The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/26009

Please be advised that this information was generated on 2017-08-26 and may be subject to change.
Tenascin-C is a large hexameric extracellular matrix glycoprotein that is expressed in a temporally and spatially restricted pattern associated with stromal-epithelial interactions. In adult human skin, the expression level of tenascin-C is low, but tenascin-C is abundantly present in the dermal compartment during embryogenesis and wound healing and in skin tumors. Herein we have investigated the cellular source of tenascin-C production in human skin, both in vivo and in vitro, by using immunohistochemistry, mRNA in situ hybridization, western blotting, and an enzyme-linked immunosorbent assay. In addition we studied the cell-matrix interaction between epithelial keratinocytes and purified tenascin-C. By using in vitro culture models, we found that keratinocytes not only synthesize and secrete tenascin-C but can also deposit tenascin-C in de-epidermized dermis in a pattern that is very similar to that in vivo. In vivo, during wound healing of normal human skin, we found tenascin-C extracellularly in the wound bed and also in a granular pattern within the neo-epidermis. By mRNA in situ hybridization, we could identify the basal migrated keratinocytes as the main source of tenascin-C in the early phase of wound healing. In the granulation phase, tenascin-C expression by the keratinocytes is downregulated. Cultured keratinocytes were found to adhere poorly to tenascin-C, and those that did adhere retained a rounded morphology. We conclude that human keratinocytes are a major source of tenascin-C during the early phase of wound healing, and we hypothesize that tenascin-C is unlikely to be an adhesive substrate for migrating keratinocytes. Key words: in situ hybridization/epitheliun/cell adhesion. J Invest Dermatol 108:776–783, 1997

Tenascin-C is a large hexameric extracellular matrix glycoprotein consisting of subunits of 220–320 kDa that are linked by disulfide bonds (for review see Schenk and Chiquet Ehrismann, 1994; Chiquet Ehrismann et al., 1994; and Lightner, 1994). The tenascin-C subunits have a modular structure, in humans forming a cysteine-rich domain at the N terminus, followed by 14.5 domains with homology to epidermal growth factor, a number of fibronectin type III repeats (varying from 9 to 16 as a result of alternative splicing of tenascin-C RNA), and a fibrinogen-like domain at the C terminus. Recently, two proteins with the same general structure have been described, named tenasin-R (or restrictin) and tenasin-X. In analogy, tenasin is called tenascin-C in more recent literature, where the C stands for cytotoxin, a synonym for tenasin.

Tenascin-C is abundant during embryogenesis, particularly at mesenchymal–epithelial interaction sites (Crosdin et al., 1986; Auferheide et al., 1987; Auferheide and Ekbloom, 1988; Ekbloom and Auferheide, 1989; Vainio et al., 1989; Chuong et al., 1991), but expression is limited in adult tissues. In normal skin tenasin-C is detected in the dermis, where it is sparsely distributed at the dermal–epidermal junction and surrounds blood vessels and epidermal adnexa (Lightner et al., 1989; Schalkwijk et al., 1991b; Shikata et al., 1994). In conditions of epidermal hyper-proliferation, such as psoriasis (Schalkwijk et al., 1991b), epidermal tumors (Stamp, 1989; Schalkwijk et al., 1991b; Verstraeten et al., 1992; Shikata et al., 1994), and injury (Schalkwijk et al., 1991a; Betz et al., 1993; Juhasz et al., 1993; Latijnhouwers et al., 1996), tenasin-C expression in the papillary dermis is strongly upregulated. The role of tenasin-C in vivo is still a matter of debate. In vitro studies have suggested various functions for tenasin-C, including modulation of cell proliferation and cell adhesion (Chiquet Ehrismann et al., 1988; Friedlander et al., 1988; Lots et al., 1989; Spring et al., 1989; Lightner and Erickson, 1990; Murphy Ullrich et al., 1991; Prieto et al., 1992, 1993) and suppression of the immune response (Ruegg et al., 1989; Hemesath et al., 1994). Knocking out the tenasin-C gene in mice, however, does not induce marked phenotypic changes. Whether the tenasin-C-like molecules tenasin-R and tenasin-X in these knock-out mice take over the functions that are normally exhibited by tenasin-C is not yet clear.

For many tissues, reports pointed to mesenchymal cells as the cellular source of tenasin-C, whereas epithelial cells induce or modulate tenasin-C production. When mesenchyme is co-cultured with epithelial cells, for example, mesenchymal tenasin-C expression is induced (Auferheide and Ekbloom, 1988; Inaguma et al., 1988). In vivo, increase in mesenchymal tenasin-C also correlates with epithelial changes, notably epidermal hyper-proliferation in skin (Stamp, 1989; Schalkwijk et al., 1991a, 1991b; Verstraeten et
HUMAN KERATINOCYTES ARE A SOURCE OF TENASCIN-C

In Vitro Reconstruction of Epidermis on De-Epidermized Dermis

Keratinocytes were seeded on DMEM/F-12/13 (vol/vol), supplemented with penicillin (100 units per ml) plus streptomycin (100 μg per ml) and 10% fetal bovine serum. Human keratinocytes from skin biopsies of healthy donors were initially cultured by the method of Rheinwald and Green (1975). In the epithelium of developing chicken feather buds, however, no tenascin-C mRNA was found (Prior et al, 1990). These findings of epithelial tenascin-C expression led us to further examine tenascin-C expression in skin. Our data demonstrate that epidermal keratinocytes secrete tenascin-C and deposit tenascin-C in the extracellular matrix in vitro and in vivo during wound healing. In addition we investigated the effect of tenascin-C in cell adhesion assays. The results indicate that tenascin-C is a poor adhesive substrate for cultured keratinocytes.

MATERIALS AND METHODS

Cells and Culture Conditions

Tenascin-C production was examined in human glioblastoma and osteosarcoma cell lines and in primary cultures of epidermal keratinocytes and dermal fibroblasts. The human glioblastoma cell lines U87-MG, U138-MG, and U373-MG were provided by R. Verstraeten (Free University of Amsterdam, The Netherlands), and Saos-2 sarcoma cells were a gift from E. Mackie (Royal Veterinary College, London, United Kingdom). The cell lines are available from the American Type Culture Collection (Rockville, MD) as HTB14, HTB16, HTB17, and HTB35, respectively. All cultured cells were tested negative for mycoplasma.

Cell lines and dermal fibroblasts were grown in Dulbecco's modified Eagle's medium (DMEM)/F-12, 3:1 (vol/vol), supplemented with penicillin (100 units per ml) plus streptomycin (100 μg per ml) and 10% fetal bovine serum. Human fibroblasts from skin biopsies of healthy donors were initially cultured by the method of Rheinwald and Green (1975). Keratinocytes from these cultures were again seeded on a feeder layer of irradiated 3T3 cells or, alternatively, in serum-free medium. For the method of Rheinwald and Green, DMEM/F-12, 3:1 (vol/vol), supplemented with 0.4 μg hydrocortisone per ml, 1 μM isoproterenol, 10 ng epithelial growth factor per ml, 6% fetal bovine serum, 100 units penicillin per ml, and 100 μg streptomycin per ml was used. Serum-free culture medium was keratinocyte growth medium (KGM). KGM was composed of keratinocyte basal medium (Clonetics, San Diego, CA; 0.15 mM calcium) supplemented with 0.1 M ethanolamine, 0.1 M phosphothreonamine, 10 ng epithelial growth factor per ml, 5 μg insulin per ml, 0.4% (vol/vol) bovine pituitary extract (Clonetics, San Diego, CA), 0.5 μg hydrocortisone per ml, 100 μg penicillin per ml, and 100 μg streptomycin per ml.

Before reaching confluence, the serum concentration of serum-containing medium was lowered to 1%. After 3 d, medium was collected and tenascin-C concentrations were determined by an enzyme-linked immunosorbent assay (ELISA).

In Vitro Reconstitution of Epidermis on De-Epidermized Dermis (DED)

Keratinocytes cultured by the method of Rheinwald and Green were seeded on DMEM/F-12/13 (vol/vol), supplemented with 5% HyClone newborn bovine serum (Greiner, Alphen a/d Rijn, The Netherlands), 0.4 μg hydrocortisone per ml, 1 μM isoproterenol, and 5 μg insulin per ml. Cultures were maintained submerged in the medium for 3 d and then were air-exposed for another 3-14 d. The medium used for air-exposed culture was supplemented with 10 ng epithelial growth factor per ml. Generation of DED and culture methods have been described previously (Pruinieres et al, 1983; Ponec, 1991).

Biopsies

Experimental wounds were made by taking partial thickness punch biopsies with a diameter of 3 mm from the upper arm of healthy volunteers. Full-thickness punch biopsies with a diameter of 4 mm were taken from the different wounds after 2, 4, 7, 14, 60, and 365 d. These secondary biopsies, which included the healing wounds and some of the adjacent normal skin, were embedded in Tissue Tek OCT compound and stored at −80°C until use or were formalin-fixed and embedded in paraffin. Permission for experiments on humans was obtained from the Medical Ethical Committee of the University Hospital in Nijmegen.

Antiserum

Antibodies directed against human tenascin-C were the mouse monoclonal antibodies T2H5 (for reference, see Schalkwijk et al, 1991a) and TN2 (Dako, Glostrup, Denmark) and two rabbit polyclonal antisera T107 and TN953, A107 was obtained from Chemicon International (Temecula, CA). We raised TN953 in New Zealand White rabbits by immunization with highly purified human tenascin-C from U138-MG cells. Traces of anti-fibronectin reactivity in TN953 were removed by solid-phase absorption with human fibronectin. Antibodies against human fibronectin were a mouse monoclonal antibody (Sigma-Alrich, Bornem, Belgium) and a rabbit polyclonal antiserum (Life Technologies, Breda, The Netherlands).

Immunohistochemistry

T2H5, TN2, and TN953 were used for staining of tenascin-C in cryostat sections. In addition, TN2, TN953, and A107 were applied to detect tenascin-C in formalin-fixed sections. Staining with T2H5 was performed by an indirect immunoperoxidase staining protocol described previously that uses polyclonal rabbit anti-human tenascin-C as a chromogenic substrate (Schalkwijk et al, 1991a). For TN2, TN953, and A107, the Vectastain Elite ABC kit (Vector Laboratories, Burlingame, CA) was used according to the manufacturer's instructions, with diaminobenzidine as a chromogenic substrate. After immunostaining, sections were counterstained with hematoxylin.

ELISA

To quantify tenascin-C concentrations in culture medium, a sandwich-type ELISA was developed that is similar to the one described by Schenk and colleagues (1995). Polystyrene microtiter plates were coated with T2H5. After blocking free protein binding sites with bovine serum albumin (BSA), dilution series of samples, standard, and blanks were incubated in the wells, and A107 was subsequently used to detect bound tenascin-C. A107 binding was assessed with peroxidase-conjugated swine anti-rabbit immunoglobulins and o-phenylene-diamine dihydrochloride as the chromogenic substrate. The color reaction was stopped by adding 4 M H₂SO₄ and evaluated by reading the absorption of the color product at 490 nm, with 655 nm as a reference wavelength. The same method was applied for the fibronectin-specific ELISA. For these a mouse monoclonal antibody and a rabbit polyclonal antiserum against human fibronectin were used. Chicken egg ovalbumin was used instead of BSA in the fibronectin ELISA.

The standards used in ELISAs were human tenascin-C purified from the conditioned culture supernatant of Saos-2 cells in 0.05 M sodium citrate/chloride buffer used to wash slides after hybridization with hematoxylin.

Construction of Plasmids and Synthesis of RNA Probes

Total RNA was isolated from cultured human dermal fibroblasts, and cDNA was synthesized by reverse transcription with oligo(DT) primers. Part of the cDNA was amplified by using a polymerase chain reaction and subcloned in pGEM-3. The tenascin-C-coding insert corresponds to nucleotides 6016-6188 of the human tenascin-C cDNA sequence as submitted by Ponec and colleagues to the EMBL Database Library (accession number X78555). For in situ hybridization the sequence of the most C-terminally located fibronectin type III repeat and part of the fibrillarin domain was used.

The plasmid was linearized with BsmBI to synthesize an anti-sense complementary RNA probe by using T7 polymerase and with EcoRI to synthesize control sense complementary RNA by using Sp6 polymerase in the reverse orientation. Dioxigenin (DIG)-labeled anti-sense and sense probes were synthesized by using a Sp6/T7 in vitro RNA synthesis kit in the presence of DIG-UTP (Boehringer Mannheim, Mannheim, Germany). Synthesis was performed at 37°C with T7 polymerase and at 40°C with Sp6 polymerase. The anti-sense probe thus produced was 471 nucleotides long, and the sense probe was 488 nucleotides long.

In Situ Hybridization

In situ hybridization was performed on frozen sections as described (Pfundt et al, 1996) with the modification that the 0.1X sodium citrate/chloride buffer used to wash slides after hybridization contained 60% formamide instead of 50%. Optimal probe concentrations were determined in a pilot experiment and were chosen for further use. Hybridization was assisted with Fab fragments of sheep anti-DIG monoclonal antibodies conjugated to alkaline phosphatase (Boehringer Mannheim) and subsequent staining with nitro blue tetrazolium and 5-bromo-4-chloro-3-indolyl phosphate.
Tenascin-C Purification

U138-MG was used for tenascin-C purification. Before the cells reached confluency, the serum concentration of the medium was lowered to 1% fetal bovine serum and cultures were maintained for an additional 2 mo, during which medium was collected every 3 or 4 d for tenascin-C purification. Proteinase inhibitors (2 mM ethylenediamine tetraacetic acid, 0.3 mM phenylmethylsulfonyl fluoride, and 2 μg aprotinin per ml) and 0.05% NaN₃ were added to the collected medium. The medium was subjected to two rounds of anion-exchange chromatography. First, tenascin-C was eluted from hydroxyapatite in a buffer containing 25 mM NaH₂PO₄, pH 6.0, and 200 mM NaCl. The fractions that contained most of the tenascin-C were used for final purification on the Smart System using a Mono Q HR. 5/5 column (Pharmacia, Uppsala, Sweden) and a gradient of 0-1 M NaCl in 20 mM Tris(hydroxymethyl)aminomethane (pH 7.9). In this way, tenascin-C could be quantitatively separated from fibronectin (see Fig 6). The concentration of purified tenascin-C was quantified by ELISA. Qualitative analysis included fibronectin-specific ELISA and western blotting. In addition, the hemagglutinating activity of the tenascin-C preparations was verified (Erickson and Inglesias, 1984; Chiquet-Ehrismann et al, 1986). On western blots of reduced tenascin-C, specific antisera stained two tenascin-C bands with molecular weights exceeding 200 kDa. The only contaminating proteins were traces of fibronectin and BSA; laminin was not detected.

Cell Adhesion Assays

Adhesive proteins used in the adhesion assays were fibronectin from human plasma (0.1% solution, Sigma-Aldrich, Bornem, Belgium), laminin purified from human placenta (Life Technologies, Breda, The Netherlands), tenascin-C purified from the glioblastoma cell line U251-MG (Chemicon International, Temecula, CA), and human tenascin-C that we purified ourselves from the glioblastoma cell line U138-MG. Poly styrene microtiter plates were coated by incubation overnight at 4°C with 50 μl of a solution containing the appropriate protein diluted in Dulbecco’s PBS (DPBS = PBS containing 0.9 mM CaCl₂, 0.49 mM MgCl₂, and 0.49 mM MgCl₂·6H₂O). Unbound protein was removed by washing with DPBS and free protein binding sites were blocked by incubation for 1 h at 37°C with DPBS containing 1% BSA.

For adhesion assays only secondary cultures of keratinocytes were used. Cells from subconfluent keratinocyte cultures were harvested by trypsinization and subsequently resuspended in DPBS with 5% fetal calf serum to inactivate trypsin. In cases where keratinocytes had been cultured according to the method of Rheinwald and Green, the feeder cells were removed with ethylenediamine tetraacetic acid prior to trypsinization. After two washes in suc sion with DPBS and DMEM supplemented with 0.25% BSA and 20 mM HEPES (pH 7.4), cells were resuspended in DMEM, 0.25% BSA, and 20 mM HEPES (pH 7.4) and seeded into the wells (5000–10,000 cells per well). Cells were allowed to attach for 2 h at 37°C in a 5% CO₂ humid atmosphere. Non-adherent cells were removed by washing with 200 μl DPBS per well until the cells in the BSA-coated control wells were sufficiently removed as monitored by visual inspection. Typically this took 3 washes. The attached cells were fixed with 3.8% phosphate buffered formalin and stained with 0.5% toluidine blue. Attached cells were counted directly or quantified by measurement of the absorbance at 655 nm after solubilizing the cell bound toluidine blue in 100 μl cetramide buffer (0.4% cetyltrimethylammonium bromide, 0.1 M Tris(hydroxymethyl)aminomethane (pH 8.5), 1 M NaCl). The number of cells was read from a calibration curve that was obtained by plotting the number of cells as determined by direct counting against the absorbance measured.

Phorbol esters can stimulate integrin ligand-binding capacity of integrins, presumably by inducing conformational changes (Diamond and Springer, 1994). In adhesion-stimulation assays, keratinocytes were, therefore, seeded in the presence of 25 nM phorbol 12-myristate 13-acetate (PMA, Sigma-Aldrich, Bornem, Belgium). In inhibition assays, antisera was used to block the coated adhesive protein before seeding the cells by incubating coated wells with a saturating concentration of the appropriate antisera in DPBS with 1% BSA for 1.5 h at 37°C. All assays were performed at least in duplicate, and in individual assays, triplicate or quadruplicate wells were used for each assay condition. Adhesion results were donor-independent as comparable results were obtained for a panel of monoclonal antibodies and polyclonal antisera in combination with a more sensitive staining protocol, which indicates that the expression levels of tenascin-C in healing skin wounds are much higher than previously anticipated. In addition to the known increase of tenascin-C expression in the papillary dermis at the wound margins, we noticed a thin discontinuous line of staining beneath migrating keratinocytes. Both with the polyclonal antisera and the monoclonal antibodies, deposition of tenascin-C in the wound bed was observed beneath the entire sheet of migrating keratinocytes.

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>TN-C Concentration* (μg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U87-MG</td>
<td>2.07 ± 0.74</td>
</tr>
<tr>
<td>U138-MG</td>
<td>5.22 ± 0.07</td>
</tr>
<tr>
<td>U373-MG</td>
<td>2.26 ± 0.19</td>
</tr>
<tr>
<td>Sos-2</td>
<td>1.12 ± 0.24</td>
</tr>
<tr>
<td>Dermal fibroblast</td>
<td>1.04 ± 0.13</td>
</tr>
<tr>
<td>Epidermal keratinocyte</td>
<td>0.49 ± 0.06</td>
</tr>
<tr>
<td>Epidermal keratinocyte*</td>
<td>0.21 ± 0.07</td>
</tr>
</tbody>
</table>

* Data are duplicate tenascin measurements (ELISA). Comparable results were obtained for different cultures of the same cell types.

**Cultured according to the method of Rheinwald and Green.

Serum-free culture in KGM.

RESULTS

Tenascin-C Production by Cultured Cells

To investigate the ability of several cell lines and primary cultures of human skin cells to produce tenascin-C, the tenascin-C concentration in the conditioned medium was assessed by a sandwich ELISA. Results are summarized in Table I. In the unconditioned culture medium, no tenascin-C was detected. Glioblastoma and sarcoma cell lines secreted large amounts of tenascin-C, as was reported previously (Erickson and Bourdon, 1989; Mackie and Tucker, 1992), and of these, U138-MG was chosen as producer cell line for tenascin-C that was used in adhesion assays. Medium of dermal fibroblast cultures contained tenascin-C as well. Remarkably, tenascin-C was also detected in the medium of epidermal keratinocytes, cultured on a feeder layer of irradiated mouse fibroblasts by the method of Rheinwald and Green or in the serum-free medium KGM. Western blot analysis of tenascin-C in the supernatants of cultured keratinocytes under reducing conditions revealed the presence of two immunoreactive bands with molecular weights greater than 200 kDa (data not shown). It should be noted that because of differences in cell number and medium volume in the various cultures, the absolute amounts of tenascin-C produced cannot be compared directly.

Tenascin-C Deposition by Keratinocytes Cultured on DED

We used an in vitro model for reconstructed epidermis to investigate whether tenascin-C is also produced in a culture model that allows full stratification of the keratinocytes and to analyze whether tenascin-C is deposited in the extracellular matrix or is only secreted in the medium. In this model keratinocytes are seeded on DED. The DED is prepared for culture in such a way that no viable cells remain in the tissue. This was confirmed by hematoxylin staining of DED, which demonstrated that no nuclei were present in the DED. Immunohistochemical staining of DED with tenascin-C antisera (T2H5, TN2, A307, and TN953) was virtually negative. When keratinocytes were seeded on a layer of DED, however, marked tenascin-C staining was observed in the DED, indicating that the keratinocytes produce tenascin-C that is deposited in the DED underneath. Tenascin-C was detected after 3 d of submerged culture, when the cultures resemble a squamous non-keratinizing epithelium. Tenascin-C remained present at the dermal-epidermal junction during subsequent air exposure, which induces terminal differentiation of the keratinocytes as indicated by the formation of a stratum corneum (Fig 1).

Keratinocytes Express Tenascin-C during Wound Healing

In a previous study, we described tenascin-C expression in healing wounds during a 14-d time course and its relationship with epidermal hyper-proliferation (Latijnhouwers et al, 1996). We now have extended the time course to 1 y, and instead of one polyclonal tenascin-C antisera (i.e., A107), we have now used a panel of monoclonal antibodies and polyclonal antisera in combination with a more sensitive staining protocol, which indicates that the expression levels of tenascin-C in healing skin wounds are much higher than previously anticipated. In addition to the known increase of tenascin-C expression in the papillary dermis at the wound margins, we noticed a thin discontinuous line of staining beneath migrating keratinocytes. Both with the polyclonal antisera and the monoclonal antibodies, deposition of tenascin-C in the wound bed was observed beneath the entire sheet of migrating keratinocytes.
DISCUSSION

Human immunodeficiency virus (HIV) is the causative agent of acquired immune deficiency syndrome (AIDS). The virus infects and destroys CD4+ T lymphocytes, leading to a gradual decline in the immune system's ability to fight off infections. The emergence of HIV as a significant global health threat has led to the development of antiretroviral therapy (ART) to manage the disease.

The success of ART, however, is limited by the development of drug resistance. In the absence of effective treatment, HIV continues to spread, and new cases are being diagnosed. The need for new antiretroviral drugs that are effective against drug-resistant strains of HIV is urgent.

Furthermore, the global impact of HIV/AIDS is significant, with millions of people living with the disease. The burden on healthcare systems and the economic costs are enormous. Therefore, there is a pressing need for research that can lead to the development of new therapies and preventions for HIV/AIDS.

In conclusion, the continued spread of HIV/AIDS poses a significant threat to global health. The need for effective antiretroviral therapies, the development of new drugs, and the prevention of HIV transmission are essential to combat this pandemic.
Figure 2. Tenascin-C in serial sections of a human skin wound after 2 d. Tenascin-C expression was assessed by immunohistochemical staining with T2H5 (A) and in situ hybridization with DIG-labeled anti-sense (B) and sense (C) probes. Tenascin-C protein shows a continuous pattern at the dermal-epidermal junction and in addition is stained beneath migrated keratinocytes. Tenascin-C mRNA is demonstrated in some dermal cells but is most prominent in migrated keratinocytes (B). Sections are counterstained with hematoxylin (A) or methyl green (B,C). Scale bar, 100 μm.

Figure 3. Tenascin-C in serial sections of a human skin wound after 4 d. Tenascin-C protein is detected immunohistochemically with T2H5 at the dermal-epidermal junction of the wound margin, beneath the neo-epidermis, and sporadically in the migrated keratinocytes themselves (A). Nonradioactive in situ hybridization reveals that tenascin-C mRNA is mainly expressed by basally located keratinocytes of the neo-epidermis; dermal cells are only sporadically stained (B). For comparison hybridization obtained with the control sense tenascin-C probe is shown (C). Sections are counterstained with hematoxylin (A) or methyl green (B,C). Scale bar, 100 μm.

Figure 4. Tenascin-C in serial sections of a human skin wound after 7 d. Tenascin-C protein continuously lines the neo-epidermis of the closed wound (A) and is detected within the neo-epidermis. To detect tenascin-C protein immunohistochemical staining with T2H5 was performed, and the section was counterstained with hematoxylin. High levels of tenascin-C mRNA are found in the basally located keratinocytes of the neo-epidermis (B) by in situ hybridization with a DIG-labeled anti-sense probe. As a control, hybridization with the sense tenascin-C probe was performed (C). Sections shown in B and C were counterstained with methyl green. Scale bar, 50 μm.

Figure 5. Tenascin-C in serial sections of a human skin wound after 14 d. Tenascin-C is abundant at the protein level; massive immunohistochemical staining is observed in the granulation tissue (A), and in the neo-epidermis, a marked granular staining is observed (B). In situ hybridization with a DIG-labeled anti-sense probe shows that tenascin-C mRNA (*) however, is only sporadically detected (C). T2H5 was used for immunohistochemical staining (A,B) and sections were counterstained with hematoxylin (A,B) or methyl green (C). Scale bars: (A) 200 μm; (B) 50 μm; (C) 100 μm.
when they are cultured without feeder in serum-free medium, indicating that serum- or feeder-derived factors are not necessary to induce tenascin-C production. Immunohistochemical analysis of reconstructed epidermis showed that keratinocytes in vitro are able to deposit tenascin-C in the extracellular matrix as well. Tenascin-C was detected in cultures that were maintained submerged in the culture medium for 3 d and remained present during subsequent air-exposed culture. Whether this is caused by continued tenascin-C expression or slow turnover of previously made protein cannot be concluded from these immunohistochemical data. Interestingly, the site of tenascin-C deposition, namely the dermal-epidermal junction of the cultures, corresponds to the location of tenascin-C in vivo. These in vitro models, the monolayer keratinocyte culture systems and the reconstructed epidermis, should be useful when further investigating the regulation and effects of epidermal tenascin-C expression.

The finding that keratinocytes express tenascin-C in vitro is clearly relevant for the in vivo situation, as we could detect tenascin-C in the epidermis of healing skin wounds at the protein and mRNA levels. Epidermal tenascin-C expression was previously demonstrated in feeder-cultured human keratinocytes and in amphibian epidermis (Onda et al., 1991). Recently, Aukhil and colleagues (1996) reported on tenascin-C expression by keratinocytes during healing of incisional wounds in rats where they observed expression patterns similar to what we found in human tissue. In a previous report we concluded that keratinocytes could potentially interact with tenascin-C in the later stages of wound healing but were unlikely to come into contact with tenascin-C in the early phase because of the undetectable levels of tenascin-C under the migrating keratinocytes (Laatijnhouters et al., 1996). We, however, have now used a panel of polyclonal and monoclonal antibodies combined with a much more sensitive staining protocol that indicates that the expression levels of tenascin-C are much higher than previously anticipated. In this study we could detect tenascin-C in the dermis underneath the migrating keratinocytes. In addition, keratinocytes themselves are stained for tenascin-C protein. In situ hybridization results indicate that in the early phase of wound healing, before wound closure, keratinocytes of the neo-epidermis are the major source of tenascin-C. By the time that the wounds are closed, tenascin-C production in the neo-epidermis

Figure 6. Tenascin-C purification. Silver staining of a 4–20% gradient gel electrophoresed under reducing conditions. Lane 1, culture medium of U138-MG cells; lane 2, fraction eluted from hydroxylapatite; lane 3, fraction of the Mono Q column containing fibronectin and BSA; lane 4, final tenascin-C preparation after separation on the Mono Q column; lane 5, commercially available tenascin-C; lane 6, molecular weight markers.

Figure 7. Adhesion to fibronectin and tenascin-C of keratinocytes cultured in KGM or by the method of Rheinwald and Green. Assays were performed with (■) or without (□) PMA. Adhesion without PMA was performed in triplicate or quadruplicate in six experiments, and the effect of PMA was tested six and three times for feeder-cultured and KGM-cultured cells, respectively. Representative data from one of these experiments are shown. Error bars, SEM (n = 3).

Figure 8. Adhesion of feeder-cultured keratinocytes. A comparison is made between adhesion to laminin (LN), fibronectin (FN), commercially available human tenascin-C (TN com), and tenascin-C that we purified from human glioblastoma cells (TN). Proteins were coated at a concentration of 20 μg per ml, except for purified tenascin-C, which was used at 4, 20, and 100 μg per ml. Adhesion without PMA (□) was compared to adhesion in the presence of PMA (■). One representative experiment of six separate experiments is shown. Error bars, SEM [n = 4 (LN and FN) or 3 (TN com and TN)].

levels are reached later than maximum mRNA levels and that the turnover of tenascin-C in the wounds is rather slow.

Because tenasin-C is detected beneath the migrating keratinocytes that do not encounter an intact basal membrane structure (Latijnhouwers et al, 1996), we wondered whether it may function as a kind of provisional matrix to which these keratinocytes adhere. The results of the adhesion assays indicate that keratinocytes adhere poorly to tenasin-C. Therefore, tenasin-C does not seem to be an important adhesive substrate for keratinocytes. A prerequisite for tenasin-C having a direct effect on keratinocytes is interaction between keratinocytes and tenasin-C, which is most likely receptor-mediated. In the adhesion assays, very few keratinocytes remained attached to tenasin-C, suggesting that interactions between such putative receptors on keratinocytes and tenasin-C are not very strong. It should be noted, however, that strong intracellular effects may be evoked in spite of weak receptor binding. This was recently reported for the interaction between fibronectin and αvβ6 integrins (Schwartz and Denninghoff, 1994).

Although fibronectin binding to these receptors is much weaker than binding to αvβ3, the former interaction evokes the rise in intracellular Ca2+ that was observed in cells that adhered to fibronectin.

HUMAN KERATOCYTES ARE A SOURCE OF TENASCIN-C

