Magnetic Resonance Angiography Has a High Reliability in the Detection of Renal Artery Stenosis

Cornelis T. Postma, Frank B.M. Joosten, Gerd Rosenbusch, and Theo Thien

In this prospective study we examined the value of magnetic resonance angiography (MRA) in the imaging of the proximal renal arteries, with the main aim of detecting renal arterial stenosis, as compared with intraarterial digital subtraction angiography.

The study was done among a group of 38 hypertensive patients seen in the outpatient department of the department of medicine of our university hospital. In all patients a magnetic resonance angiography and an intraarterial subtraction angiography of the renal arteries was made, and the outcomes of the investigations were compared. Clinical and biochemical data of the patients also were analyzed in relation to the presence or absence of a stenosis.

In one patient, MRA resulted in technical failure because of unsuspected claustrophobia. Of the remaining 37 patients, 14 had renal artery stenosis. Of 12 patients in whom the stenoses were >50% of luminal surface on intraarterial digital subtraction angiography, eight were unilateral and four bilateral. All these stenoses were recognized by magnetic resonance angiography. There was also one false positive result by magnetic resonance. Thus, for the identification of stenoses >50%, magnetic resonance has a sensitivity of 100% and a specificity of 96%. Of the 12 accessory renal arteries seen on digital subtraction angiography, only three were identified by magnetic resonance angiography.

We conclude that magnetic resonance angiography has great accuracy in depicting the main renal arteries and detecting clinically significant renal artery stenosis; however, the identification of accessory renal arteries is suboptimal and should be improved. Am J Hypertens 1997;10:957–963 © 1997 American Journal of Hypertension, Ltd.

KEY WORDS: Hypertension, renal artery stenosis, magnetic resonance angiography, diagnostic tests.
thology of the stenosis, either cure or improvement of high blood pressure, or restoration of renal function, is accomplished in 50% to 90% of patients in whom a renal artery stenosis (RAS) is relieved.\(^1\) Especially among patients with atherosclerotic stenoses the percentage of patients that profit from treatment of the stenosis is around 50%, which does not seem high enough to warrant screening for RAS in the general hypertensive population.\(^1,2\) However, among subgroups of patients such as those with treatment-resistant hypertension, it is worthwhile to look for RAS, both because the prevalence among such a group is relatively high and also because the treatment resistance of the hypertension renders these patients candidates for treatment of a possibly present stenosis.\(^1,3\)

To date, the definitive diagnosis of RAS depends on its demonstration by arterial angiography. However, angiography involves arterial puncture and the use of contrast material, which, particularly in the case of renal insufficiency, has an option for further deterioration of renal function while it also poses the risk of anaphylactic reactions.

Other presently available procedures, for which the use of contrast media or arteriotomy is not necessary, lack accuracy in the recognition of RAS.\(^3-8\) The most consistent results in this respect have been accomplished with captopril renography, but the overall sensitivity of this procedure\(^9\) does not surpass 75% to 80%. Thus, about 25% of patients with RAS would go undiagnosed if the clinician based patient management on the results of renography. In the case of renal failure or a solitary kidney, the results of captopril renography are even worse.\(^9\) Therefore, a noninvasive and more sensitive technique would be of great clinical value. Magnetic resonance angiography (MRA) has the ability to image blood vessels, including renal arteries, without the use of contrast, and is noninvasive.\(^10-13\) MRA could therefore be a valuable tool in the diagnosis of RAS if its accuracy proved to be sufficiently high. In a previous study of the value of MRA in the diagnosis of RAS, in comparison with intraarterial digital subtraction angiography (DSA) we found, however, a rather low sensitivity of MRA in the recognition of RAS—too low, at least, to permit its use in clinical practice.\(^14\)

Recent developments in MRA procedures and applications software may enable a greater sensitivity. Therefore we set up another prospective study to compare MRA with intraarterial DSA to investigate whether the increased sensitivity of recent MRA techniques is sufficient to detect clinically significant renal artery stenosis.

METHODS

Included in the study were hypertensive patients seen at their first visit to the outpatient department. If a DSA was deemed necessary by the physicians responsible for the patients' care, these patients were included in the study upon informed consent. The indication for a DSA was usually made on the grounds of a baseline untreated supine diastolic blood pressure >110 mm Hg or of the presence of treatment-resistant hypertension, defined as a supine diastolic blood pressure >90 mm Hg despite adequate two-regimen antihypertensive treatment. Apart from blood pressure, other clinical characteristics of the patients such as weight, age, height, and biochemical data were gathered. Endogenous creatinine clearance was calculated according to a previously described method in which age, gender, and weight are taken into account.\(^15\)

The DSA was done using the Seldinger technique with a 5F catheter. The catheter was positioned at the level of the renal arteries. DSA of the abdominal aorta in the 10° left anterior oblique view and 10° right anterior oblique view were routinely performed with 50 mL of 30% methylglucamine diatrizoate for each projection. These studies were obtained with 3 images/sec and a 1024 × 1024 matrix.

This procedure was done as an outpatient investigation early in the morning. Directly after the DSA was done the patients were admitted to the day care center of the outpatient department where they were observed in order to detect complications of the procedure. If no complications ensued, the patients were again dismissed after 5 h of supine rest. The MRA examination was usually done 1 week prior to the DSA.

MRA was done with a 1.5 T magnetic resonance imager (Siemens, Erlangen, Germany) using a body coil. The images were acquired during shallow respiration. To localize the renal arteries 5 scout images flash-2D (Repetition time/Echo time [TR/TE] 70/6 msec) were obtained in the coronal projection. This was followed by a third time-of-flight sequence (TIME) with scanning parameters of TR 29 msec, TE 7 msec, 20° flip angle, 192 × 256 matrix, 45 cm field of view, and two excitations.

Sections of 1.2 mm were obtained in the axial plane from the superior pole to the bifurcation of the aorta. Maximum-intensity projections of the source phase-contrast images were generated by scanner software after drawing regions of interest to include the visualized vessels in the axial imaging plane. The initial protocol foresaw in one three-dimensional image volume that resulted in an image that showed the main renal arteries and approximately 3 cm above and below the orifices of the main renal arteries.

The usual precautions were taken not to include patients with standard contraindications to MRA, such as metal parts in their body, which could pose a threat in the high power magnetic fields. The angiograms and the MRA images were independently eval-
FIGURE 1. Arterial digital subtraction angiography of two renal arteries without stenosis (A) and magnetic resonance angiography of the same arteries without signs of stenosis (B).

FIGURE 2. Arterial digital subtraction angiography of two renal arteries showing an irregular wall with mild stenotic segments of the right artery in accordance with fibromuscular dysplasia (A) and magnetic resonance angiography of the same arteries showing an inhomogeneous signal in the right artery indicating mild stenotic segments suspect for fibromuscular dysplasia (B). No lesions are noticeable of the left artery.

Results were divided into normal or minimal stenosis (≤20%), mild (30% to 50%), severe (>50%), and occlusion. Assessment of renal arteries included evaluation of main arteries and determination of the number and abnormalities of accessory arteries.

The magnetic resonance (MR) angiograms were also evaluated by two radiologists. The renal arteries were graded as normal if the vessel signal was high and homogenous (Figure 1). Reduction of vessel diameter without complete loss of signal intensity was judged to be mild stenotic with a luminal obstruction of ≤50% (Figure 2). Signal intensity loss with or without distal recovery of flow signal intensity was graded as severe stenosis (≥60%) (Figure 3). Thus, by MRA no distinction was made between severe stenosis and occlusion of the artery on the basis of whether there was signal recovery after initial signal intensity loss. In the overall analysis we distinguished only whether or not a significant stenosis was present, which was defined as a stenosis >50%.

Results

A total of 38 patients were included in the study. The clinical characteristics of the patients are shown in

Each DSA was evaluated by two radiologists who had to reach consensus. Stenoses were graded in steps of 10%; thus, the vessel diameter was measured at the point of the stenosis and proximal and distal to the stenosis (and distal to a poststenotic dilatation). The percentage of the stenosis was computed according to the relationship between the vessel diameters at these points. Results were divided into normal or minimal stenosis (≤20%), mild (30% to 50%), severe (>50%), and occlusion. Assessment of renal arteries included evaluation of main arteries and determination of the number and abnormalities of accessory arteries.

The magnetic resonance (MR) angiograms were also evaluated by two radiologists. The renal arteries were graded as normal if the vessel signal was high and homogenous (Figure 1). Reduction of vessel diameter without complete loss of signal intensity was judged to be mild stenotic with a luminal obstruction of ≤50% (Figure 2). Signal intensity loss with or without distal recovery of flow signal intensity was graded as severe stenosis (≥60%) (Figure 3). Thus, by MRA no distinction was made between severe stenosis and occlusion of the artery on the basis of whether there was signal recovery after initial signal intensity loss. In the overall analysis we distinguished only whether or not a significant stenosis was present, which was defined as a stenosis >50%.

Results

A total of 38 patients were included in the study. The clinical characteristics of the patients are shown in
able to be compared. Of these 37 patients, 14 had RAS on DSA, four bilateral stenoses, and 10 unilateral stenoses. Five of the stenoses were radiologically determined to be of fibromuscular dysplastic origin, and nine were considered to be atherosclerotic (Table 2). One of the fibromuscular dysplastic stenoses was also identified as such by MRA (Figure 2). The characteristics of the subjects with a stenosis, as compared with those without, are noted in Table 1.

Of the 10 unilateral stenoses, two demonstrated a <30% narrowing of the arterial luminal surface on intraarterial arteriography. These stenoses were also identified by MRA, but one was assessed as being >50% and was therefore considered a false positive outcome.

The 12 stenoses >50% on DSA, four bilateral, and eight unilateral, were all also recognized by MRA (Tables 2 and 3). The bilateral stenoses were also identified as such by MRA (Tables 2 and 3). For the stenoses >50%, MRA had a sensitivity of 100% and a specificity of 96%. One patient had a small ostial aneurysm of the left renal artery, which could also be seen by MRA.

DSA identified 12 accessory renal arteries, of which only three were recognized by MRA. Five of the accessory renal arteries were localized within 3 cm above or below the main renal arteries; of these, three were seen on MRA. Seven accessory arteries were localized beyond 3 cm above or below the main renal arteries, and none of these was recognized by MRA.

Image Quality This MRA protocol, which included in the first 14 patients only one three-dimensional slab and later was extended with an additional slab to cover the whole distal abdominal aorta, resulted in 33 moderate-to-good studies and four poor studies. The poor quality was characterized by a poor signal from the vessels and many artifacts that seriously hampered the MIP images.

On MRA 67 main renal arteries were visible, seven main renal arteries were not seen because of a significant stenosis or an obstruction. The same vessels were all visible on DSA; there were no occlusions on DSA. Only 14 renal arteries were visualized at a length of >3 cm. All detected stenoses were located directly near the orifice of the main renal artery or within 3 cm of the aorta. The visualized part of the abdominal aorta was <4 cm caudally from the main renal arteries in 17 studies, in the patients involved, six accessory renal arteries were present of which five were missed by MRA. In the 20 studies that covered more than 4 cm of the distal abdominal aorta, six accessory renal arteries also were noted, of which four were missed by MRA.
TABLE 1. CLINICAL CHARACTERISTICS OF THE PATIENTS. A DIAGNOSIS OF ESSENTIAL HYPTERTENSION (NO STENOSIS OR OTHER SECONDARY HYPTERTENSION PRESENT) OR RENAL ARTERY STENOSIS (RAS) WAS BASED ON THE RESULTS OF THE DSA STUDY OF THE RENAL ARTERIES

<table>
<thead>
<tr>
<th>All Patients (n = 38)</th>
<th>EH (n = 24)</th>
<th>RAS (n = 14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (F/M)</td>
<td>19/19</td>
<td>12/12</td>
</tr>
<tr>
<td>Age (years)</td>
<td>52.2 (12.6)</td>
<td>50.9 (12.9)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>76.8 (17.7)</td>
<td>79.8 (18.1)</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>26.9 (5.4)</td>
<td>27.6 (5.2)</td>
</tr>
<tr>
<td>Creatinine (µmol/L)</td>
<td>108 (56)</td>
<td>105 (59)</td>
</tr>
<tr>
<td>ECC (mL/min)</td>
<td>83.7 (38.4)</td>
<td>89.5 (37.8)</td>
</tr>
<tr>
<td>Systolic BP (mm Hg)</td>
<td>184 (28)</td>
<td>180 (30)</td>
</tr>
<tr>
<td>Diastolic BP (mm Hg)</td>
<td>105 (13)</td>
<td>104 (15)</td>
</tr>
</tbody>
</table>

Given are means and between brackets 1 SD. BP, blood pressure; ECC, endogenous creatinine clearance.* Between these groups there were no significant differences in the shown characteristics.

DISCUSSION

With the development of MRA, a noninvasive procedure to image the renal arteries has become available. In a previous study we found for MRA a sensitivity of 80% to detect RAS.14 These results were reached by using time-of-flight sequences with the MR imaging. These sequences are slower and result in lesser contrast as compared with the techniques we used in the present study. With the application of these improved software techniques of MRA, the sensitivity we now found was 100% and the specificity 96%. These are very promising characteristics for the detection of a low-prevalence condition such as renal arterial steno-

TABLE 2. CHARACTERISTICS OF THE STENOSSES OF THE PATIENTS WITH A RENAL ARTERY STENOSIS

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Age</th>
<th>Pathology</th>
<th>DSA</th>
<th>MRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>71</td>
<td>ATH</td>
<td>BL >50%</td>
<td>BL</td>
</tr>
<tr>
<td>2</td>
<td>54</td>
<td>FMD</td>
<td>UL right >50%</td>
<td>UL right</td>
</tr>
<tr>
<td>3</td>
<td>31</td>
<td>FMD</td>
<td>UL right >50%</td>
<td>UL right</td>
</tr>
<tr>
<td>4</td>
<td>64</td>
<td>FMD</td>
<td>UL right <50%</td>
<td>UL right</td>
</tr>
<tr>
<td>5</td>
<td>59</td>
<td>ATH</td>
<td>BL >50%</td>
<td>BL</td>
</tr>
<tr>
<td>6</td>
<td>61</td>
<td>ATH</td>
<td>BL >50%</td>
<td>BL</td>
</tr>
<tr>
<td>7</td>
<td>59</td>
<td>FMD</td>
<td>UL right >50%</td>
<td>UL right</td>
</tr>
<tr>
<td>8</td>
<td>56</td>
<td>ATH</td>
<td>UL right <50%</td>
<td>no stenosis</td>
</tr>
<tr>
<td>9</td>
<td>37</td>
<td>ATH</td>
<td>UL left >50%</td>
<td>UL left</td>
</tr>
<tr>
<td>10</td>
<td>59</td>
<td>ATH</td>
<td>UL left >50%</td>
<td>UL left</td>
</tr>
<tr>
<td>11</td>
<td>68</td>
<td>ATH</td>
<td>UL left >50%</td>
<td>UL left</td>
</tr>
<tr>
<td>12</td>
<td>47</td>
<td>ATH</td>
<td>UL left >50%</td>
<td>UL left</td>
</tr>
<tr>
<td>13</td>
<td>47</td>
<td>FMD</td>
<td>UL right >50%</td>
<td>UL right</td>
</tr>
<tr>
<td>14</td>
<td>70</td>
<td>ATH</td>
<td>BL >50%</td>
<td>BL</td>
</tr>
</tbody>
</table>

MRA, magnetic resonance angiography; DSA, digital subtraction angiography; BL, bilateral; UL, unilateral; ATH, atherosclerotic; FMD, fibromuscular dysplasia. The grade and the pathology of the stenoses are determined on the images of the DSA.

TABLE 3. THE RESULTS OF MAGNETIC RESONANCE ANGIOGRAPHY (MRA) COMPARED WITH ARTERIAL DIGITAL SUBTRACTION ANGIOGRAPHY (DSA) IN 37 HYPERTENSIVE PATIENTS

<table>
<thead>
<tr>
<th>DSA</th>
<th>MRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>No stenosis</td>
<td>23</td>
</tr>
<tr>
<td>Stenosis <50%</td>
<td>2</td>
</tr>
<tr>
<td>Bilateral stenosis >50%</td>
<td>4</td>
</tr>
<tr>
<td>Unilateral stenosis >50%</td>
<td>8</td>
</tr>
<tr>
<td>Accessory renal arteries (number)</td>
<td>12</td>
</tr>
<tr>
<td>Accessory renal arteries (number)</td>
<td>3</td>
</tr>
</tbody>
</table>

The resulting sensitivity of MRA in the detection of a renal arterial stenosis of greater than fifty percent is 100% and the specificity is 96%.

The one false positive stenosis identified by MRA was a stenosis of less than 50% on DSA that was overestimated by MRA as greater than 50%.
drawn. However, the fact that it is possible to make a
distinction between atherosclerotic and fibromuscular
dysplastic lesions in some patients is promising, and
invites further study in this respect.

The one repeatedly encountered, unfavorable aspect
of the renal artery imaging by MRA is its inaccuracy in
depicting supernumerary renal arteries with a re-
ported maximum error rate of 60%. This low sen-
sitivity for accessory renal arteries and arterial
branches makes MRA less reliable as a screening pro-
cedure in potential renal donors in whom it is im-
portant to have a complete picture of the renal arterial
vessels before nephrectomy. In hypertensive pa-
tients, as well, this is a shortcoming because a stenosis
in an accessory artery is possible, although not very
common. What might be the reason for this low sensi-
tivity for accessory renal arteries?

In our study, when the MR images and the DSA
angiograms were directly compared, in four of nine
initially false-negative MR images the accessory arte-
cies could be identified. This illustrates that the ac-
cessory arteries are easily overlooked or are interpreted
as lumbar arteries because, for most of these arteries,
only a shallow image is present on MRA.

After the initial 14 patients in whom the protocol
foresaw in only one slab, we changed the policy in
order to visualize the whole distal abdominal aorta
because we missed so many accessory renal arteries.
This, however, did not result in a greater chance of
detection of accessory renal arteries; more renal arte-
cies were discovered in retrospect, so a learning curve
and the difficult interpretation of MRA images are
more likely the main reasons for the poor detection
of supernumerary arteries. Better sequences of MRA,
additional experience on the part of the radiologists,
and thorough study of this aspect can probably also lead to
better understanding of the depiction of the involved
vessels and to an interpretation of the images that
allows better recognition of renal accessory arteries in
the future. These considerations render MRA not, as
yet, completely reliable in the study of the renal vas-
culature. In the interpretation of the images, one has to
be aware of this. Another confounding factor can be
the presence of intraabdominal surgical clips because
these can give rise to artifacts and even to false-posi-
tive findings of renal artery stenosis.

An important point of consideration to the practical
clinical value of MRA is that it gives no anatomical
image of the lumen of the artery and, hence, a stenosis
cannot be quantified. It is also impossible to decide on
the basis of the MRA what type of intervention (per-
cutaneous transluminal angioplasty, stent placement,
or surgical treatment of the stenosis) should be pre-
ferred. So, once a stenosis has been established by
MRA, a DSA to determine the intervention strategy
with regard to the stenosis is still required. However,
a percutaneous transluminal angioplasty or stent
placement can potentially be performed at the same
setting.

The cost of the procedure, in our institution, is al-
most the same as that of DSA. Although the cost of the
MRA itself is higher compared with DSA, the neces-
sity of observation in the day care center, after the
intraarterial investigation, makes the total cost of DSA
as high as that of the MRA. Because of this cost, the
still relatively great burden for the patient, and the
low prevalence of renal artery stenosis among the
general hypertensive population, MRA is not gener-
ally indicated (even given such high sensitivity) as a
screening procedure. Preferably a high-prevalence

REFERENCES
1. Ramsay LE, Waller PC: Blood pressure response to
percutaneous transluminal angioplasty for renovascu-
lar hypertension: an overview of published series. Br
2. Semple PF, Dominiczak AF: Detection and treatment of
renovascular disease: 40 years on. J Hypertens 1994;12:
729–734.
3. Mann SJ, Pickering TG: Detection of renovascular hy-
4. Mann SJ, Pickering TG, Sos TA, et al: Captopril renog-
raphy in the diagnosis of renal artery stenosis: accuracy
5. Setaro JF, Saddler MC, Chen CC, et al: Simplified cap-
topril renography in diagnosis and treatment of renal
6. Postma CT, van der Steen PHM, Hoefnagels WHL, et
al: The captopril test in the detection of renovascular
disease in hypertensive patients. Arch Intern Med 1990;
150:625–628.
7. Postma CT, Bijlstra PJ, Rosenbusch G, Thien T: Pattern

