HOMOZYGOUS DELETIONS OF p16INK4 OCCUR FREQUENTLY IN BILHARZIASIS-ASSOCIATED BLADDER CANCER

Yahya TAMIMI1, Pierre Paul BRINGUIER1, Frank SMIT1, Adrie van BOKHOVEN1, Ahmed AbbAS2, Frans M.J. DEBRUYNE1 and Jack A. SchALKEN1,3,4

1Department of Urology/Urological Research Laboratory, University Hospital Nijmegen, Nijmegen, The Netherlands; 2Pathology Department, Mansoura University, Mansoura, Egypt; 3Veterinary Faculty, University of Utrecht, Utrecht, The Netherlands.

We have studied p16INK4 mutation (by PCR-SSCP) and deletion (by Southern blotting and/or multiplex PCR) in a series of 47 bilharziasis-associated tumors from Egypt and compared the results with those obtained on a series of 17 established bladder cell lines and non-bilharziasis-associated bladder cancers from the Netherlands. In the cell lines we found 9 homozygous deletions and 1 mutation (59% of p16INK4 alterations in cell lines), whereas in cases from the Netherlands deletions were found in 4 of 22 samples. No mutations were detected in the 46 samples screened. Interestingly, in bilharziasis-associated bladder cancer, deletions were present in 23 samples and mutations in a further 2 cases (53% of p16INK4 alteration in bilharziasis-associated bladder cancer). No correlation was found between p16INK4 alteration and histopathological data. Likewise, the same frequency of alteration was found in tumors with different differentiation patterns (squamous, transitional or adenocarcinoma). Three conclusions can be drawn from our findings: (i) p16INK4 alterations are more frequent in cell lines than in primary tumors; (ii) in primary bladder tumors (bilharziasis-associated or not), p16INK4 deletions are much more frequent than p16INK4 mutations; (iii) p16INK4 alterations are more frequent in bilharziasis-associated bladder tumors than in other bladder tumors. This high frequency of deletion is not related to a specific histological type but to the specific etiology of these tumors. © 1996 Wiley-Liss, Inc.

Changes in cell-cycle control are thought to be critically associated with cancer development. Progression from the G1 to the M phase is controlled by a family of enzymes called the cyclin-dependent kinases (CDKs) (for review see Kamb, 1995 and references there in). The phosphorylated down-stream effectors transduce the signal and lead ultimately to DNA synthesis and mitosis. CDK activity is dependent on positive regulators called cyclins and inhibited by a set of proteins termed CDK inhibitors. In addition, other kinases and phosphatases participate in the regulation of CDKs. Cyclins are low m.w. proteins whose function is markedly modulated during different phases of the cell cycle. The role played by these proteins in human cancer has long remained elusive. However, the fact that in some parathyroid adenomas, the promoter region of the parathyroid hormone gene is fused to the gene encoding cyclin D1, provided evidence that cyclins can be directly involved in cancer development. Subsequent analysis showed that cyclin D1 can substitute totally or partially for certain oncogenes in cellular transformation assays in various cancers, and cyclin D1 has been found to be over-expressed in several cancers (Kamb, 1995), including bladder (Bringuiер et al., 1996).

Seven CDK inhibitors have been characterized so far: p57, p21, p27, p19, p18, p16INK4 (also called CDKN2 and MTS1) and p15. p16INK4 binds specifically to CDK4 and CDK6 and inhibits these 2 kinases (Serrano et al., 1993). Interestingly, cyclin D1 activates CDK4 and CDK6. Thus, p16INK4 is a specific regulator of cyclin D1-dependent kinases. It is thus likely that p16INK4 alterations can also be involved in cancer development. Mutations in the p16INK4 gene were revealed in cell lines. In 46% of 290 studied cell lines, the p16INK4 gene was found to be homozygously deleted (Kamb et al., 1994a; Nobori et al., 1994). Moreover, p16INK4 has been mapped to 9p21, a region prone to loss of heterozygosity in bladder cancer. It has thus been hypothesized that p16INK4 is the target gene in this region (Cairns et al., 1994; Williamson et al., 1995).

Bilharziasis is one of the most widespread diseases related to parasitic infections and is particularly endemic in tropical and subtropical countries; according to statistical data from the World Health Organisation (WHO), 200 million infected people were recorded in 74 different countries (WHO, 1985). Egypt is considered to be a hyperendemic area, with an overall prevalence rate of 50% and an early age of onset (WHO, 1985). Bilharziasis is often associated with bladder cancer, which occurs with a frequency of 31% of total cancer incidence in Egypt (Rosin et al., 1994; Ramchurn et al., 1995). These tumors have a different etiology and histology than transitional-cell carcinoma (TCC) as found in Western countries. It has been suggested, however, that bladder tumors of both origins share some molecular alterations (e.g., over-expression of EGFR and c-erbB-2) but also that some alterations differ in respect to etiology [e.g., frequent loss of retinoblastoma expression in bladder tumors found in Western countries but not in bilharziasis-associated tumors (Ramchurn et al., 1995)]. To determine whether p16INK4 is differentially involved in these 2 types of bladder cancer, we studied p16INK4 mutations and deletions in bilharziasis-associated tumors from Egypt in comparison with established cell lines and bladder tumors from the Netherlands.

MATERIAL AND METHODS

In this report, we limited our analysis to exon 2 alterations in the p16INK4 gene. Exons 1 and 3 were omitted since they cover only a minor part of the p16INK4 gene (32%) and most mutations/deletions reported so far are clustered in exon 2 (Kamb et al., 1994b; Nobori et al., 1994).

Cell lines and patient samples

The following bladder cancer cell lines, obtained from the Sloan-Kettering Cancer Center (New York, NY), were used in our study: ScaBER, J82, VMcuB1, VMcuB2, VMcuB3, SW-800, SW-780, SW-1710, T24, RT4, RT112, 575A, 647V, 253 J, SD, Jon and S637. Cells were grown in RPMI medium containing 10% FCS until they became subconfluent.

Forty-six frozen tumor samples from the Netherlands were analyzed by SSCP. In none of these was evidence for schistosomiasis infection found. Two were squamous-cell carcinoma (SCC), both grade 2, stage 3. The other tumors were TCC: 22 were superficial and 22 invasive, 11 grade 1, 16 grade 2 and 17 grade 3. The 2 SCC and 20 TCC (10 superficial and 10 invasive; 4 grade 1, 7 grade 2 and 9 grade 3) were also analyzed by Southern blot and multiplex PCR. DNA was extracted as previously described (Bringuer et al., 1996). Only samples with more than 75% tumor material were included.

Forty-seven formalin-fixed, paraffin-embedded bilharziasis-associated tumors were analyzed by both SSCP and multiplex PCR. Twenty were SCC, 20 were TCC and 5 were adenocarci...
nomas. In 2 cases, pathological data were not available. Six tumors were superficial and 39 invasive. Twelve were grade 1, 25 grade 2 and 8 grade 3. After microdissection, DNA was extracted according to Wright and Manos (1990).

Polymerase chain reaction

We used 2 sets of primers covering exon 2: 5’-GCAGCACCACACCGTGTTCC-3’ and 5’-GGAAATTGGAACCTGGAAACC-3’; 5’-TCTGTTCTCTGTTGGGAT-3’ and 5’-TCTGAGCTTGGAAGGCTCT-3’. Fifty nanograms of purified DNA were amplified in a total volume of 50 μl using 50 pmol of sense and anti-sense primers, 200 μM of each dNTP, 1X amplification buffer (50 mM KCl, 10 mM TRIS, pH 8.3, 1.5 mM MgCl2), 0.5 μl (2.5 units) of Taq polymerase (Perkin Elmer, Branchnburg, NJ) and 5% of DMSO. Forty cycles of 50 sec at 94°C, 40 sec at 61°C and 40 sec at 72°C were carried out. PCR products were analyzed on 2% agarose gels.

Single-strand conformation polymorphism (SSCP) analysis

PCR was carried out as described above except that 0.3 μl [α-32P]dATP (3,000 Ci/mmol; Amersham, Aylesbury, UK) were added to the reaction. Three microliters of the reaction product were then mixed with 10 μl of loading buffer containing 96% formamide. Samples were denatured at 94°C for 3 min and chilled on ice for 5 min, and 2 μl were loaded onto a 5% nondenaturing polyacrylamide gel with and without 10% glycerol. Gels were electrophoresed at 5 W (with glycerol) and 3 W (without glycerol) for 16 hr at room temperature, using x TRIS-borate-EDTA buffer (66 mM TRIS-HCl, 2 mM borate, 1 mM EDTA). Gels were dried and films exposed at −80°C for 3 days.

Sequence analysis

PCR products displaying a shift on the SSCP gel were sequenced both directly, using the Ampli Cycle sequencing kit (Perkin Elmer), and after being cloned into a TA cloning vector (pCR II; Invitrogen, San Diego, CA). Sequence comparison was based on the EMBL/GenBank data base (access number L27211).

Southern blotting

Ten micrograms of DNA were digested by EcoRI (for cell lines) or HindIII (for primary tumors) restriction enzymes, separated on a 0.8% agarose gel, transferred onto Hybond N+ (Amersham) according to the manufacturer’s protocol and hybridized as previously described (Bringuer et al., 1996) with a probe of 500 bp corresponding to the entire exon 2 PCR product. For loading control, bladder cancer blots were hybridized as previously described (Bringuier et al., 1984). For the cell lines, the HPG Ca 2.1 probe (Franke et al., 1994), corresponding to human plakoglobin, localized on 17q21 (Aberle et al., 1995), was used.

Comparative multiplex PCR

Comparative multiplex PCR was performed essentially as described by Walker et al. (1995). The primer pair for exon 2 and one control primer pair for a gene located on chromosome 9q were mixed in a PCR reaction and amplified for 30 cycles (1 min 94°C, 1 min 56°C, 1 min 72°C). PCR products were electrophoresed through a 2% agarose gel. After ethidium bromide staining, signals from p16INK4 and the internal control were compared and homozygous deletions scored if the p16INK4 signal was missing or highly reduced.

RESULTS

p16INK4 deletions and mutations in cell lines

In 9 of 17 (53%) cell lines, no amplification of exon 2 of the p16INK4 gene was possible, suggesting homozygous deletions. To confirm whether in samples with no PCR product the gene was indeed homozygously deleted, Southern blot analysis was performed. No signal was obtained in 9 of the 17 cell lines subjected to this analysis, confirming homozygous deletion (Fig. 1).

We subsequently investigated the presence of point mutations using SSCP analysis, which revealed 2 shifts. One of them (ScABER) has already been reported (Spruck et al., 1994). In the other (Jon), the sequence alteration at position 454 (codon 183) did not lead to any amino acid change (AGA → AGG, Arg → Arg).

p16INK4 deletions and mutations in bladder tumors from the Netherlands

In all of these tumors, bands of the predicted size (250 and 340 bp) could be amplified by PCR. However, the presence of a low percentage (10—25%) of normal tissue prevents the identification of homozygous deletions. Therefore, DNA of 24 frozen samples were tested for homozygous deletions by Southern blot analysis. In 4 of the 22 TCC samples (18%), no deletions were found. In the 2 SCC samples, no deletions were found. Therefore, PCR is an appropriate method to measure p16INK4 deletions, albeit one that tends to underestimate the frequency. In the 2 SCC samples, no deletions were found.

Band migration shifts, as revealed by SSCP analysis, were not found in bladder cancer not associated to bilharziasis, no evidence for p16INK4 mutation in such tumors being detected.

p16INK4 deletions and mutations in bladder tumors associated with bilharziasis

As shown in Figure 2, after comparative multiplex PCR, the band specific for p16INK4 was often reduced in intensity when compared with the control. Indeed, homozygous deletion of the p16INK4 gene was found in 23 of 47 (49%) bilharziasis-associated bladder carcinomas.

Using SSCP analysis, 3 band migration shifts in the coding region of p16INK4 were found. In one case, the sequence alteration at position 305 of codon 126 did not lead to any amino acid change (GCC → GCA, Ala → Ala). For the other 2 tumors (Fig. 3), the sequence alterations could not be determined.
detected, we choose our control PCR set on chromosome 9q, a region prone to loss of heterozygosity in TCCs found in Western countries but not in bilharziasis-associated bladder tumors (Gonzalez-Zulueta et al., 1995).

We believe that the 2 tumors with a shift should be considered as mutated since such a shift has been repeatedly observed and since direct sequencing is less sensitive than SSCP (Knowles and Williamson, 1993). If these shifts were caused by polymorphism, the variant sequences would have represented at least 50% of the DNA, which is well above the detection limit of direct sequencing. Conversely, a mutation can be present in only one part of the sample analyzed, which makes it undetectable by direct sequencing.

Whatever the real status of these 2 tumors, 3 conclusions can be drawn from our work: (i) p16INK4 alterations are more frequent in cell lines than in primary tumors as described and discussed in detail by Spruck et al. (1994); (ii) in primary bladder tumors (bilharziasis-associated or not), p16INK4 deletions are much more frequent than p16INK4 mutations; (iii) p16INK4 alterations are more frequent in bilharziasis-associated bladder tumors than in other bladder tumor types.

Numerous mechanisms have been proposed to explain the association of bilharziasis and bladder cancer (WHO, 1983). One theory on the possible role of carcinogens is that cancer is most likely to occur along with bilharziasis infection. The N-nitroso compounds, a potential group of carcinogens widely present in the environment and appearing in the urine of patients with bilharziasis infection, may be implicated in the initiation of bladder cancer (Gentile et al., 1985). Methylation in DNA of bilharziasis-infected human bladder tissue has also been observed (Badawi et al., 1992).

The fact that deletions occur more frequently than single mutations has been noticed in other tumor types, such as brain tumors (Jen et al., 1994; Schmidt et al., 1994; Gianni and Finocchiaro, 1994; Walker et al., 1993), lung cancers (Xiao et al., 1995) and mesothelioma (Cheng et al., 1994). In bladder, the rate of homozygous deletions has been found to be higher than the rate of mutations. Our data on bladder cancer from the Netherlands are thus in agreement with other results (Cairns et al., 1994; Williamson et al., 1995), though the rate of homozygous deletion varies from one series to another: 3 of 22 in our study and 5 of 25 in the study of Cairns et al. (1994). However, this frequency was estimated at 38% by Williamson et al. (1995), who studied a large series of tumors (140 samples). The lower frequency we found cannot be explained by the low sensitivity of the PCR technique, as proposed by Williamson et al. (1995), since we have also used Southern blot analysis.

To explain the higher frequency of deletion, it has been proposed that inactivation of p16INK4 alone does not provide a strong selective advantage and that deletion could lead to the inactivation of several genes (Jen et al., 1994; p15 is, of course, an appealing candidate for co-inactivation together with p16INK4 since the gene lies immediately beside p16INK4 and since both proteins exhibit similar biochemical properties. However, in bladder tumors, a number of deletions have been found which do not involve the p15 gene, leading to the hypothesis that another gene, telomeric to p16INK4, is co-deleted (Williamson et al., 1995). However, in some tumor types, e.g., esophageal SCC (Mori et al., 1994; Zhou et al., 1994; Igaki et al., 1995), p16INK4 is frequently inactivated by point mutation. It thus appears that the selective advantage provided by p16INK4 inactivation varies according to tissue type.

Experimental evidence that p16INK4 may play a role in tumor progression has emerged from studying both sporadic and familial malignancies. In familial melanoma, a locus responsible for the disease has been mapped by linkage analysis to 9p21, a region that harbors the p16INK4 gene as well (Cannon-Albright et al., 1992, 1994). Furthermore, an association
between germ-line \textit{p16}INK4 mutation and familial melanoma has been observed in some kindreds, suggesting that the \textit{p16}INK4 gene is an inherited melanoma susceptibility gene (Ohta et al., 1994; Kamb et al., 1994b). Hussussian et al. (1994) have indeed shown that in 9/15 families with inherited melanoma linked to 9p21, 6 \textit{p16}INK4 mutations co-segregate with the occurrence of melanoma (Hussussian et al., 1994). A somatic mutation (Pro-81-Leu) was also detected in a tumor from an individual patient, with the (Arg-87-Pro) germ-line mutation (Hussussian et al., 1994). A similar study on 15 Dutch families revealed a 19 bp exon 2 deletion in 13 kindreds (Gruis et al., 1995). Surprisingly, all of the kindreds carried the same deletion, suggesting a common ancestry of the affected population. Alternatively, none of the previously described melanoma-associated mutations was found in a study carried out on 17 Australian melanoma kindreds, with one family exhibiting an exon 1 mutation not described so far. This was shown to co-segregate with melanoma and to cause an amino acid substitution (Arg-24-Pro) (Holland et al., 1995). Sporadic cutaneous melanoma accounts for approximately 90% of all cases of melanoma and probably arises as an cumulative result of genetic defects (Herlyn, 1993). In a melanoma cell line established from an individual patient, it has been shown that deletion of 9p21 can occur before metastasis in sporadic melanoma (Glendening et al., 1995).

The most interesting finding of our study is the high deletion rate in tumors from Egypt. In non-small cell lung cancer, it has been suggested that \textit{p16}INK4 alteration is a late event during the carcinogenic process (Okamoto et al., 1995). It is to be noted that for bladder, this could contribute to the high frequency of alteration found in bilharziasis-associated bladder tumors as these are generally detected at an advanced stage. However, we do not favor this explanation since we did not observe any increased frequency of alteration along with either grade or stage in such samples. The increased frequency of \textit{p16}INK4 alteration thus appears to be more often associated with schistosomiasis infestation. Actually and while our work was in progress, a study of genetic alterations in SCCs has been published (Gonzalez-Zulueta et al., 1995), in which \textit{p16}INK4 alterations were found in 6 of 9 SCCs from Egypt. The results we have obtained on a larger series confirm the high prevalence of \textit{p16}INK4 alterations in bilharziasis-associated bladder tumors. Gonzalez-Zulueta et al. (1995) suggest that \textit{p16}INK4 deletions might be a part of a pathway specific for SCC development. Indeed, they have also analyzed 3 SCCs from Sweden and found \textit{p16}INK4 alteration in 2. Our data do not support this hypothesis since: (i) the 2 SCCs from the Netherlands we have analyzed showed no \textit{p16}INK4 alteration; (ii) in bilharziasis-associated bladder tumors, \textit{p16}INK4 alterations were not restricted to SCC but were found with a similar frequency in any type of tumor. According to our results, \textit{p16}INK4 alteration is rather associated with a specific etiology (the presence of schistosomiasis eggs in the bladder wall) than with a specific histological type.

Since D-type cyclin, CDK4, \textit{p16}INK4 and the retinoblastoma protein (RB) protein act via the same pathway, it has been proposed that inactivation or activation of one of these elements would deregulate the G1 transition. Indeed, aberrations of \textit{p16}INK4 and RB occur in distinct subsets of cell lines (Aagaard et al., 1995). The fact that in bilharziasis-associated bladder tumors RB expression is often conserved, whereas \textit{p16}INK4 is often inactivated, supports this hypothesis. The study of bladder cancer samples from the Netherlands, which we analyzed for activation of cyclin D1 and inactivation of \textit{p16}INK4 and RB, provides indications in favor of this hypothesis (Bringui er et al., 1996).

Table 1: \textit{p16}INK4 Status According to Histological Type

<table>
<thead>
<tr>
<th>Tumor type</th>
<th>Histological type</th>
<th>Homozygous deletions</th>
<th>Mutations</th>
<th>% Alterations</th>
<th>Total % alterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilharziasis-associated tumors</td>
<td></td>
<td>11/20</td>
<td>0/20</td>
<td>55%</td>
<td>53%</td>
</tr>
<tr>
<td>SCC</td>
<td></td>
<td>9/20</td>
<td>2/20</td>
<td>53%</td>
<td></td>
</tr>
<tr>
<td>TCC</td>
<td></td>
<td>3/5</td>
<td>0/5</td>
<td>60%</td>
<td></td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td></td>
<td>0/2</td>
<td>0/2</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Tumors not associated with bilharziasis</td>
<td></td>
<td>4/22</td>
<td>0/22</td>
<td>18%</td>
<td>18%</td>
</tr>
<tr>
<td>SCC</td>
<td></td>
<td>0/2</td>
<td>0/2</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Cell lines</td>
<td></td>
<td>9/17</td>
<td>1/17</td>
<td>59%</td>
<td>59%</td>
</tr>
</tbody>
</table>

References

