Computerized hearing aid revalidation in ENT practice: a helpful tool?

N. HOLSBOER, B.E. GLAZENBURG, K. WIGGERS & H.A.A. SPELSTRA (Den Haag)

A group of 181 hearing impaired patients was divided into three subgroups.

In group 1 the hearing aid selection was carried out by the ENT specialist according to his best knowledge and at the same time a computer-assisted selection was offered to the patient. The patient was allowed to give his preference after trying both hearing aids. The result in this group was that 30% of the patients preferred a hearing aid selected by the ENT specialist, that 34% preferred a hearing aid selected by computer and 36% were satisfied with the choice of the hearing aid dispenser.

In group 2 the selection was made by computer and an alternative solution was left to the hearing aid dispenser. The result in this group was that 74% preferred the computer selection and 26% preferred the selection of the hearing aid dispenser.

In group 3 the selection was purely made by the ENT-specialist and an alternative choice was left to the hearing aid dispenser. The result in this group was that 42% of the patients preferred the ENT-specialist’s choice and 58% preferred the choice of the hearing aid dispenser.

Not only the subjective patients choice was evaluated, but also the 50% level of speech discrimination scores were analysed in the three groups. There were no significant differences between the three groups.

The general conclusion was that a prescription by the computer is better than a prescription by the ENT-specialist.

Galvanic stimulation of the vestibular system

J.J. VAN TWISK & H. KINGMA (Maastricht)

By means of retro auricular (active) and neck (reference) electrodes the left and right peripheral vestibular system can be galvanically (electrically) stimulated. Both mono aural (AD or AS relative to the reference) or binaural (AD relative to AS) are possible. It is still unclear as to where and how electro stimulation affects this sensory system. According to the literature responses are nystagmus and increased body sway. The possibility of developing this method for clinical use is being investigated at Maastricht University. In a pilot study (in cooperation with M. Magnusson, Lund, Sweden) using the Maastricht video eyetracker no nystagmus was detected at stimuli between 0 to 3 mA and 0 to 10 Hz. Only contractions of the facial musculature around the eye and forehead were observed. Therefore the subsequent research focuses upon postural sway. Postural sway was quantified using a force platform (Toennies Tpost), before, during and after electrostimulation (1 Hz, 1 mA). Comparison was made between...