Apomorphine-Susceptible and Apomorphine-Unsusceptible Wistar Rats Differ in Their Susceptibility to Inflammatory and Infectious Diseases: A Study on Rats with Group-Specific Differences in Structure and Reactivity of Hypothalamic-Pituitary-Adrenal Axis

Annemieke Kavelaars,1 Cobi J. Heijnen,1 Bart Ellenbroek,2 Henk van Loveren,3 and Alexander Cools2

1Department of Immunology, University Hospital for Children and Youth "Het Wilhelmina Kinderziekenhuis," 3501 CA Utrecht, The Netherlands, 2Department of Psychoneuropharmacology, University of Nijmegen, 6500 HB Nijmegen, The Netherlands, and 3Department of Immunobiology and Haematology, Laboratory for Pathology and Immunobiology, RIVM, 3720 BA Bilthoven, The Netherlands

Variability in susceptibility to diseases is a well known phenomenon that has been attributed to genetic and environmental factors. At the level of the immune system, the reactivity of two types of T helper cells (Th1 and Th2 cells) plays an important role in determining disease susceptibility. Inflammatory (autoimmune) diseases are stimulated by cytokines produced by Th1 cells. Th2 cytokines stimulate antibody production (e.g., IgE) and eosinophilia as observed in allergic reactions or during parasitic infections. We describe here that the reactivity in a Th1 or a Th2 disease model significantly differs between individual rats that show group-specific differences in reactivity of the hypothalamic–pituitary–adrenal (HPA) axis, as well as in their behavioral responses to stress.

We used two outbred lines of Wistar rats, apomorphine-susceptible rats that have a relatively hyperreactive HPA axis (APO-SUS) and apomorphine-unsusceptible rats that have a relatively hyporeactive HPA axis (APO-UNSUS). APO-SUS, but not APO-UNSUS, rats generated a vigorous, Th2-dependent IgE response after infection with the nematode Trichinella spiralis. In contrast, APO-UNSUS, but not APO-SUS, rats were susceptible for Th1-mediated experimental autoimmune encephalomyelitis. Investigation of cytokine responses of splenocytes revealed that the ratio of mRNA expression for Th1-derived interferon-γ (IFN-γ) and mRNA expression of Th2-derived interleukin-4 (IL-4) was significantly smaller in APO-SUS than in APO-UNSUS rats.

In conclusion, individual differences in structure and reactivity of the neuroendocrine system co-occur with group-specific differences in susceptibility to inflammatory and infectious diseases.

Key words: experimental autoimmune encephalomyelitis; T cells; hypothalamus–pituitary–adrenal axis; rats; Trichinella spiralis; interferon-γ; interleukin-4

Individual differences in susceptibility to inflammatory and infectious diseases are thought to be determined by the interplay between genetic and environmental factors. The immune system plays a major role in the pathogenesis of inflammatory and infectious diseases. The neuroendocrine system and the immune system interact (Heijnen et al., 1990; Munck and Guyre, 1990; Madden et al., 1995). Thus, it is conceivable that the reactivity of the neuroendocrine system contributes to disease susceptibility.

We focused on two types of rats that are present in each unselected, outbred population of Wistar rats, namely "high responders to novelty" and "low responders to novelty" (Piazza et al., 1989, 1990a,b; Cools et al., 1990, 1993). Since 1985, Cools et al. have been able to breed these two types of individuals. They have shown that the bimodal variation in apomorphine susceptibility, the original selection criterion for the breeding, is consistently coupled to a bimodal variation in a great variety of neuroanatomical, neurochemical, endocrinological, and behavioral features. Rats marked by a high apomorphine susceptibility (APO-SUS) are high responders to novelty in terms of behavioral response (high exploratory activity) and endocrinological responses (high and long-lasting plasma release of ACTH and corticosteroids). Rats marked by low apomorphine susceptibility (APO-UNSUS) are low responders to novelty in terms of behavioral response (low exploratory activity) and endocrinological responses (low and short-lasting release of ACTH and corticosteroids; Cools et al., 1990; Rots et al., 1995, 1996a,b).

At the level of the immune system, it is thought that two types of T helper cells play an important role in determining susceptibility to disease. Th1 cells predominantly produce IFN-γ and interleukin-2 (IL-2), which promote cellular immunity (Mosmann and Sad, 1996). In experimental models of autoimmune diseases such as experimental autoimmune encephalomyelitis (EAE), the Th1 type effector cell response is dominant (Mosmann and Sad, 1996). Th2 cells secrete IL-4, IL-5, and IL-10, which provides help for B cell differentiation and humoral immune response (Mosmann and Sad, 1996). The immune response to infection with parasitic helminths such as T. spiralis involve elevated IgE antibody production, eosinophilia, and mastocytosis (Finkelman et al., 1991). These responses are all stimulated by Th2-derived cytokines (Finkelman et al., 1991; Mosmann

Received NoV. 12, 1996; revised Jan. 9, 1997; accepted Jan. 13, 1997.

We are greatly indebted to Dr. H.-D. Volk, Institut fur Medizinische Immunologie, Humboldt University, Berlin, Germany, for providing the plasmid for the competitive PCR. We thank Conny Verbaas, Jitske Zijlstra, Anita Meijer, and Gerard Geelen for skilful technical assistance.

Correspondence should be addressed to Dr. Annemieke Kavelaars, Department of Immunology, University Hospital for Children and Youth "Het Wilhelmina Kinderziekenhuis," P.O. Box 18009, 3501 CA Utrecht, The Netherlands.

Copyright © 1997 Society for Neuroscience 0270-6474/97/172580-05$05.00/0
Animals. Th1-dependent, autoimmune diseases and the IgE response to infection with the nematode *T. spiralis*.

MATERIALS AND METHODS

Animals. Male Wistar rats of the APO-SUS and APO-UNSUS lines bred and reared in the Central Animal Laboratory of the University of Nijmegen were used. The selection procedure has been described in detail by Cools et al. (1990). In short, a group of 60 male and 60 female rats of an outbred Wistar population was given s.c. injections of 1.5 mg/kg apomorphine, which induces a stereotypic gnawing behavior. The gnawing score was determined in a modified “Ungerstedt-box,” allowing a quantitative analysis of the computerized and automated recordings of gnawing per 45 min (Cools et al., 1990). Breeding of the APO-UNSUS line was started with nine pairs of rats with a gnawing score of <10 per 45 min (27% of the original population). Breeding of the APO-SUS rats was started with nine pairs of rats with a gnawing score of >500 per 45 min (23% of the original population). Throughout the breeding procedure, retention of neuroendocrine animals belonged to the 13th to 18th generations, were housed under brief halothane anesthesia. The inoculate consisted of 1500 μg of *Mycobacterium tuberculosis* H37Ra was added. Rats were examined daily to score clinical signs to EAE. Clinical signs were scored on a scale from 0–5: 0, no clinical signs; 1, partial paralysis of the tail; 2, paralyzed tail; 3, paresis of the hindlimbs; 4, complete paralysis of the hindlimbs or complete lower part of the body; 5, death as a result of EAE.

Trichinella spiralis infection. *T. spiralis* L1 larvae were prepared from source rats as described (Schlumpf et al., 1994). Nine APO-SUS and seven APO-UNSUS rats were infected per os with 1000 L1 larvae. Six weeks after infection, rats were sacrificed and serum was collected. Serum levels of IgG, IgA, and IgE antibodies specific for *T. spiralis* were determined as described previously (Schlumpf et al., 1994).

In vitro cytokine production. To test the capacity of splenocytes to produce the Th1 cytokine IFN-γ after mitogenic stimulation, splenocytes (10^6/ml) of APO-SUS and APO-UNSUS rats were cultured in RPMI-1640 (Life Technologies, Grand Island, NY) supplemented with antibiotics and 5% heat-inactivated FCS (Gibco) with the polyclonal activator PMA (10 ng/ml) plus ionomycin (400 ng/ml) for 20 hr. Supernatants were harvested, and the concentration of IFN-γ was determined by ELISA (Van der Meide et al., 1990).

Quantitative real-time RT-PCR for measurement of serum level of IL-4 are not yet available, the expression of IL-4 mRNA as well as of IFN-γ mRNA was determined by quantitative RT-PCR to gain insight into the relative contribution of Th1 or Th2 type responses in APO-SUS and APO-UNSUS rats. At the time point when the above-mentioned supernatants were collected, cells were harvested and RNA was extracted by the use of RNAzol B (Campro Scientific, Veenendaal, The Netherlands). Two micrograms of RNA were reverse transcribed into cDNA using AMV reverse transcriptase and oligo-dT12-18 oligonucleotide as primer according to the manufacturer’s protocol. Quantitative competition PCR was performed as described by Siegel et al. (1995, w/4°C) and provided us with a competitor plasmid containing primers for β-actin, IFN-γ, and IL-4. Serial dilutions of competitor fragment were amplified with fixed amounts of cDNA. The PCR product for the sample cDNA and the competitor differ in size so that the relative intensities of the two products can be compared. For calculations, 1 unit of cDNA signal was defined as the amount that resulted in equal density of competitor and target cDNA at 1 μl of 1:50 dilution of the competitor. The following primer pairs were used: β-actin sense, 5'-TTATGGTGCTGCTGCTGGT; antisense, 5'-CTTGATGCTCTGGATGCCT; IFN-γ sense, 5'-CTTCTCTGTCTCTTCTTCG; antisense, 5'-CTCTCTTCTGGCGCTTCT; IL-4 sense, 5'-ATGCAGGATTTGTGAC; antisense, 5'-TTTCAAGTGTTC GACGCGGA. These primer pairs gave rise to PCR products for β-actin of 762 bp for sample cDNA and 601 bp for competitor fragment. IFN-γ sample cDNA yields a fragment of 419 bp, whereas the competitor results in a fragment of 319 bp. For IL-4, sample cDNA results in 275 bp and competitor cDNA in 178 bp. cDNA was amplified in a 20 μl reaction volume containing 2 μl of 10X PCR buffer, 0.25 mM each dNTP, 50 ng/ml of the appropriate primer pair, 2 mM MgCl₂, and serial dilutions of competitor fragment. After 5 min denaturation at 94°C, cDNA samples were subjected to cycles of denaturation (15 sec at 94°C), annealing (15 sec at 60°C), and extension (15 sec at 72°C) using the thermal cycler 9600 (Perkin-Elmer). To correct for variations across different preparations, cDNA samples were adjusted to equal input cDNA concentrations based on their β-actin content before determination of cytokine cDNA content. Control PCRs without cDNA were performed in all experiments to exclude contamination.

RESULTS

Susceptibility to experimental autoimmune encephalomyelitis. APO-SUS and APO-UNSUS rats showed a clear difference in susceptibility to EAE (Fig. 1 and Table 1). APO-SUS rats were less susceptible for EAE. The incidence of disease and the mean cumulative clinical score were lower in APO-SUS animals than in APO-UNSUS animals. In addition, there was a significant difference in the kinetics of disease development. APO-SUS animals showed a significant delay with respect to onset of the disease when compared with APO-UNSUS rats. The first symptoms of disease were observed only at day 12 after inoculation in APO-SUS rats. In contrast, APO-SUS rats showed the first symptoms of the disease at day 8 after inoculation, the degree of paralysis increased reaching maximal levels at day 11 after inoculation in these animals; subsequently, disease activity gradually decreased, and complete remission was observed after 18 d. There was no group-specific difference in duration of the disease.

Response to inoculation with Trichinella spiralis. APO-SUS rats developed a higher level of anti- *T. spiralis* IgE than APO-UNSUS rats (Fig. 2). In eight of nine APO-SUS animals, *T. spiralis*-specific antibodies of the IgE subclass could be detected,
Figure 1. Expression of EAE in APO-SUS and APO-UNSUS rats. Male APO-SUS (n = 7) and APO-UNSUS (n = 7) rats were inoculated with MBP in CFA on day 0. Clinical signs of the disease were scored daily on a scale from 1 to 5 as described in Materials and Methods. For statistical analysis of the data, see Table 1.

Table 1. Susceptibility to EAE of APO-SUS and APO-UNSUS rats

<table>
<thead>
<tr>
<th></th>
<th>APO-SUS</th>
<th>APO-UNSUS</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence *</td>
<td>3/7</td>
<td>7/7</td>
<td>0.04</td>
</tr>
<tr>
<td>Mean day of onset †</td>
<td>14.7 (1.5)</td>
<td>9.9 (0.5)</td>
<td>0.017</td>
</tr>
<tr>
<td>range</td>
<td>12−17</td>
<td>8−11</td>
<td></td>
</tr>
<tr>
<td>median</td>
<td>15</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Duration ‡</td>
<td>4.3 (2.5)</td>
<td>6 (2.6)</td>
<td>ns</td>
</tr>
<tr>
<td>range</td>
<td>2−7</td>
<td>3−9</td>
<td></td>
</tr>
<tr>
<td>median</td>
<td>4</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Mean cumulative score</td>
<td>1.9 (1)</td>
<td>9.2 (2.9)</td>
<td>0.018</td>
</tr>
<tr>
<td>range</td>
<td>0−7</td>
<td>3−22</td>
<td></td>
</tr>
<tr>
<td>median</td>
<td>0</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Animals were inoculated with MBP in CFA, and the clinical expression of the disease was determined as described in the legend to Figure 1.

*Number of animals with disease/number tested; disease was defined as clinical score ≥ 1.
†Fisher's exact test.
‡Average day of disease onset of those animals that developed disease (SEM).
§Mann-Whitney two sample test.
∥Average duration of the disease in days of those animals that developed disease (SEM).
*Value represents the mean of the maximum EAE score for each group.

whereas only two of seven APO-UNSUS rats developed detectable levels of parasite-specific IgE.

There was no group-specific difference in the levels of IgG or IgA specific for *T. spiralis* (Table 2).

Table 2. Anti-*T. spiralis* antibody titers in serum

<table>
<thead>
<tr>
<th></th>
<th>APO-SUS</th>
<th>APO-UNSUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detectable a</td>
<td>Titer b</td>
<td>Detectable</td>
</tr>
<tr>
<td>IgA</td>
<td>4/7</td>
<td>80.8 ± 10.7</td>
</tr>
<tr>
<td>IgG</td>
<td>7/7</td>
<td>10.7 ± 3.5</td>
</tr>
<tr>
<td>IgE</td>
<td>6/7</td>
<td>18.2 ± 7.4</td>
</tr>
</tbody>
</table>

Rats were infected with *T. spiralis* and killed 6 weeks after infection. Serum was collected, and levels of specific anti-*T. spiralis* antibodies were determined by ELISA.

*aNumber of animals with detectable level of antibodies/number of animals tested.
*bMean concentration of antibody ± SEM in those animals with detectable antibodies expressed as percentage of a reference serum.

DISCUSSION

The present study confirms and expands our previous findings that the susceptibility to EAE was significantly smaller in APO-SUS rats than in APO-UNSUS rats; when compared with APO-UNSUS rats, the severity of clinical symptoms of EAE was significantly less and the onset was significantly delayed (see Fig. 1 and Table 1 in Cools et al., 1993). In contrast, APO-SUS rats have a significantly larger response to infection with the nematode *T. spiralis* than APO-UNSUS rats: the level of parasite-specific IgE was significantly higher in APO-SUS rats than in APO-UNSUS rats, although the levels of parasite-specific levels of IgA and IgG did not differ between both lines in this model for Th2-dependent infectious diseases (Table 2, Fig. 2). In line with these data, the production and/or mRNA expression of Th1 and Th2 type cytokines

The splenocytes of APO-SUS and APO-UNSUS rats did not show group-specific differences in the capacity to produce IFN-γ after mitogenic stimulation (Table 3). Moreover, neither the expression of IFN-γ mRNA nor that of IL-4 mRNA differed between both lines, although the expression of IL-4 was slightly, but not significantly, greater in APO-SUS rats than in APO-UNSUS rats (p = 0.06; Table 4). However, the relative contribution of Th1 cells versus Th2 cells, as expressed in terms of the ratio IFN mRNA/IL-4, was significantly greater in APO-UNSUS rats than in APO-SUS rats (p = 0.03; Table 4).
Glucocorticoids are known to be involved in the regulation of the immune response. Recent studies have shown that glucocorticoids can selectively inhibit the response of Th1 cells (Daynes and Araneo, 1989; Daynes et al., 1990). In addition, glucocorticoids have been found to stimulate the differentiation and/or activation of Th2 cells (Daynes et al., 1990). In vitro experiments with human T cells have shown that glucocorticoids can selectively inhibit the production of Th1 cytokines and stimulate the production of Th2 cytokines.

In mice, glucocorticoids have been shown to selectively inhibit the production of Th1 cytokines and stimulate the production of Th2 cytokines. A recent study has shown that glucocorticoids can selectively inhibit the production of Th1 cytokines and stimulate the production of Th2 cytokines. This finding has important implications for the treatment of immune diseases, as glucocorticoids can be used to selectively inhibit the production of Th1 cytokines and stimulate the production of Th2 cytokines.

In conclusion, glucocorticoids play a crucial role in the regulation of the immune response. Further research is needed to fully understand the mechanisms by which glucocorticoids regulate the immune response. However, the existing data suggest that glucocorticoids can be used to selectively inhibit the production of Th1 cytokines and stimulate the production of Th2 cytokines.

Table 4. Expression of mRNA for IL-4 and IFN-γ after polyclonal activation of splenocytes from APO-SUS and APO-UNSUS rats

<table>
<thead>
<tr>
<th></th>
<th>APO-SUS (n = 6)</th>
<th>APO-UNSUS (n = 6)</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-4</td>
<td>0.5 (0.14)</td>
<td>0.14 (0.04)</td>
<td>0.06</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>1.7 (0.2)</td>
<td>1.17 (0.17)</td>
<td>NS</td>
</tr>
<tr>
<td>Ratio IFN-γ/IL-4</td>
<td>3.5 (0.5)</td>
<td>6.4 (0.75)</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Splenocytes from naive APO-SUS and APO-UNSUS rats were cultured for 20 hr in the presence of PMA and ionomycin. Cells were harvested and RNA was extracted. The level of expression of mRNA for IL-4 and IFN-γ was determined by quantitative competition RT-PCR.

A Mann–Whitney two sample test
B The level of IL-4 and IFN-γ cDNA is expressed in units as defined in Materials and Methods
C Due to the difference in the expression of IL-4 and IFN-γ mRNA, the ratio of IFN-γ/IL-4 was also determined.

Note: The differences in the expression of IL-4 and IFN-γ mRNA were statistically significant (p < 0.05).
results in increased IL-4 production (Paul-Eugene et al., 1993; Madden et al., 1994; Katamura et al., 1995). Moreover, β2-adrenergic agonists can stimulate IL-4-dependent IgE synthesis (Paul-Eugene et al., 1993, 1995). We have data showing that β2-adrenergic agonist inhibit IFN-γ production, resulting in a shift toward Th2 type responses (A. Kavelaars, unpublished data). Thus, the relatively increased responsiveness of β2-adrenergic receptors in APO-SUS rats may also contribute to the relatively increased ratio of IL-4 over IFN-γ production. Therefore, the difference in Th1/Th2 balance between APO-SUS and APO-UNUS animals could also be partly a result of the difference in the reactivity of the adrenergic system.

In conclusion, our data from the in vivo experiments are consistent with the hypothesis that the high reactivity of the HPA axis in APO-SUS animals can facilitate differentiation to Th2 type effector cell response and enhance IgE secretion, resulting in high IgE titers after infection with T. spiralis. Conversely, the low reactivity of the HPA axis in APO-UNUS rats results in susceptibility to inflammatory autoimmune disease that is mediated via Th1 type T cells.

REFERENCES

