Erythrocyte Aging Characteristics in Elderly Individuals With Beginning Dementia

*Department of Biochemistry, †Department of Psychiatry, Blood Transfusion Service, University of Nijmegen, P.O. Box 9101, NL-6500 HB Nijmegen, The Netherlands

Received 19 July 1996; Revised 23 December 1996; Accepted 3 February 1997

SENILE dementia of the Alzheimer type (SDAT) is a syndrome with a heterologous etiology (20,22). However, the final neuropathological lesions, plaques, and tangles, are identical for all patients. Because plaques, tangles, and cell loss (or shrinkage) are also observed—be it to a much smaller extent—in healthy individuals of advanced age, the pathophysiology of SDAT has been characterized as an accelerated and/or disturbed neuronal aging process (20).

However, too little is known about the normal neuronal aging process to falsify this hypothesis. In contrast, the final stages of the erythrocyte life are well defined (14). Structural changes in band 3, the erythrocyte anion transporter [AE1 of the anion exchanger gene family; (4)], do not only lead to characteristic functional changes, but also to neoantigen activity and binding of autologous IgG. Cell-bound IgG, either or not in combination with complement activation (16), leads to recognition and removal of old erythrocytes by the immune system (14).

Earlier, we measured some parameters of this paradigm (IgG content, anion transport characteristics, AE1 breakdown) in erythrocytes from patients in advanced stages of senile dementia of the Alzheimer type (SDAT), multiinfarct dementia (MID), and from age-matched control donors (3). Our results led us to the conclusion that the erythrocyte aging process is disturbed in patients with SDAT. We reached an identical conclusion with regard to the erythrocyte aging process in donors with Down's syndrome (4). Recent findings support the hypothesis that Alzheimer-specific changes can be found at the level of the erythrocyte membrane (23). The changes in erythrocytes from individuals with Down's syndrome who showed no signs of dementia (4) indicated that aberrant erythrocyte aging characteristics might already be detectable before the neuropsychological symptoms of dementia. Such a finding might be important for early diagnosis. Therefore, we measured erythrocyte aging characteristics (anion exchange, AE1 breakdown, IgG content) in elderly individuals with beginning dementia, and compared them with age-matched, old controls and with much younger control donors. Here we present the results of these investigations.

METHOD

Subjects

The subjects were 27 patients with senile dementia of the Alzheimer type (SDAT), 17 patients with multiinfarct dementia (MID), 9 patients with mixed dementia (SDAT/MID), and 2 control groups of subjects without dementia: one age-matched (AMC; N = 14) and one young control group (YC; N = 8). The YC were coworkers of the authors (28 ± 5 years). All other subjects were residents of local homes for the elderly, who took part in a longitudinal study on psychiatric symptoms in dementia. The present study comprises patients in the more beginning stages of dementia than the patients from a psychogeriatric institution examined previously (3). Informed consent was obtained from all

1 Requests for reprints should be addressed to Dr. G. Bosman, Institute of Cellular Signalling, Department of Biochemistry-FMW 160, Faculty of Medical Sciences, University of Nijmegen, P.O. Box 9101, NL-6500 HB Nijmegen, The Netherlands.
participants in the study. The demographic characteristics are presented in Table 1.

Clinical Measurements

All subjects were scored on two cognitive screening instruments, the Mini-Mental State Examination (7) and the Short Blessed Test (12). Furthermore, they had undergone standardised examinations using the Clinical Assessment Battery as developed by the Consortium to Establish a Registry for Alzheimer’s Disease (12), including medical history, current medication, heteroanamnesis, neuropsychological investigation, physical and neurological examinations, a scheme for laboratory investigations, and a psychiatric diagnosis using the Geriatric Mental State Examination (6). Using this information, the demented subjects received a psychiatric diagnosis using the Geriatric Mental State Examination (6). According to their Hachinski score (10), they were divided into three subgroups: SDAT (score 0-4), SDAT/MID (score 5 and 6), and MID (score ≥7). The age-matched control group consisted of subjects who did not fulfill the DSM-III-R criteria of dementia. The following exclusion criteria for demented and control subjects were used (17): communication problems interfering with test completion (severe hearing problems, severe aphasia), cognitive impairment caused by alcohol abuse, Parkinson’s disease requiring medication, major depression, specific neurological disease with impairment caused by alcohol abuse, Parkinson’s disease requiring medication, major depression, specific neurological disease with dementia (with the exception of cerebrovascular disorders and Alzheimer’s disease), or an incomplete Hachinski score.

Blood Collection

Five to ten milliliters of blood, collected with EDTA as an anticoagulant, served for all assays. The assays were performed on the major erythrocyte fraction, representing “middle-aged” cells (2). Separation of plasma, platelets, leukocytes, and young, middle-aged and old red blood cells was performed on the day of collection by differential centrifugation and density separation (3).

Erythrocyte-Bound Immunoglobulin G

The amount of membrane-bound immunoglobulin G (IgG) was measured on intact erythrocytes using an enzyme-linked antiglobulin test (3).

Anion Transport

Erythrocyte anion transport characteristics were determined by measuring initial rate of efflux of 35S-labeled sulfate (10 mCi/ mmol; Amersham, Buckinghamshire, UK) under exchange conditions as a function of the sulfate concentration (2,3,13). K_m, the sulfate concentration at which the rate equals half the maximal velocity V_{max}, was determined from the initial, linear part of the velocity vs. concentration graph (2,3).

Immunochemical Analysis

Erythrocyte membranes were prepared by hypotonic lysis in the presence of EDTA, EGTA, and diisopropylfluorophosphate as protease inhibitors (3). Band 3 polypeptides were analyzed by sodium dodecylsulfate-polyacrylamide gelelectrophoresis and immunoblotting using standard techniques described before (3). The reactivity of the antisera against human erythrocyte band 3 (MK1B3 against the whole protein and PMB3 against the membrane domain) have been described before (3,4). Quantitative analysis of the extent of band 3 fragmentation was performed with a densitometer (GS-670) and analysis program (Molecular Analyst) from Bio-Rad Laboratories (Hercules, CA).

The clinical and neuropsychological data of the patients were only revealed and combined with the data from the biochemical studies after the latter had been completed.

RESULTS

Erythrocyte-Bound Immunoglobulin G

The amount of erythrocyte-bound IgG did not differ significantly between the demented and healthy, age-matched donor groups (Fig. 1), and was in the same range as reported before for healthy, old-aged people [3.6 ± 0.9 fgm/1000 cells; (3,4)]. This value is higher than that found for a relatively young (28 ± 5 years) control group (1.8 ± 0.8 fgm/1000 cells), confirming earlier results (4). In contrast with earlier findings in patients in an advanced stage of dementia of the Alzheimer type (3), we did not find a significant increase in erythrocyte-bound IgG for the SDAT group. Exclusion of the extremely high IgG values (Fig. 1) does not significantly affect these conclusions.

Anion Transport Characteristics

The mean values of V_{max} and K_m of sulfate exchange did not differ significantly between the various donor groups, and were not different from the previously reported values for erythrocytes of young or aged control groups [Table 2; (3,4)]. It is noteworthy, however, that 9 of the 11 donors with V_{max} values that were significantly lower than the mean (control) value (12.1 ± 2.9 µmol/1010 cells/min), belong to the patient groups (6 SDAT; 2 SDAT/MID; 1 MID). The numbers of individuals with a K_m
significantly lower than the normal value (0.9 ± 0.2 mM sulfate) and with a normal V_{max} similarly found to be characteristic of advanced SDAT patients (3), were not significantly different between the groups (SDAT, 6 out of 28; MID, 5 out of 15; SDAT/MID, 2 out of 9; AMC, 5 out of 22). In the whole donor group, there was a highly significant, negative correlation between K_{m} and V_{max} (r = −0.46, p = 0.0001; n = 65), as found for physiologically aged erythrocytes (2).

Erythrocyte Band 3 Fragmentation

The extent of band 3 fragmentation can be deduced from the presence of polypeptides that are reactive with antibodies against erythrocyte band 3, and that have an apparent molecular weight smaller than 95 kDa, the molecular weight of native band 3 (2~4.8-13.14). Band 3 fragmentation increases with cellular aging (2,14). An immunoblot comparison of young and healthy, old donors indicated that, in general, band 3 fragmentation is also increased in the total erythrocyte population of healthy, old donors (Fig. 2), although there is considerable variation in the old age group (Bosman et al., in preparation). When we compared the

TABLE 2

<table>
<thead>
<tr>
<th>Donor Group</th>
<th>V_{max}</th>
<th>K_{m}</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMC</td>
<td>12.1 ± 2.9</td>
<td>1.1 ± 0.1</td>
</tr>
<tr>
<td>SDAT</td>
<td>11.6 ± 3.1</td>
<td>0.9 ± 0.2</td>
</tr>
<tr>
<td>MID</td>
<td>11.8 ± 2.2</td>
<td>0.9 ± 0.3</td>
</tr>
<tr>
<td>SDAT/MID</td>
<td>11.2 ± 2.5</td>
<td>0.8 ± 0.2</td>
</tr>
</tbody>
</table>

*V_{max} and K_{m} of sulfate transport of erythrocytes were measured under exchange conditions as described before (3), and are given as mean ± SD. AMC, age-matched controls; SDAT, senile dementia of the Alzheimer type; MID, multiinfarct dementia; SDAT/MID, mixed dementia.

![FIG. 2. Band 3 fragmentation patterns in erythrocyte membranes from young and old, healthy individuals. Immunoblot analysis of erythrocyte band 3 was performed as described in the Method section. YC: 18-4, 50-4, 54-3, 55-1; AMC: 10-7, 60-3, 63-4, 64-2. For abbreviations, see Fig. 1.](image)

FIG. 3. Immunoblotting analysis of band 3 fragmentation in erythrocyte membranes of patients with dementia and age-matched control donors. Erythrocyte membrane proteins were analyzed for the presence of polypeptides that are immunologically related to band 3 as described in the Method section. Numbers under the lanes are numbers of donors with the following diagnosis: SDAT: 45-1, 45-2, 45-4; MID: 45-3; AMC: 45-5, 60-1, 60-2, 60-3.
fragmentation had a significantly higher IgG content (2.5 ± 0.5 fgm/1000 cells; n = 19) vs. when compared with erythrocytes showing less fragmentation (1.6 ± 0.6 fgm/1000 cells; n = 17).

Blood Chemistry

Measurement of erythrocyte, thrombocyte, and leukocyte numbers, and related parameters (hemoglobin, mean cellular volume, etc.) did not indicate any disturbances in cellular homeostasis in the patient groups as compared with the control groups. The serum concentrations of sodium, potassium, chloride, bicarbonate, and calcium, as well as those of glucose, creatinine, and urea, were within the normal range. There was a highly significant (r = 0.52, p < 0.001, n = 47) positive correlation between V_max of sulfate exchange and hemoglobin content. We found no significant difference between the patient and control groups in the extent and type of medicines used. There was no significant correlation between any of the erythrocyte aging parameters and use of different types of medicines used. There was no significant correlation between the patients in the beginning stages and the accelerations of the normal neuronal aging process (5). In addition, clinical characteristics of AD indicate a disturbance and/or acceleration of the normal neuronal aging process (5). In addition, numerous data indicate that AD/SDAT may have specific systemic manifestations (24). From these observations, we postulated that acceleration or disturbance of the cellular aging process in patients with AD/SDAT might be detectable at the level of the erythrocyte membrane. Our first results did indeed show an increase in erythrocyte IgG content, a change in band 3 fragmentation patterns, and a decrease in the K_m of sulfate exchange in AD/SDAT, but not in multiinfarct dementia patients, when compared with a group of age-matched control donors (3). These findings were supported by reports of protein-related differences at the surface of erythrocytes between control and SDAT patients (23), and of irregularly shaped erythrocytes in some SDAT patients (9).

Thus, the membrane characteristics of patients in advanced stages of AD/SDAT led us to the conclusion that the erythrocyte aging process might be disturbed in these patients (3). Measurements of the same parameters in individuals with Down's syndrome of various ages and in various stages of dementia resulted in the hypothesis that changes in the erythrocyte aging process might be detectable before the onset of dementia (4). However, in the present study we found no disease-specific differences in any of the erythrocyte aging characteristics in aged patients with beginning dementia, compared with age-matched controls. This difference between the findings in two donor groups, who were in the same age range but in different stages of dementia, could be due to various causes: 1) Although the methods used by us to establish the diagnosis of dementia and SDAT are as accurate as presently possible (see the section Clinical Measurements in the Method section), it can not be excluded that statistically significant differences may not be apparent because of this problem. 2) It is generally acknowledged that SDAT is a heterogeneous disease (20,22). The patients in the advanced stages of dementia described before (3) were of the same age as the patients in the beginning stages described here. Thus, these two groups may represent another illustration of the heterogeneity in age of onset and/or rate of progression of SDAT that may be reflected by the erythrocyte aging process. 3) More likely, a general disturbance of the cellular aging system in AD/SDAT underlies neuronal degeneration and cell death and may affect neuronal and erythrocyte aging equally. The constant renewal of the erythrocyte population could prevent detection of such a disturbance until at an advanced stage, i.e., after a long period of disease progress. 4) An advanced stage of dementia might run parallel with a deficiency in the maintenance of general, organismal homeostasis. A small disturbance of the already increased rate of erythrocyte aging in the elderly (15) might very well result in changes in erythrocyte homeostasis, and, thus, in the values of the erythrocyte aging-related parameters.

ACKNOWLEDGEMENTS

We thank J. G. M. L. Linders (Blood Transfusion Service, Academic Hospital Nijmegen) for performing the IgG determinations.

REFERENCES

