The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/24930

Please be advised that this information was generated on 2017-09-25 and may be subject to change.
The BENESTENT-II Trial was a randomized trial comparing the outcome after balloon angioplasty, with the effect of Heparin-coated Palmaz-Schatz stent (10, 15 and 20 mm length) on the long-term effect of Major Adverse Cardiac Events [MACE: Death, MI, Target Lesion Revascularisation (TLR)], in pts with stable or stabilized unstable angina pectoris with one or more de novo lesions. The secondary objectives are to assess the Cost-effectiveness and the restenosis rate. To that purpose a 1:1 sub-randomization to either clinical or angiographic follow-up was carried out. Concomitant medications consist of Aspirin (100 mg) and Ticoplidin (200 mg, 30 days) in the stent group. Between August 28th '95 and March 7th '96, 827 patients were randomized to either treatment with stent (414) or balloon (413). Forty three percent of the patients had unstable angina, 51% stable and 6% silent ischemia. 7% underwent multiple lesion treatment. 54% of the lesions were B2 lesions (AH/AACC). In the balloon group 13.4% of the patients received a bail-out stent according to preset stringent criteria: procedural success was 97% in the stent group and 95% in the balloon group according to the actual allocation protocol.

It remains to be demonstrated whether elective stenting will be at long-term more cost-effective than balloon.

EARLY TRIAGE IN ACUTE MYOCARDIAL INFARCTION

Study of time intervals in myocardial ischaemic syndromes (STIMIS)

Early reperfusion in acute myocardial infarction improves long term prognosis. Treatment within the “Golden Hour” saves up to 7 lives per 100 treated patients. Prehospital thrombolysis has been practiced in Nijmegen since 1987. STIMIS was designed to assess the actual time intervals from onset of chest pain to treatment.

Methods: since Oct, 1995 all patients first seen by a general practitioner (GP), presenting with typical chest pain, were eligible for STIMIS, whether or not a transtelephonic EKG (TT-EKG) had been transmitted by the ambulance on onset of pain to treatment were registered on specially designed charts.

Results: (n = 500): 292 TT-EKG’s were received; 73 (25%) fully satisfied the criteria of acute myocardial infarction (AMI). 60 Patients received thrombolytic therapy at home, 56 were treated in hospital. Within one hour 24% (n = 15) of the home treated patients and none of the hospital treated patients received thrombolytics (p = 0.0034). Within two hours these data are 70% (n = 44) and 17% (n = 6) respectively (p = 0.0009).

Time intervals in myocardial infarction

1. **MD/LU (mm)**: 1.98 1.66
2. **Rate of admission**%: 17
3. **Stent** (nm): 1 (0.2%)
4. **Death** (Q/No): 14 (3.4%)
5. **CBG** (1.5%): 7 (1.7%)
6. **T/LR** (9.4%): 57 (13.8%)
7. **Any Event** (14.8%): 80 (10.4%)

Time intervals

- **Diagnosis**
- **Departure**
- **Arrival**
- **Departure**

Significance of univariate (uni) and multivariate (multi) regression analysis:

Factors of importance for time to start of thrombolysis

U. Stenestrand, L. Wallentin on behalf of the National Registry of Coronary Care in Sweden. Department of Cardiology University Hospital, Linköping, Sweden. Department of Cardiology University Hospital Uppsala, Sweden

Time to start of thrombolysis is of utmost importance for outcome in acute myocardial infarction (MI). We investigated clinical factors influencing time to treatment in routine care.

Method: The Swedish national registry for coronary care includes every patient admitted to participating CCUs. Clinical background, treatment, complications and key time points were recorded in 1604 patients with acute MI treated with thrombolysis within 12 hours after start of pain in 19 hospitals in 1995.

Results:

- **Time intervals (n = 1904)**
 - **Pain** to start of treatment: 2.1 hours
 - **Pain** to arrival hospital: 1.15 hours
 - **Arrival** to start of treatment: 0.65 hours

Conclusions:

- **Timeliness** in thrombolysis is above 3.3 hours in half of patients and is prolonged in older age, diabetes mellitus, Q-waves or LBBB and shortened at ST-elevation. Of the delay 2/3 occurs before arrival to hospital which mainly is influenced by age. Hospital organisation and diseases related factors have the largest impact on delay in hospital. Reduced times to treatment will necessitate measures both before and after arrival to hospital.

Indication for thrombolysis in acute myocardial infarction

Recent trials demonstrated that thrombolytic therapy is beneficial in a much wider range of patients with acute myocardial infarction (AMI), e.g. patients with late presentation (6-12 h) and the elderly. However, it remains unclear how these guidelines are implemented in clinical practice.

Methods: “The 60-Minutes Myocardial Infarction Project” is a prospective multicenter registry in Germany, which enrolled all patients with proven Q-wave MI in 136 hospitals (27 months, n = 14,980). 50.5% of patients received thrombolysis. Indication for thrombolytic therapy was analyzed with respect to 15 relevant factors by a multivariate logistic regression expressed as odds ratios (OR) and 95%-confidence intervals (CI).

Results:

- **Diagnosis**
- **QRS complex**
- **Age**
- **Gender**
- **History**

An OR > 1 refers to a higher chance to be treated with thrombolysis.

Conclusions: A diagnostic ECG on admission is the most important determinant in the decision making to administer thrombolytic agents in AMI. Patients with hemodynamic impairment are more likely to be treated with thrombolysis. Female gender is an independent risk factor not to receive thrombolytic therapy. Physicians tend to be restrictive, if relative contraindications are present. Despite documented benefit, fibrinolytic therapy is withheld in pts, with previous infarction, higher age and late presentation.