cross-reactivity with normal melanocytes. Previously, we identified the melanocyte line-specific antigen gp100 that is expressed by both melanoma cells and normal melanocytes, as a target antigen for tumor-infiltrating lymphocytes derived from a melanoma patient (TIL 1200). Here, we demonstrate that the oligoclonal HLA-A2.1-restricted TIL 1200 line is reactive with 2 distinct peptides derived from the gp100 protein. Apart from the peptide corresponding to gp100 amino acids 457—466, we identified a 100-fold lower concentration of this new gp100 peptide was required for target-cell sensitization compared to peptide 457—466, indicating that the 154—162 peptide is the dominant gp100 epitope for TIL 1200. Together with the recently described gp100 280—288 epitope, 3 distinct CTL epitopes have now been identified in gp100, all presented in the context of HLA-A2.1. Therefore, gp100 is an attractive target antigen in the development of immuno-therapeutic protocols against melanoma.

MATERIAL AND METHODS

Cell culture

TIL 1200 lymphocytes were isolated from metastatic melanoma and were grown as described previously (Kawakami et al., 1992). HLA-A2.1+ melanoma lines BLM and BLM H2.3 were cultured as described previously (Bakker et al., 1994). COS-7 cells were grown in DMEM (GIBCO, Paisley, UK) supplemented with 7.5% FCS. TAP-deficient TxB cell hybrid T2 cells (Salter et al., 1985) were maintained in Iscove’s medium (GIBCO) +7.5% FCS.

Peptides

Peptides were synthesized with a free carboxy-terminus either by Fmoc peptide chemistry using an ABIMED Multiple Synthesizer 422 (Abimed, Langenfeld, Germany) or by t-boc chemistry on a Biosense 9500 peptide synthesizer (New Brunswick, San Rafael, CA). Peptides were dissolved in DMSO and stored at −20°C.

DNA construction and transfection

Isolation of the gp100 cDNA clone c1 has been described elsewhere (Adema et al., 1993). The gp100 cDNA was inserted into expression vectors pBl1neo (Lin et al., 1990), pCMVneo (Baker et al., 1990) and pSVL (Pharmacia, Woerden, The Netherlands). To generate a gp100 cDNA lacking the coding sequences for the peptide 457—466, PCR reactions were performed with the following combinations of oligonucleo-

Received: January 26, 1995 and in revised form March 24, 1995.
tides: 5'-CATGGAAGTGCAGCTTACC-3'/5'-CTGAGC-
GAATTGCCACCATTACTTTCGG-3' and 5'-CT-
GAGGAAATCTGTGAAGAGACAATGTCGCCC-3'/5'-
TCAGACCATCATATGAGAGATC-3' using the full-length
gp100 cDNA as a template. PCR products were digested with
Eco RI, ligated and served as a template for a nested PCR
using the following primers: 5'-GCAAGGGTACTGCAAGA-
3'/5'-TCTCGATATTGCTGACGACATC-3'. The Kpn I-Cla I
fragment from this PCR product was then replaced by the
containing fragment in pCMVgp100neo to generate
pCMVgp100DEL454-481neo. Gp100 cDNA mutants DEL149-
661 and DEL454-661 were obtained by deletion of the 1.7-kb
Hind III and the 0.8-kb Eco RI fragments from
pBJ1gp100DEL454-481neo respectively. Gp100 cDNA mu-

tants DEL110-661, DEL194-528 and DEL167-508 were ob-

tained by deletion of the Bgl I-Sac I, Bam HI-Bgl II and Apa
I-Nsi I fragments from pSVLgp100 respectively.

BLM cells were transfected with 20 µg of pCMV-
gp100DEL454-481neo DNA according to the calcium phos-
phate co-precipitation procedure (Graham and van der
Eb, 1973) using calcium phosphate transfection systems (BRL,
Gaithersburg, MD) and were selected with 1 mg/ml G418
(GIBCO).

COS-7 cells were co-transfected with 5 µg of
pBJ1HLA-
A2.1neo and 5 µg of pB1 or pSVL plasmids containing either
full-length or deleted gp100 cDNAs using the DEAE-dextran/
chloroquine method (Seed and Aruffo, 1987) (the HLA-A2.1
cDNA was kindly provided by J.J. Neefjes, The Netherlands
Cancer Institute, Division of Biochemistry, Amsterdam, The
Netherlands). After 48 hr of transfection, COS-7 cells were
used as stimulator cells in IFNγ release experiments.

Chromium-release assay
Chromium-release assays were performed as described pre-
viously (Bakker et al., 1994). Briefly, 10⁶ target cells were
incubated with 100 µCi Na₂⁵³CrO₄ (Amersham, Aylesbury,
UK) for 1 hr. Various amounts of effector cells were then
added to 2 x 10⁶ target cells in triplicate wells of U-bottomed
microtiter plates (Costar, Badhoevedorp, The Netherlands)
in a final volume of 150 µl. In peptide recognition assays, target
cells were pre-incubated with various amounts of peptide for
90 min at 37°C in a volume of 50 µl prior to the addition of
effector cells. After 5 hr of incubation, part of the supernatant
was harvested and its radioactive content was measured.

IFNγ-release assay
TIL 1200 responder cells (10⁶) were incubated together with
5 x 10⁶ transiently transfected COS-7 stimulator cells in 300 µl
medium in the presence of 100 U/ml IL-2 in a flat-bottomed
96-well microtiter plate. After 24 hr of incubation, 100 µl of
supernatant were harvested and screened for the presence of
IFNγ using an hIFNγ-IRMA immunoradiometric assay kit
(Medigenix, Fleurus, Belgium).

HLA-A2.1 stabilization on T2 cells
Peptide-induced HLA-A2.1 stabilization on T2 cells was
performed as described previously (Nijman et al., 1993).
Briefly, peptides were diluted from DMSO stocks to 50, 25 and
12.5 µg/ml (final DMSO concentration 0.5%) and incubated
with 10⁴ T2 cells for 14 hr at 37°C, 5% CO₂ in
serum-free Iscove’s medium in a volume of 100 µl in the
presence of 3 µg/ml human β₂-microglobulin (Sigma, St Louis,
MO). Stabilization of HLA-A2.1 molecules at the surface of
T2 cells was analyzed by flow cytometry using a FACScan flow
cytometer (Becton Dickinson, Mountain View, CA). Anti-
HLA-A2 MAb BB7.2 (culture supernatant) (Parham and
Brodsky, 1981) was used as a primary reagent. FITC-
conjugated GAM-IgG-F(ab')₂ (Zymed, San Francisco, CA)
was used for the second incubation.

RESULTS
TIL 1200 is reactive with more than one peptide derived
from gp100
To determine the nominal gp100 epitope being recognized
by TIL 1200, a fragment of gp100-derived peptides were
synthesized according to the HLA-A2.1 binding motifs (Fulk et
al., 1991; Hunt et al., 1992; Ruppert et al., 1993) and tested for
their ability to sensitize target cells (Kawakami et al., 1994b).
Only one of these peptides, corresponding to amino acids
457-466, was able to induce target-cell lysis by TIL 1200.
However, when this peptide was used in chromium-release
assays (Fig. 1), we observed only a low percentage of specific
release (20–25%). Furthermore, a relatively high concentra-
tion of peptide (~100 ng/ml) was needed to induce target-cell
lysis by TIL 1200. We therefore questioned whether other
gp100-derived peptides could be recognized by TIL 1200, a
TIL line that was found to be oligoclonal when analyzed at the
T-cell receptor (TCr) level (Shilyanski et al., 1994).

A putative second gp100 peptide which was a candidate for
recognition by TIL 1200, was peptide 280-288. This naturally
processed peptide was identified using tandem mass spectros-
copy and found to be recognized with high affinity by 5
melanoma-specific CTL lines (Cox et al., 1994). We tested this
peptide for recognition by TIL 1200 but did not observe any
reactivity (data not shown).

To address the question whether TIL 1200 might recognize
another peptide derived from gp100, we constructed a mutant
gp100 cDNA. The resulting construct, pBJ1-gp100DEL454-
481neo, encodes a protein in which the 457-466 peptide is
absent. We transfected human HLA-A2.1+ BLM melanoma
cells with pBJ1-gp100DEL454-481neo DNA. Subse-
quently, G418-resistant BLM gp100DEL454-481 clones were
screened for expression of mutated gp100 using MAb NKI-
beteb and tested in chromium-release assays using TIL 1200.
As shown in Figure 2, elimination of the 457-466 epitope did
We therefore screened the 148–166 region of the gp100 protein for peptides that fitted into a less strict motif, including threonine residues at position 2. Using such a motif, a number of potential HLA-A2.1 binding peptides from the gp100 148–166 region were synthesized. These peptides were loaded onto HLA-A2.1* T2 cells and tested for their ability to induce TIL-1200-mediated target-cell lysis (Fig. 4). The 5 peptides tested were all able to sensitize T2 cells for lysis by TIL 1200 when applied at a concentration of 10 μg/ml. All these peptides contain the 8-mer peptide TGQYWQV, corresponding to gp100 amino acids 155–162. Next, all peptides were titrated to evaluate their relative ability to sensitize T2 target cells for lysis by TIL 1200. Figure 4 shows that the 9-mer peptide KTWGQYWQV elicited 50% of maximal specific lysis by TIL 1200 when applied at a concentration of 3 ng/ml, whereas the other peptides had to be applied at higher concentrations. Therefore, the 9-mer 154–162 peptide is most likely the naturally processed second gp100 epitope that is recognized by TIL 1200.

Discussion

In the present report, we describe the identification of a novel gp100 epitope, corresponding to gp100 amino acids 154–162, that is presented to anti-melanoma CTL in the context of HLA-A2.1. We show that the gp100-reactive TIL 1200 line, consisting of several TcR specificities (Shilyanski et al., 1994), recognizes not only the gp100 457–466 epitope, but also the gp100 154–162 epitope, when compared to gp100 457–466 epitope. We therefore consider the 154–162 peptide to be the dominant gp100 epitope recognized by TIL 1200. Attempts to further investigate the recognition of the different gp100 epitopes using...
gp100 cDNA constructs

<table>
<thead>
<tr>
<th>FL</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEL 100-661</td>
<td>99</td>
</tr>
<tr>
<td>DEL 194-528</td>
<td>193</td>
</tr>
<tr>
<td>DEL 167-508</td>
<td>453</td>
</tr>
<tr>
<td>DEL 454-481</td>
<td>482</td>
</tr>
<tr>
<td>DEL 454-661</td>
<td>453</td>
</tr>
<tr>
<td>DEL 149-661</td>
<td>148, 166</td>
</tr>
</tbody>
</table>

FIGURE 3 – TIL 1200 recognizes a second gp100-derived epitope located between amino acids 149 and 166. Gp100 cDNA deletion mutants encoding parts of the gp100 protein were cloned into expression vectors and transfected into COS-7 along with the HLA-A2.1 cDNA (numbers indicate amino acids in the gp100 protein, amino acid 1 refers to the methionine in the signal peptide). TIL 1200 lymphocytes and transfected COS-7 cells were co-incubated for 24 hr and the amount of IFNγ in the supernatant was measured using an immunoradiometric assay.

cloned TIL have not been successful. Since other anti-gp100 CTL-lines (Cox *et al.*, 1994) recognize the gp100 280–288 epitope, it remains to be established which epitope is immuno-dominant in gp100.

It is surprising that, in a single patient, anti-melanoma CTL have emerged that are reactive with 2 distinct epitopes derived from gp100, a self antigen. The gp100 epitopes are recognized by at least 2 T-cell specificities, co-existing within the TIL 1200 line, that display differences in TcR affinity. T lymphocytes bearing potential self-reactive TcR can emerge in the periphery. They may have escaped from tolerance induction because they bear low-affinity TcR, whereas potential autoreactive CTL bearing high-affinity TcR are probably deleted in the thymus (Schwartz, 1989) or maybe tolerized in the periphery. The anti-tyrosinase CTL clones described by Wölfel and colleagues and the gp100 457–466-reactive TIL 1200 lymphocytes, exhibiting low peptide/MHC affinity, may have emerged from precursor T lymphocytes of this type. High-affinity
autoreactive CTL may have escaped tolerance induction, because they have not encountered their antigenic peptide in the thymus or in the periphery. It is not clear how high- or intermediate-affinity CTL, like gp100 280–288-reactive T lymphocytes (Cox et al., 1994) or gp100 154–162-reactive TIL 1200 lymphocytes, can exist in the periphery as ignorant T lymphocytes without causing apparent autoimmune disease (Ohashi, 1994). A possible explanation is that HLA-A2.1-gp100 154–280/280–288 complexes on normal melanocytes may be recognized by activated CTL, while being incapable of initiating primary immune responses in vivo. Apparently, in the case of melanoma, gp100-reactive precursor T lymphocytes can be triggered in vivo. This may be the result of a higher expression level of the gp100 antigen in melanoma cells. Alternatively, necrosis in melanoma tumors may lead to uptake and presentation of gp100-derived peptides to T lymphocytes by professional antigen-presenting cells.

Clinical data, indicating that vitiligo (local depigmentation of the skin) is associated with improved survival of melanoma patients (Bystyn et al., 1987), suggest that these patients benefit from an autoimmune response to melanocytes. In addition, re-infusion of TIL 1200 plus IL-2 into the autologous patient was accompanied by regression of metastatic tumor (Kawakami et al., 1994b). This suggests that the generation of an immune response against the gp100 melanocyte differentiation antigen may have anti-tumor effects in vivo. Therefore, the gp100 antigen, of which 3 distinct HLA-A2.1 presentable epitopes have already been identified, is an attractive target antigen in the development of immuno-therapeutic protocols against melanoma.

ACKNOWLEDGEMENTS

We thank Dr. L. Vernie (The Netherlands Cancer Institute, Division of Cellular Biochemistry, Amsterdam) and Dr. J.W. Drijfhout (University Hospital Leiden, Department of Immunohematology and Blood Bank, Leiden) for peptide synthesis. We are indebted to Ms. M. Meijer for excellent secretarial help.

REFERENCES

ADEMA, G.J., DE BOER, A.J., VAN ’T HULLENAAAR, R., DENIEN, M., RUITER, D.J., VOGEL, A.M. AND FIGDOR, C.G., Melanocyte lineage-specific antigens recognized by monoclonal antibodies NK1-beteb, melanoma by autologous cytolytic T lymphocytes. I. H.-G., Allele specific motifs revealed by sequencing of self-peptides human cytotoxic T-cell lines. C.A., Identification of a peptide recognized by five melanoma-specific antigen-presenting cells. Tion of gpl00-derived peptides to T lymphocytes by professional antigen-presenting cells. Tion of the gpl00 antigen in melanoma cells. Alternatively, necrosis in melanoma tumors may lead to uptake and presentation of gp100-derived peptides to T lymphocytes by professional antigen-presenting cells.

Clinical data, indicating that vitiligo (local depigmentation of the skin) is associated with improved survival of melanoma patients (Bystyn et al., 1987), suggest that these patients benefit from an autoimmune response to melanocytes. In addition, re-infusion of TIL 1200 plus IL-2 into the autologous patient was accompanied by regression of metastatic tumor (Kawakami et al., 1994b). This suggests that the generation of an immune response against the gp100 melanocyte differentiation antigen may have anti-tumor effects in vivo. Therefore, the gp100 antigen, of which 3 distinct HLA-A2.1 presentable epitopes have already been identified, is an attractive target antigen in the development of immuno-therapeutic protocols against melanoma.

ACKNOWLEDGEMENTS

We thank Dr. L. Vernie (The Netherlands Cancer Institute, Division of Cellular Biochemistry, Amsterdam) and Dr. J.W. Drijfhout (University Hospital Leiden, Department of Immunohematology and Blood Bank, Leiden) for peptide synthesis. We are indebted to Ms. M. Meijer for excellent secretarial help.

REFERENCES

Clinical data, indicating that vitiligo (local depigmentation of the skin) is associated with improved survival of melanoma patients (Bystyn et al., 1987), suggest that these patients benefit from an autoimmune response to melanocytes. In addition, re-infusion of TIL 1200 plus IL-2 into the autologous patient was accompanied by regression of metastatic tumor (Kawakami et al., 1994b). This suggests that the generation of an immune response against the gp100 melanocyte differentiation antigen may have anti-tumor effects in vivo. Therefore, the gp100 antigen, of which 3 distinct HLA-A2.1 presentable epitopes have already been identified, is an attractive target antigen in the development of immuno-therapeutic protocols against melanoma.

ACKNOWLEDGEMENTS

We thank Dr. L. Vernie (The Netherlands Cancer Institute, Division of Cellular Biochemistry, Amsterdam) and Dr. J.W. Drijfhout (University Hospital Leiden, Department of Immunohematology and Blood Bank, Leiden) for peptide synthesis. We are indebted to Ms. M. Meijer for excellent secretarial help.

REFERENCES

Clinical data, indicating that vitiligo (local depigmentation of the skin) is associated with improved survival of melanoma patients (Bystyn et al., 1987), suggest that these patients benefit from an autoimmune response to melanocytes. In addition, re-infusion of TIL 1200 plus IL-2 into the autologous patient was accompanied by regression of metastatic tumor (Kawakami et al., 1994b). This suggests that the generation of an immune response against the gp100 melanocyte differentiation antigen may have anti-tumor effects in vivo. Therefore, the gp100 antigen, of which 3 distinct HLA-A2.1 presentable epitopes have already been identified, is an attractive target antigen in the development of immuno-therapeutic protocols against melanoma.

