The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/25742

Please be advised that this information was generated on 2017-06-06 and may be subject to change.
Effects of inhaled corticosteroids on bone

G.P. Bootsma *, P.N.R. Dekhuijzen, J. Festen, C.L.A. van Herwaarden

Department of Pulmonary Diseases, University Hospital Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, Netherlands

Received 10 July 1996; revised 23 December 1996; accepted 6 March 1997

Abstract

Inhaled corticosteroids (ICS) are the most effective therapy for asthma currently available. The increasing use of ICS raises the issue of possible adverse systemic effects. Since one of the most important side-effects of oral corticosteroids (OCS) is osteoporosis, this article focuses on current knowledge of the effects of ICS on bone. Generally, doses higher than 1.0 mg/day cause a dose-dependent decrease in serum osteocalcin levels. Decreases in bone density have been suggested after treatment with ICS, but in most studies it is impossible to quantify the contribution of previous treatment with OCS and other confounding factors to bone loss. The clinical relevance of the observed changes in the long term is unknown. To date, no fracture data have been reported in patients. Beclomethasone dipropionate, budesonide and fluticasone propionate do not appear to be different per milligram ICS. In general, the lowest clinically efficacious dosage of ICS should be aimed at.

Keywords: Asthma; Inhaled corticosteroids; Side-effects; Osteoporosis; Bone metabolism

1. Introduction

Bronchial asthma is a frequently occurring disease, affecting about 5% of the adult population and 10–15% of children [1]. Inhaled corticosteroids (ICS) are the most effective therapy for asthma currently available [2,3]. These agents suppress the chronic inflammatory process, which is a pathological hallmark of this disease in the airways [3,4].

ICS are effective in various types of asthma and at all ages [2–4]. The international consensus recommends ICS to be used in an early stage of asthma [5–7], as airway inflammation is also present in patients with mild symptoms. In addition, there is a tendency to prescribe ICS for a prolonged period of time, as even after 2 years of treatment no plateau has been reached in effects [6–8]. Finally, there may be a dose-related improvement, since increasing the dose of ICS results in a greater improvement in the patients [9]. High-dose ICS may be used to control severe asthma and to reduce the need for oral corticosteroids (OCS) [10,11]. In Europe, the ICS mostly used are beclomethasone dipropionate (BDP), budesonide (BUD), and fluticasone propionate (FP).

In line with the above-mentioned arguments, the international guidelines recommend ICS in an early stage of asthma, and there is a clear tendency to prescribe ICS for a prolonged period of time and at high doses. This change in prescription raises the issue of safety and potential adverse systemic effects. Indeed, high dosages are associated with systemic effects, such as adrenocortical suppression [4], and, in children, decrease of growth [12]. The other po
tially serious side-effect of ICS concerns bone metabolism and bone quality in the long term [13]. Osteoporosis is one of the most important side-effects of long-term treatment with OCS [14]. In this review we will focus on the currently known effects of ICS on bone.

2. Side-effects: general considerations

Only 10–15% of an inhaled dose of ICS reaches the target cells in the lower airways. The remaining part stays in the inhaler or is deposited in the oropharyngeal cavity. This may cause local side-effects, such as dysphonia and oral candidiasis [15]. The incidence of thrush varies from 5 to 20%, and is related to the dose of ICS. Dysphonia is a much more common problem and may be due to local myopathy of laryngeal muscles [16].

The amount of ICS that reaches the systemic circulation, and therefore causes the systemic side-effects, is derived mainly (> 80%) from the part of ICS that is absorbed from the lung. The remainder comes from the fraction deposited in the oropharynx, which is swallowed and subsequently absorbed via the gastrointestinal tract [17]. The amount of ICS that reaches the systemic circulation in this way is small as a result of rapid biotransformation in the liver [18], and can be further reduced by the use of a large volume spacer or by mouth rinsing.

3. Effects of steroids on bone

3.1. Biochemical markers of bone turnover

One of the most important side-effects of corticosteroids is osteoporosis. Osteoporosis may affect up to 50% of patients on maintenance treatment with OCS [19]. OCS inhibit the intestinal absorption of calcium (Ca) and phosphate and may increase urinary Ca excretion. The resulting decrease in serum Ca evokes secondary hyperparathyroidism, which is reflected in an increased serum level of PTH [20]. OCS also decrease bone formation, as reflected by a decrease in alkaline phosphatase, osteocalcin and procollagen type 1 carboxy-terminal propeptide (P1CP) [20–23]. In addition, OCS possibly also increase bone resorption, reflected in an increase in urinary Ca/creatinine and hydroxyproline/creatinine ratios [20,23] (Fig. 1). These changes lead to secondary osteoporosis and a rise in (non-traumatic) fracture incidence [19,20,24].

ICS interact with the same glucocorticoid receptors, and would therefore be expected to act along a similar pathway after systemic absorption. No significant effects on calcium or phosphate metabolism, however, were observed in adults in doses up to 2.4–3.2 mg/day for short periods of time [14,25]. Similarly, no changes were found in children treated with doses up to 0.8 mg/day [26,27].

Indices of bone formation, such as alkaline phosphatase (AP) or the bone-specific isoenzyme of AP, were not altered by ICS in most studies [25–31]. Only in the study of Ali et al. were changes found [32]. In this study in 8 healthy volunteers, a small decrease in AP was found after treatment with BDP 2.0 mg/day for 4 weeks, whereas after BUD 1.8 mg/day (n = 8) no changes were observed. The significance of this open and small study is furthermore limited because of inaccurate statistical analysis. Kerstjens et al. [33] found no differences in AP after 4 weeks treatment with at least 0.8 mg of BDP or BUD.

In contrast, studies with a wash-out or placebo period, or with a control group without ICS, showed a dose-dependent decrease of the serum osteocalcin level, currently the most commonly used marker of bone formation [34] (Fig. 2) [21,25–31,35–38]. Osteocalcin is a very sensitive marker of osteoblast activity, as most serum osteocalcin originates from new cellular synthesis [34]. Osteocalcin is a specific marker of bone formation in processes with uncou-
tered bone formation and resorption, as is the case in glucocorticoid-induced osteoporosis [34,39].

No differences between BDP, BUD and FP appear to exist. From the same studies, effects of ‘systemic equivalent doses’ of OCS [40] are included in Fig. 2, showing the advantage of ICS. However, when looking at comparative trials between FP in half the dose of BDP, being clinically equipotent [41,42], osteocalcin levels were significantly lowered after the double dose of BDP, with no change after FP [31,43]. Ayres et al. [44] compared FP with BUD, but all patients already used 1–2 mg of ICS daily before the study. FP 1.0 and 2.0 mg, and BUD 1.6 mg daily did not change osteocalcin levels significantly. New markers of bone formation such as collagen type I extension peptides (P1CP) have shown no clear advantage over osteocalcin [34].

Markers of bone resorption, such as excretion of calcium and hydroxyprolines in urine, appeared to be increased in one study [32], but were unaltered in most studies [21,25,26,30,31,33,37]. Other markers of bone resorption include type I carboxy-terminal telopeptide (1CTP) and (deoxy)pyridinoline cross-links [34,39]. 1CTP measures the degradation of mature type I collagen (containing pyridinoline cross-links). 1CTP has been found to increase in diseases that degrade the surface (cortical part) of bone tissue (e.g., rheumatoid arthritis, bone metastasis), and changes only a little when trabecular bone is affected as in the case of glucocorticoid therapy [39]. Changes in trabecular bone are better reflected in the concentration of cross-links, and deoxypyridinoline is more specific for osseous tissue than are pyridinoline cross-links [34]. To date, only a few data are available on the effects of ICS on pyridinoline excretion in asthmatic patients, showing no changes [31,45]. Altogether, these findings indicate that in general ICS do not increase bone resorption.

The long-term effects of ICS on bone metabolism are unclear. Kerstjens and colleagues [33] reported that long-term treatment with ICS did not affect biochemical markers of bone metabolism. P1CP and 1CTP remained unchanged after 2.5 years of treatment with 0.8 mg BDP daily. Long-term studies with higher dosages of ICS have not been reported to our knowledge.

3.2. Bone mineral density

Low bone mass is an essential feature of osteoporosis. The clinical diagnosis of osteoporosis requires the presence of at least one atraumatic fracture [46]. Measuring bone mineral density – by different techniques at different sites – is of prognostic relevance. In general, a reduction in bone mineral density by one standard deviation increases the risk of a fracture by 50–100% [47].

OCS in doses of 7.5 mg/day or more cause significant loss of bone in most patients, with a significantly greater loss of trabecular than of cortical bone. There is a relationship between rate of bone loss and OCS dose, with bone loss of up to 8% per year in doses of 8–17 mg/day and up to 17.5% in doses up to 25 mg/day [48]. However, lower doses of OCS may also have increased rates of bone loss [48,49]. Data suggest that bone loss is most pronounced in the early weeks of OCS therapy with subsequent slowing during prolonged treatment [48]. Up to 50% of patients on maintenance treatment with OCS may experience (non-traumatic) fractures in the long term [19,20,24,48].

Reductions in bone mineral density have also been suggested after treatment with ICS. Only a few studies have been conducted in patients who had previously (virtually) not been treated with OCS. A group of 26 children who had used ~0.6 mg (range 0.4–0.8) BDP daily for a period of 2 years showed
no changes compared to a control group [27]. On the other hand, a cross-sectional study in a group of 18 adult asthmatics, treated with at least 0.8 mg BDP or BUD for 1 year, showed a significant reduction in Z-score of the femoral head, compared with 18 asthmatics never having used ICS [13]. Serum osteocalcin was also significantly lower in the ICS-treated group than in the asthma control group. Again, there were no changes in AP or in urinary pyridinoline and deoxypyridinoline. Dose and duration of treatment with ICS correlated negatively with bone mineral density.

Most studies examining changes in bone mineral density in patients with asthma are flawed because of failure to control for previous OCS use [46,50,51]. In other studies, the dose of ICS was probably too low to cause changes [52,53]. The previous use of OCS, however, may be the most important factor influencing bone mineral density, besides other factors such as increased age, inactivity, smoking, malnutrition, menopausal status and genetic predisposition. Finally, asthma itself may lower bone mineral density [45].

Recently, Pauwels et al. [43] demonstrated that changing existing therapy with ICS (either BDP of BUD) to half the dose with FP resulted in a significant recovery of trabecular bone mineral density in Ward’s triangle. This would be a confirmation that ICS really affect bone. Extensive data in this respect, however, have to be awaited.

3.3. Comparison between BDP, BUD and FP

The risk/benefit ratio of inhaled steroids is determined by the ratio of local (airway) efficacy versus systemic glucocorticoid activity. There are clear differences between the existing ICS with respect to pharmacokinetic properties. In the lung, BDP is hydrolysed to its much more active metabolite, beclomethasone-17-monopropionate (17-BMP) [54]. Metabolism of BUD and FP does not occur in the lung [38,55]. Systemic effects may also arise from absorption of the drugs from the oropharynx and from the gut after swallowing. ICS have an extensive first-pass metabolism in the liver, converting the ICS into hardly active or non-active metabolites. BUD is transformed 2-4 times more rapidly than 17-BMP, with an oral systemic bioavailability of 11% [55]. The hepatic excretion ratio of FP is almost 100%, resulting in an oral bioavailability of < 1% [56].

In models of inflammation, BUD showed a 2-4 times higher local anti-inflammatory activity than BDP [57,58]. FP showed twice the activity of BDP and BUD in one study, another found no significant differences between FP and BUD [59,60]. However, the extent to which these differences are also of clinical importance must be deduced from studies comparing these drugs on relevant parameters. With regard to clinical efficacy of BDP and BUD, no differences were shown over a wide dosage interval (0.4-1.5 mg), when compared in similar dosages and forms of administration, both in adults [11,61-66] and in children [67-69]. Even with different dosages and a difference in deposition in the airways, these studies also did not show any difference in clinical efficacy between the two preparations. The majority of comparable trials of FP (although mostly assessed against BDP) confirm preclinical data suggesting a higher clinical potency of FP over a wide dosage range (for review, see [41,70]).

With regard to the systemic effects, the negligible oral bioavailability of FP compares favourably with the other ICS. However, as the majority of the systemic available dose reaches the bloodstream after absorption from the lungs, assessment of overall systemic activity remains necessary. There appear to be no differences in systemic effects of the 3 ICS in equal dosages (Fig. 2). However, there appears to be a clear dose-related increase in systemic effects. As FP on a milligram base is more potent than BDP (and possibly BUD [70], this offers the ability to deliver lower dosages with similar clinical efficacy, leading to less effect on bone structure and metabolism.

4. Conclusion

The short- and long-term clinical efficacy of ICS in asthmatics has now been proved convincingly. With regard to higher dosages, it cannot be excluded that these drugs have adverse effects on bone in the long term. Dose-dependent changes in parameters of bone metabolism indicate systemic effects in the short term, but the course after long-term treatment is unknown. Furthermore, the relationship of these
changes to bone quality is speculative. It still needs to be determined whether changes in bone turnover actually signify an increased fracture risk in the long term. To date, this has not been observed in clinical practice. Nevertheless, an increasing number of studies report effects of ICS on bone. In this respect, the lack of short-term effects on bone metabolism by FP, in contrast to clinically equipotent dosages of BDP, may be of potential interest.

In the meantime, caution is desirable when administering high dosages of ICS over a long period of time, since there are differences in individual sensitivity to ICS. The lowest possible dosage of ICS that has a clinically optimal effect on symptoms, lung function and bronchial hyperresponsiveness should be aimed at.

References


[25] Hodsman AB, Toogood JH, Jennings B, Fraher LJ, Baskerville JC. Differential effects of inhaled budesonide and


English AF, Neate MS, Quint DJ, Sareen M. Biological activities of some corticosteroids used in asthma. Am J Respir Crit Care Med 1994;149:A212.


Ebden P, Jenkins A, Houston G, Davies BH. Comparison of two high dose corticosteroid aerosol treatments, beclomethasone dipropionate (1500 µg/day) and budesonide (1600 µg/day), for chronic asthma. Thorax 1986;41:869–874.


