PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/25777

Please be advised that this information was generated on 2017-11-27 and may be subject to change.
Epicutaneous application of leukotriene B\(_4\) induces patterns of tenascin and a heparan sulfate proteoglycan epitope that are typical for psoriatic lesions

Received: 13 June 1996

Abstract Application of leukotriene B\(_4\) (LTB\(_4\)) to normal human skin induces changes similar to those found in psoriatic skin, and it has proved to be a useful model for studying the pathogenesis and treatment of psoriasis. We studied the expression patterns of molecules that have recently been shown to be altered in lesional psoriatic skin, including the extracellular matrix protein tenascin (TN) and the basement membrane and cell surface-associated heparan sulfate proteoglycans (HSPGs). During 72-h the expression of these markers was studied immunohistochemically and the expression of TN was correlated with epidermal proliferation and influx of inflammatory cells. Following the peak influx of polymorphonuclear leukocytes, a marked increase in TN expression was noted in the papillary dermis 72 h after LTB\(_4\) application. The expression patterns of basal membrane-associated epitopes of HSPG remained unaltered, whereas the expression of cell surface-associated HSPG disappeared 72 h after LTB\(_4\) application. A significant correlation was found between dermal TN expression and epidermal hyperproliferation and the presence of dermal T cells. These findings indicate that the model of LTB\(_4\)-induced acute cutaneous inflammation displays many characteristics of early psoriatic lesions and could serve as a model to study some of the cell biological changes in this disease.

Key words Tenascin • Heparan sulfate proteoglycans • Extracellular matrix • Psoriasis • Leukotriene B\(_4\)

Introduction

Epicutaneous application of the potent chemoattractant leukotriene B\(_4\) (LTB\(_4\)) results in a reproducible cutaneous inflammatory response, initially dominated by an accumulation of polymorphonuclear leukocytes (PMN) with a maximum at 24 h, and followed by a dermal T-cell infiltrated which is most pronounced after 72 h. Epidermal hyperproliferation occurs, reaching a maximum after 72–96 h. These phenomena are dose dependent [1, 2]. Although LTB\(_4\) is not likely to be the only or primarily pathogenetic event in psoriasis [3], the morphologic changes in the skin using the LTB\(_4\)-model are a useful means of investigating acute inflammation in vivo and partially mimic the hallmarks of psoriatic skin lesions.

The extracellular matrix (ECM) plays an important role in cell growth, differentiation and migration. It provides firmness, elasticity, and resilience to tissues. The ECM is not inert but interacts with keratinocytes, inflammatory cells, cytokines and growth factors. Recently it has been shown that some ECM molecules are altered in lesional skin of psoriatic patients [4, 5], including tenascin and the heparan sulfate proteoglycans (HSPGs). The expression of the dermal glycoprotein tenasin is limited in normal skin but profoundly increased in chronic and subacute inflammatory disorders such as psoriasis, acne, and alopecia areata [4, 6, 7]. It is also found in increased amounts in epidermal tumors and in wound healing [8]. In acute inflammation, however, the expression of tenasin has never been investigated.

In addition, the basal membrane (BM) and cell surface associated HSPGs have been shown to be changed in psoriasis [5]. HSPGs play an important role in assembly of the BM, bind growth factors and influence charge-dependent transport of molecules. They consist of heparan sulfate (HS) side chains, which are covalently bound to a core protein, and they are present in the BM of the epidermis, cell membranes and blood vessels [9]. In psoriasis, cell surface-associated HSPGs are absent, whereas they are clearly found in the epidermis of normal skin [5].
Furthermore, the pattern of basal membrane-associated HSPGs are also altered in psoriasis: the high-sulfated domain of the HS side chain is absent in the tips of the dermal papillae [5].

In this study, the expression of the ECM proteins tenascin and basal and cell surface-associated HSPGs was studied immunohistochemically in normal human skin after epicutaneous application of LTB\(_4\) over 72 h. In order to find out whether tenascin expression is most related to proliferation or differentiation in this model of acute inflammation, its expression in relation to epidermal proliferation and influx of inflammatory cells (PMNs and T lymphocytes) was investigated. This study indicated that the application of LTB\(_4\) induced many changes in ECM molecules that can also be found in early psoriatic lesions.

**Materials and methods**

Volunteers and biopsies

A group of 16 healthy male volunteers (mean age 27 years) without signs or history of skin disorders participated in this study. Before the application of LTB\(_4\), a 4-μm punch biopsy was taken under local anaesthesia, to assess the histology of the unchallenged skin.

Aliquots of 100 ng LTB\(_4\) (Paaas, Frankfurt, Germany) dissolved in 10 μl ethanol were applied to the skin of the upper part of the back of the volunteers through a plastic cylinder (6.5 mm diameter) and the ethanol was evaporated under a stream of nitrogen. The test sites were covered with impermeable dressing (Silver Patch, van der Bend, Brieze, The Netherlands) held in place with Leukosilk tape (Beiersdorf, Hamburg, Germany).

Further 4-μm punch biopsies were taken 24 and 72 h after LTB\(_4\) application under local anaesthesia. The biopsies were washed in phosphate-buffered saline (PBS; NPBI, Enimer-Compascuum, The Netherlands), embedded in Tissue Tek OCT compound (Miles Scientific, Naperville, Ill.), snap-frozen in liquid nitrogen and stored at −80°C. They were sectioned at 7 μm and fixed for 10 min in acetone/ether (60/40 vol%) for MIB staining, or in acetone (0°C) for staining with the other antibodies and again stored at −80°C until use.

Permission to conduct this study was obtained from the local Ethics Committee of the University Hospital Nijmegen. Informed consent was given by all subjects in this study. All volunteers tolerated the applications of LTB\(_4\) well. After 24 h, slight erythema was seen at the application sites.

Antibodies

For immunohistochemical staining of tenascin, the monoclonal antibody (mAb) T2H5 was used (kindly provided by Dr. A. A. Verstraten, The Netherlands Cancer Institute, Amsterdam, The Netherlands). For immunohistochemical staining of HSPGs, three mAbs were used: JM-72, JM-403, and JM-13 (J. vd Born, Department of Nephrology, University Hospital Nijmegen). The production, characterization and demonstration of specificity of these mAbs has been carried out by van den Born et al. [10–13]. The mAb JM-72 is directed against the BM-associated HSPG core protein, JM-13 against the sulfated domains of the HS side chains and JM-403 against the unmodified/low-sulfated domains of the HS side chains. To study inflammation, the mAbs T11, directed against T lymphocytes (anti-CD2; Dakopatts, Copenhagen, Denmark) and antielastase against elastase present in PMN (Dakopatts) were used. The mAb MIB-1 which detects the nuclear antigen Ki-67 present in the late G\(_1\), S and G\(_2\) + M phases of the cell cycle was used as a marker for proliferation (Immunotech, Marseille, France).

Immunohistochemical staining

For staining with the mAbs JM-72 (1:250 in PBS), JM-403 (1:250), T2H5 (1:2000), MIB-1 (1:50) and antielastase (1:100) and indirect peroxidase technique was used. After thawing at room temperature for 30 min, slides were fixed again in acetone (0°C), or in acetone/ether (60/40 vol%) for MIB staining, for 10 min. They were washed in PBS and incubated for 1 h with the primary antibodies. After washing twice in PBS the slides were incubated for 30 min with a solution of peroxidase-conjugated rabbit antimouse immunoglobulins (RAM-Ig) 1:50 (Dakopatts) in phosphate buffer containing 5% human AB serum. After two further washes in PBS, slides were stained in a solution of 3-aminobenzidine tetrahydrochloride (AEC) in 0.5% sodium acetate buffer containing 0.01% H\(_2\)O\(_2\) for 10 min.

Staining with the mAb JM-13 was carried out using the Vectastain Elite ABC kit (Vector Laboratories, Burlingame, Calif.). Sections were preincubated for 20 min with 20% normal horse serum and after removing the excess serum, sections were incubated with an undiluted culture supernatant of the mAb JM-13 for 60 min. After two washing steps, sections were incubated for 30 min with a solution of horse antimouse immunoglobulins, diluted 1:200 in PBS containing 1% bovine serum albumin. This was followed by a washing step and incubation with Vectastain Elite ABC for 30 min. After two further washes in PBS, slides were stained in a solution of AEC in sodium acetate buffer containing 0.01% H\(_2\)O\(_2\) for 10 min.

Staining with T11 was carried out using a peroxidase antiperoxidase technique (PAP). Slides were incubated with the primary antibody (1:100) for 60 min, washed twice in PBS and then incubated with 1:50 RAM-Ig (Dakopatts). After two more washes in PBS, PAP complexes were added (Dakopatts). The incubation with RAM-Ig and PAP was repeated and after two additional washes in PBS and preincubation with sodium acetate buffer, pH 4.9, slides were stained with AEC solution. All slides were counterstained with Mayer's hematoxylin (Sigma, St. Louis, Mo.) mounted in glycerine gelatine (Sigma), and studied by light microscopy.

Histological examination

The distribution of the stainings was assessed by two independent investigators. Tenascin expression in the dermis was assessed using an eight-point scale: 0 = no staining, 1 = sporadic staining in the upper dermis adjacent to the BM of the dermoepidermal junction (DEJ), 2 = a patchy distribution in the upper dermis adjacent to the BM, but not present in all dermal papillae, 3 = a patchy expression in the tips of all dermal papillae, but not continuous, 4 = 3 but extending more deeply into the dermis, 5 = a thin but continuous layer adjacent to the BM, 6 = a continuous layer adjacent to the BM and in the papillary dermis, 7 = staining extending into the reticular dermis. Expression of HSPGs (JM-13, JM-403 and JM-72) in the BM of the DEJ and the BM of blood vessels was appraised using a three-point scale: 0 = staining not present, 1 = discontinuous staining, 2 = continuous staining. The expression of cell surface-associated HSPGs (JM-403 in the epidermis) was assessed using a four-point scale: 0 = no staining, 1 = sporadic staining, 2 = pronounced staining, 3 = complete staining. Epidermal proliferation was measured by counting the number of MIB-1-positive nuclei per millimeter length of section. The density of PMN and T lymphocytes was assessed using a four-point scale: epidermis 0 = no positive cells observed, 1 = sporadic staining, 2 = minimal presence, 3 = moderate presence, 4 = moderate/pronounced presence, 5 = pronounced presence, 6 = complete staining; dermis 0 = no positive cells, 1 = sporadic staining, 2 = 1—25% of infiltrate cells stained, 3 = 26—50%, 4 = 51—75%, 5 = 76—99%, 6 = 100%. The dermal infiltrate was subdivided into perivascular staining and diffuse dermal staining.

Statistical analysis

For statistical analysis Student's t-test was used. The chosen level of significance was P ≤ 0.05.
Results

Immunohistochemistry

Tenascin

In all specimens of unchallenged skin, tenascin expression was discontinuous, varying from sporadic to patchy, in the papillary dermis (Fig. 1). Continuous staining for tenascin was found adjacent to the BM of blood vessels, eccrine sweat ducts and hair follicles. A slight decrease in tenascin expression was seen 24 h after LTB4 application, but after 72 h, a marked increase in tenascin was found ($P = 0.089$ and $P = 0.0006$, respectively). All dermal papillae were intensely stained and the staining extended into the papillary and reticular dermis (Fig. 2), and in 10 of 16 specimen this distribution was continuous.

HSPGs

In normal skin, staining with JM-403, directed against the low-sulfated domains of the HS side chains, showed a keratinocyte surface-associated pattern (Fig. 3). After 24 h of LTB4 exposure, however, the staining became less prominent ($P < 0.0001$) and after 72 h the expression varied from sporadical to completely absent ($P < 0.0001$, Fig. 4).

Fig. 1 Tenascin expression in normal human skin (× 200)
Fig. 2 Tenascin expression in normal skin 72 h after topical LTB4 application (× 200)
Fig. 3 HSPG staining in normal skin using mAb JM-403 directed against the low-sulfated side chains (× 200)
Fig. 4 HSPG staining in normal skin 72 h after LTB4 application (JM-403, × 200)
In addition, JM-403 staining was seen in the BM of the epidermis and blood vessels where no differences were seen between challenged and unchallenged skin.

Neither JM-72 (directed against the core protein of HSPG) nor JM-13, (directed against the highly sulfated domains of the HS side chains) showed differences in expression between unchallenged and challenged skin 24 and 72 h after LTB₄ application. The distribution of JM-72 was continuous and restricted to the BM of the DEJ and blood vessels. JM-13 staining of the BM of the DEJ was comparable to JM-72 staining but the BM of blood vessels did not stain before or after application of LTB₄.  

Correlation of tenascin expression with epidermal proliferation and inflammation

### Proliferation

The number of MIB-positive nuclei changed after LTB₄ challenge: following a reduction after 24 h ($P < 0.0001$), a marked increase was observed at 72 h ($P = 0.001$). Figure 5a shows that the changes in the expression of tenascin were correlated significantly with the numbers of MIB-stained nuclei in the epidermis ($r = 0.642$, $P < 0.0001$).

### Inflammation

In epidermal and dermal skin compartments a reproducible accumulation of PMNs was seen as assessed by staining for leukocyte elastase. Maximal presence of PMNs was seen 24 h after LTB₄ exposure ($P < 0.0001$) in the dermis in a perivascular and diffuse pattern, as well as in the epidermis. At 72 h there were substantially fewer PMNs in both compartments ($P < 0.0001$) but they were still present. Only a borderline significant correlation was found between tenascin expression and epidermal PMNs ($r = 0.27$, $P = 0.06$). No correlations were found between the presence of PMNs in the dermis and tenasin expression.

In contrast to the slight increase in epidermal T lymphocytes, dermal diffuse and perivascular T lymphocytes showed a marked increase in number, with a maximum at 72 h ($P < 0.0001$). The expression of dermal T lymphocytes (perivascular and diffuse) correlated significantly with tenasin expression ($r = 0.45$, $P = 0.001$ and $r = 0.48$, $P = 0.0004$, respectively). This is shown in the Figures 5 b, c. No significant correlation was found between epidermal T lymphocytes and tenasin expression.

### Discussion

In this study, the expression of the ECM molecules tenasin and HSPG in acutely inflamed skin after topical LTB₄ application was investigated and related to epidermal proliferation and cutaneous inflammation. A significant increase in tenasin expression was found as early as 72 h after LTB₄ challenge. The staining pattern was similar to that found in psoriasis. The increase in tenasin correlated with epidermal proliferation, the presence of T lymphocytes in the dermis and the influx of epidermal PMN.

Tenasin is known to be increased in conditions of increased epidermal proliferation including wound healing, tape stripping and hyperproliferative skin diseases such as psoriasis and skin carcinomas [4, 14, 15]. It is thought that the production of tenasin might be stimulated by the proliferating epidermis [15]. On the other hand, an increased expression of tenasin has been reported in skin disorders characterized by inflammation (alopecia areata, acne), in areas where many inflammatory cells are present. It has been postulated that cytokines derived from inflammatory
infiltrate may regulate tenasin synthesis [6, 7]. In addition, tenasin inhibits monocyte adhesion to the ECM and alters the adhesion properties of T cells in vitro, which may be due to abrogation of an accessory cell function at an early stage of the interaction between antigen-presenting cells and T cells [16], and may therefore have anti-inflammatory activity. Furthermore, tenasin is elevated during acute phase responses [17]. In this model, in which acute inflammation can be investigated, tenasin expression correlated best with the expression of MIB-1, a marker for proliferation.

A significant alteration in cell surface-associated HSPG expression was found in normal skin after LTB₄ application. The pattern of cell membrane-associated staining present in normal epidermis after staining with JM-403 disappeared 72 h after LTB₄ application. In psoriasis, this cell membrane-associated staining is also absent, in contrast to uninvolved psoriatic and normal skin, suggesting a comparable mechanism behind the changed JM-403 staining in psoriasis and the LTB₄ skin model. An influx of inflammatory cells in the dermis and epidermis may influence the expression of cell membrane-associated HSPGs. In acute irritant dermatitis, however, an increase in the concentration of HS occurs in normal skin and psoriatic skin [18], as determined using glycosaminoglycans electrophoresis of skin biopsies. Staining with JM-403 showed a continuous staining in the DEJ of normal skin both before and 72 h after LTB₄ application.

Staining of the core protein of HSPG did not show any changes in acute LTB₄-induced inflammation. Previous studies on LTB₄-challenged skin have indicated degradation of BM components by neutrophil elastase and ultrastructural damage of the BM [1, 19]. This does not necessarily imply that the epitope of the large core protein of HSPG, stained by JM-72, disappears. It can be concluded that the core protein of HSPG, one of the major constituents of the BM, remains virtually unaffected.

Staining with JM-13, against the high-sulfated parts of the HSPG side chains, did not change after LTB₄ application. In psoriasis, however, loss of staining of JM-13 has been found in the tips of the dermal papillae [5], where PMNs are moving from the tips of the dermal papillae into the epidermis and are known to release elastase and free radicals. Degradation of the DEJ by proteolytic enzymes from human skin and human PMNs has been described [20–22]. Furthermore, Diamond et al. have described a direct interaction between the leukocyte integrin Mac-1 and HSPGs [23]. Mac-1 is the main integrin involved in adhesion of PMN. It has thus been speculated that in psoriasis the loss of side chain staining of HSPG could be due to cleavage of the JM-13 epitope by proteolytic enzymes. In the LTB₄ model however, migrating PMNs did not cause visible cleavage of the JM-13 epitope during 72 h. In this study, staining of the dermal blood vessels was unaltered, although the loss of HSPGs has been previously reported in endothelial cells caused by PMN-derived proteases [24].

In conclusion, pronounced changes in the dermoepidermal interface were found in acute LTB₄-induced inflammation. An increased tenasin expression and a reduction in keratinocyte-associated HSPG staining in the epidermis were detected. Correlations with epidermal proliferation as well as cutaneous inflammation were found, but the correlation with proliferation of the epidermis was
infiltrate may regulate tenasin synthesis [6, 7]. In addi-
tion, tenasin inhibits monocyte adhesion to the ECM and
alters the adhesion properties of T cells in vitro, which
may be due to abrogation of an accessory cell function
at an early stage of the interaction between antigen-present-
ing cells and T cells [16], and may therefore have antiin-
flammatory activity. Furthermore, tenasin is elevated
during acute phase responses [17]. In this model, in which
acute inflammation can be investigated, tenasin expression
correlated best with the expression of MIB-1, a marker
for proliferation.

A significant alteration in cell surface-associated HSPG
expression was found in normal skin after LTB4 applica-
tion. The pattern of cell membrane-associated staining
present in normal epidermis after staining with JM-403
disappeared 72 h after LTB4 application. In psoriasis, this
cell membrane-associated staining is also absent, in con-
trast to uninvolved psoriatic and normal skin, suggesting a
comparable mechanism behind the changed JM-403 stain-
ing in psoriasis and the LTB4 skin model. An influx of in-
flammatory cells in the dermis and epidermis may influ-
ence the expression of cell membrane-associated HSPGs.
In acute irritant dermatitis, however, an increase in the
concentration of HS occurs in normal skin and psoriatic
skin [18], as determined using glycosaminoglycans elec-
trophoresis of skin biopsies. Staining with JM-403 showed
a continuous staining in the DEJ of normal skin both be-
fore and 72 h after LTB4 application.

Staining of the core protein of HSPG did not show any
changes in acute LTB4-induced inflammation. Previous
studies on LTB4-challenged skin have indicated degrada-
tion of BM components by neutrophil elastase and ultra-
structural damage of the BM [1, 19]. This does not neces-
sarily imply, that the epitope of the large core protein of
HSPG, stained by JM-72, disappears. It can be concluded
that the core protein of HSPG, one of the major con-
stituents of the BM, remains virtually unaffected.

Staining with JM-13, against the high-sulfated parts of
the HSPG side chains, did not change after LTB4 applica-
tion. In psoriasis, however, loss of staining of JM-13 has
been found in the tips of the dermal papillae [5], where
PMNs are moving from the tips of the dermal papillae
into the epidermis and are known to release elastase and
free radicals. Degradation of the DEJ by proteolytic en-
zymes from human skin and human PMNs has been de-
scribed [20–22]. Furthermore, Diamond et al. have de-
scribed a direct interaction between the leukocyte integrin
Mac-1 and HSPGs [23]. Mac-1 is the main integrin in-
volved in adhesion of PMN. It has thus been speculated
that in psoriasis the loss of side chain staining of HSPG
could be due to cleavage of the JM-13 epitope by prote-
olytic enzymes. In the LTB4 model however, migrating
PMNs did not cause visible cleavage of the JM-13 epitope
during 72 h. In this study, staining of the dermal blood
vessels was unaltered, although the loss of HSPGs has
been previously reported in endothelial cells caused by
PMN-derived proteases [24].

In conclusion, pronounced changes in the dermoepi-
dermal interface were found in acute LTB4-induced in-
flammation. An increased tenasin expression and a re-
duction in keratinocyte-associated HSPG staining in the
epidermis were detected. Correlations with epidermal pro-
liferation as well as cutaneous inflammation were found,
but the correlation with proliferation of the epidermis was
most pronounced. The findings indicate that the model of
LTB₄-induced acute cutaneous inflammation displays
many characteristics of the early psoriatic lesion and
could serve as a model for the study of some of the cell bi­
ological changes in this disease.

References

   An ultrastructural study of the response of normal skin to epi­
   276
2. Jong EM de, Erp PE van, Vlijmen IM van, Kerkhof PC van de
   (1992) The inter-relation between inflammation and epidermal
   proliferation in normal skin following epicutaneous application
   Dermatol 17: 413–420
   mal and psoriatic skin to single and multiple topical applica­
   R, Born J van den, Mackie EJ (1991) Tenascin expression in
5. Seyger MMB, Born J van den, Schalkwijk J, Kerkhof PC van de,
   De Jong EMGJ (1997) Altered distribution of heparan sul­
109
6. Knaggs HE, Layton AM, Morris C, Wood EJ, Holland DB,
   Cunliffe WJ (1994) Investigation of the expression of the extracel­
   lular matrix glycoproteins tenascin and fibronectin during
7. Baar HM van, Perret CM, Vlijmen Willems IM van, Cleutjens
tenascin in perifollicular connective tissue: comparison of nor­
mal scalp and alopecia areata. Arch Dermatol Res 283: 86–90
8. Leipzigrousers MA, Bergers M, Bergen BH van, Spruijt KI,
   Andriessen MP, Schalkwijk J (1996) Tenascin expression dur­
ing wound healing in human skin. J Pathol 178: 30–35
tion of heparan sulphate proteoglycans. Biochem J 236: 313–
325
10. Born J van den, Heuvel LP van den, Bakker MA, Veerkamp
    against the protein core and glycosaminoglycan side chain of
glomerular basement membrane heparan sulfate proteoglycan:
    characterization and immunohistological application in human
    tissues. J Histocom Cytochem 42: 89–102
11. Born J van den, Heuvel LP van den, Bakker MA, Veerkamp
    against GBM heparan sulfate induces an acute selective pro­
teinuria in rats. Kidney Int 41: 115–123
12. Born J van den, Heuvel LP van den, Bakker MA, Veerkamp
zation of a monoclonal antibody against human glomerular he­
paran sulfate. Lab Invest 65: 287–297
13. Born J van den, Gunnarsxon K, Bakker MA, Kjellen L, Kutsche
ence of N-unsubstituted glucosamine units in native heparan
    sulfate revealed by a monoclonal antibody. J Biol Chem 270:
    31303–31309
14. Lightner VA (1994) Tenascin: does it play a role in epidermal
277
15. Schalkwijk J, Steliten PM, Vlijmen Willems IM van, Ooster­
ling B, Mackie EJ, Verstraeten AA (1991) Tenascin expression
in human dermis is related to epidermal proliferation. Am J
Pathol 139: 1143–1150
an extracellular matrix protein, exerts immunomodulatory ac­
tivities. Proc Natl Acad Sci USA 86: 7437–7441
   Tenascin-C in serum: an acute-phase protein or a carcinoma
   marker? (letter) Int J Cancer 60: 145
characterise the primary irritant dermatitis in psoriatrics and
healthy individuals. Clin Chim Acta 130: 305–315
   Degradation of the epidermal-dermal junction by proteolytic
   enzymes from human skin and polymorphonuclear leukocytes.
ence of N-unsubstituted glucosamine units in native heparan
sulfate revealed by a monoclonal antibody. J Biol Chem 270:
31303–31309
   cell proteoglycans are susceptible to cleavage by neutrophils.
   Arterioscler Thromb 2: 836–842