A Novel Plasmodium falciparum Sporozoite and Liver Stage Antigen (SALSA) Defines Major B, T Helper, and CTL Epitopes

Emmanuel Bottius,* Lbachir BenMohamed,* Karima Brahimi,* Hélène Gras,+ Jean-Paul Lepers,+ Lucie Raharimalala,+ Masamichi Aikawa, Jacques Meis, Bas Slierendregt, Andre Tartar, Alan Thomas, and Pierre Druilhe

In the search for subunit vaccines that are able to induce the type of sterile, protective immunity achieved by irradiated sporozoites, there is increasing evidence that defense mechanisms directed at the intrahepatic stage and Ags expressed at this stage are critical. We have initiated a systematic search for such molecules and report here the identification and partial characterization of a novel Plasmodium falciparum gene encoding a 70-kDa protein, expressed in both sporozoite and liver stages (SALSA), with a vaccine potential that stems from its antigenic features. Antigenicity and immunogenicity studies were conducted in individuals exposed to malaria, in immunized mice, and in chimpanzees, using a recombinant protein and two synthetic peptides. Results show that the SALSA nonrepetitive sequence defines 1) major B cell epitopes, as shown by a high prevalence of Abs to each peptide in three African areas differing in their level of endemicity; 2) Th epitopes, as demonstrated by lymphoproliferation and IFN-γ secretion in cells from the individuals from one of the low transmission areas, as well as helper effect upon Ab secretion in mice; and 3) epitopes for cytolytic lymphocytes, demonstrated in immunized and sporozoite-challenged chimpanzees, and associated with MHC class I leukocyte Ags. The latter are of particular importance, because this is the only part of the malaria life cycle in which the parasite is located in a cell expressing class I Ags and because CD8+ lymphocytes were found to be responsible for protection in experimental models. The Journal of Immunology, 1996, 156: 2874–2884.

Research to develop a malaria pre-erythrocytic stage vaccine stems from a very unusual and therefore striking phenomenon in the field of immunity to parasites, namely that the immunity resulting from the injection of irradiated sporozoites is a total, sterilizing resistance, allowing the vaccinee to fully resist challenge by large numbers of virulent parasites. Initially, because this state was induced by injection of sporozoites, research focused primarily on sporozoite surface molecules, and in particular on the major circumsporozoite (CS) surface molecule. However, CS immunization in many formulations has always been disappointing in comparison with that obtained with attenuated sporozoites (1).

There is consequently a recognized need to investigate the potential of other pre-erythrocytic stage Ags. Growing evidence indicates that those Ags expressed during liver stage development are critical. A requirement for postsporozoite developmental Ags was indicated when only those sporozoites injected i.v. that retained the capability to transform into intrahepatic trophozoites were protective (2) and could remain in the liver for prolonged periods of time (3, 4). Parallel in vivofin vitro experiments established a clear-cut relationship between protection and the ability of sporozoites to invade the hepatocytes (5). The destruction of these live liver trophozoites by primaquine treatment reversed protection (4).

Liver stages appear to be targets for more varied and more efficient defense mechanisms than sporozoites alone. Views have moved from a focus on Ab-dependent mechanisms directed against free sporozoites, prevalent 10 to 15 yr ago, to a focus on incorporating (based on rodent experiments) a wide range of effectors such as ADCC-like inhibition; a large number of leukocyte-derived mediators, of which the cytokines IFN-γ, IL-1, and IL-6 are the most efficient, as well as free oxygen radicals and nitric oxide intermediates; and direct cytolysis by lymphocytes of the infected hepatocytes (6). In human malaria, far less is established regarding the effectors of immunity induced by irradiated sporozoites. It is known that Abs and IFN-γ have a substantial, although subtotal, effect against Plasmodium falciparum (7, 8). Although direct evidence for CTL activity against infected hepatocytes is still lacking, indirect indications were obtained from epidemiologic studies (9, 10).

Several years ago, as evidence for the critical role of intrahepatic parasite development emerged, we initiated a detailed study of the antigenic content of P. falciparum pre-erythrocytic stages. We confirmed the existence of several non-CS sporozoite surface molecules (11) and developed a systematic strategy to identify, characterize, and screen liver stage-expressed molecules (12).
Table I. Choice of discriminating sera

<table>
<thead>
<tr>
<th>Sera</th>
<th>IFA-Sporozoite</th>
<th>ELISA-CS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><100</td>
<td>0.7</td>
</tr>
<tr>
<td>2</td>
<td>400</td>
<td>1.8</td>
</tr>
<tr>
<td>3</td>
<td>6,400</td>
<td>11.8</td>
</tr>
<tr>
<td>4</td>
<td>6,600</td>
<td>1.1</td>
</tr>
<tr>
<td>5</td>
<td>1,600</td>
<td>5.8</td>
</tr>
<tr>
<td>6</td>
<td>800</td>
<td>5.6</td>
</tr>
<tr>
<td>7</td>
<td>12,800</td>
<td>0.6</td>
</tr>
<tr>
<td>8</td>
<td>6,400</td>
<td>8.6</td>
</tr>
<tr>
<td>9</td>
<td><100</td>
<td>1.9</td>
</tr>
<tr>
<td>10</td>
<td>25,600</td>
<td>0.9</td>
</tr>
</tbody>
</table>

*Results of detection of Abs directed to whole sporozoite surface molecules (IFA reciprocal titers) and to circumsporozoite Ag repeats (ELISA ratios to values from healthy controls + 3 SD). The three discriminating sera that were used to select non-cs (i.e., SALSA) Ag are underlined.

LSA-1 was the first to be reported (13); more recently we have described the sporozoite threonine- and asparagine-rich protein (STARP).

We report here the identification of a novel sporozoite and liver stage antigen (SALSA) and describe antigenicity studies in humans and immunogenicity studies in animals that demonstrate that SALSA-derived epitopes, which are not defined by a repetitive structure, have valuable immunologic properties that may contribute to an effective malarial vaccine.

Materials and Methods

Antibodies

Discriminating sera. Sera were selected as follows. Among subjects living in malaria endemic areas, we had previously observed a frequent discrepancy between the results from sporozoite surface labeling and recognition of the CS repeats (11), suggesting the prevalence of high titers of Abs to non-CS surface molecules. In a series of 150 individuals, we thus selected sera with high Ab titer to sporozoite surface components in a "wet" sporozoite immunofluorescence assay (IFA) (14), yet having low or no detectable Ab to CS, as measured by ELISA (Table I) and by Western blots (not shown). The three discriminating sera that were used to select non-CS, i.e., the SALSA Ag, are those underlined in Table I.

Two discriminating sera for identifying new liver stage Ags were selected in a similar manner. We chose individual endemic sera that had high Ab titers by IFA to *P. falciparum* liver stages and yet were very low or negative when tested by ELISA on B cell epitopes containing peptides from the LSA-1 Ag (13, 15).

Sera directed to heterologous malaria species. To assess the species specificity of the new molecule, we employed four sera from *Plasmodium vivax* infections, two from *Plasmodium ovale*, two from *Plasmodium malariae*, two from *Plasmodium cynomolgi* infections in man (16), one from *Plasmodium berghei*, and two from *Plasmodium yoelii* in mice. These sera were chosen because they contained significant amounts of Abs when assayed by IFA on Ags (sporozoites and blood stages) from the homologous species. Finally, we used three Abs identified as specific for three non-CS sporozoite surface Ags of *P. yoelii* (17).

Transfusion malaria sera: to assess the stage specificity of SALSA, we also used five sera from French patients who acquired *P. falciparum* blood stage infection by an accidentally contaminated blood transfusion (18). These sera were collected after treatment and had IFA Ab titers to *P. falciparum* asexual blood stages ranging from 1/600 to 1/6200, whereas they were negative when tested on *P. falciparum* sporozoites and liver stages (as described below (Ab assays)).

Affinity-purified antibodies. Monospecific polyclonal Abs were affinity purified onto the recombinant proteins by serial absorption of Abs from eight hyperimmune human sera that had been depleted of Abs reactive with β-galactosidase. The recombinant proteins, adsorbed on isopropylthiogalactoside-impregnated nitrocellulose filters (BA 85, Schleicher & Schuell, Dassel, Germany), were incubated serially with each of the hyperimmune sera and washed extensively. Ads were eluted at pH 2.5 in glycine buffer, neutralized, and concentrated using a Minicon apparatus (Amicon Corp., Beverley, MA).

Anti-peptide Abs were prepared by affinity purification from human sera on ELISA plates coated with each of the two synthetic peptides derived from the SALSA Ag according to the technique of Brailhim et al. (19). In this case, single sera were chosen on the basis of their ELISA titer to the corresponding peptides were used.

DNA techniques

Screening of a genomic DNA library. Three of the discriminating sera shown in Table I, and two others that were positive on LS and negative on LSA-1, were employed to screen a subset of 120 *P. falciparum* genomic DNA clones. These were formerly identified as encoding mainly for pre-erythrocytic stage Ags (13); they were spotted onto nitrocellulose discs impregnated with isopropylthiogalactoside, as described above, and reacted with Abs. Following washings, the reaction was revealed with anti-human IgG peroxidase-labeled second Abs (Biosys, Compiègne, France; used at 1/500 dilution).

To determine the relationship between SALSA-DG671 and a series of other pre-erythrocytic stages recombinant clones, the 32P-labeled DG671 DNA insert was hybridized in 6X SSC buffer at 65°C overnight with DNAs (transferred to a Hybond N membrane, Amersham, Buckinghamshire, U.K.) from the above subset of 120 clones encoding stage-specific pre-erythrocytic Ags (13, 12); the membranes were then autoradiographed.

Sequence analysis. Agt11+DG671 DNA was prepared from a liquid phase sample and digested by EcoRI, and the gel-purified EcoRI insert was subcloned into pUC18. The clone pUC18-DG671 obtained was sequenced from both stands using the dyeoxynucleotide chain termination method. The sequence data were obtained from *P. falciparum* clone T9/96.

PCR studies. The DNA from 23 *P. falciparum* lines and isolates (NF54, Palo Alto cultured strains, 5 isolates from Thailand, and 16 from the village of Dielmo, Senegal, West Africa) were prepared by phenol-chloroform extraction (20) and amplified by PCR using the oligonucleotides indicated in Figure 1. The PCR was performed for 40 cycles with the following sequence: 94°C for 1 min, 50°C for 1 min, 72°C for 1 min, and thereafter 72°C for 5 min, using Taq polymerase (Cetus Corp., Emeryville, CA) in a Hybrid thermal reactor. The amplified products were electrophoresed in 4% NuSieve-agarose genetic technology grade gel and examined under UV light. These were transferred to nitrocellulose and probed with 32P-labeled DG671.

For RT-PCR, NF54 sporozoite RNA was prepared as described (21) and enriched using a Micro- FastTrack mRNA isolation kit according to the manufacturer's instructions (Invitrogen, San Diego). RT-PCR was performed from 1.5 μg of mRNA using the Superscript reverse transcriptase (Life Technologies, Gaithersburg, MD) and Taq polymerase (Amersham) with the same oligonucleotides and the same amplification program as described above.

Study areas and subjects

The three areas of field study have been previously described in detail (15). The individuals studied ranged in age from 1 to 75 yr. The village of Podor is located in the Northern part of Senegal, an almost desert-like part of the Sahel. The transmission of malaria by mosquitoes is seasonal, as in the other two areas, and there was estimated to be an average one infective bite per person per year (22), with relatively large yearly variations (one to five) depending on the amount of rainfall. Donse is in the savannah part of Burkina Faso, 50 km north of Ouagadougou. Malaria transmission reaches 100 infective bites/individual/year (14), which is high, although average by African standards. Ankazobe, where the population is mainly of Asian origin, is one of the rare villages in the highlands of Madagascar where transmission (10 infective bites/individual/year on average) has remained uninterrupted over the past 20 yr. There are large variations from one household to another, due to greater differences in the building materials employed as compared with the very homogeneous habitat of the other two villages, and depending also on the distance from the main breeding site, which is the rice fields. For T cell studies, after informed consent was obtained from the donors or their parents, blood was collected on Liquemine (Roche, Basel, Switzerland), a preservative-free heparin, and PBMC were processed in our laboratory in Antananarivo, Madagascar within 4 to 6 h following sampling.

Ab assays

Immunofluorescence and immunoelectron microscopy of sporozoites and liver stages. IFA on whole sporozoite surface Ags were performed using sera, NF54 strain, and sporozoite obtained after feeding *Anopheles dirus* on gametocytes from four Thai patients (as described in Ref. 14) and expressed as the reciprocal of the last positive serum dilution. *P. vivax*, *P. yoelii*, and *P. berghei* sporozoites were produced in our laboratory by feeding *Anopheles stephensi* mosquitoes on patent gametocytes.
well is in round-bottom 96-well microtiter culture dishes (Nunc, Roskilde, Denmark) filled with 200 μl of RPMI medium supplemented with 10% human AB serum, 3.7 g of sodium bicarbonate, 2 mM glutamine, 1% sodium pyruvate, and 10 mM HEPES per liter. The peptides were added at 10-μg/ml concentrations in quadruplicate wells. Control wells included no Ag, the lectin leuokagglutinin, and purified protein derivatives, both at 10 μg/ml. All plates were incubated for 6 days at 37°C in 5% CO2 air mixture; on day 6, 100 μl of cell-free medium was removed for IFN-γ assay and replaced with 100 μl of fresh medium containing 1 μCi of [3H]Thymidine. Incorporation was counted in a liquid scintillation spectrophotometer from cells collected on day 7. Stimulation indices (SI) were calculated as the ratio of the geometric mean cpm in quadruplicate test wells to the geometric mean of control wells (i.e., without Ag). A proliferation was considered positive when the SI was >2, with a 5 cpm (difference between signal and background values) > 1000 cpm.

Results

Identification of a novel sporozoite surface molecule

To select non-CS sporozoite surface Ags, we used an approach similar in principle to that formerly used to detect clones expressing a LSA (13, 12), i.e., the screening of a *P. falciparum* expression library with polyclonal human Abs of restricted specificity. Three sera that had low or undetectable levels of anti-CS protein, and yet were strongly positive in a “pet” sporozoite IFA (Table 1), and two sera that were negative for LSA-1 reactivity, and yet were strongly reactive with liver stage by IFA, were used in this selective screen. From a group of 120 *P. falciparum* genomic DNA clones encoding predominantly pre-erythrocytic Ags, these sera facilitated the selection of 12 candidate clones. Stage specificity was assessed by sporozoite, liver stage, and blood stage IFA with human Abs that had been affinity purified on the clones. Due to the reported genetic restriction of CS epitopes for Th cells and the consequent low prevalence of Abs to CS among subjects from highly endemic areas (11), we wished to select only those clones expressing epitopes that were more consistently recognized by malaria-exposed individuals. A complementary set of 7 sera from both low and high endemicity areas was therefore used to study the prevalence of specific Ab response in Western blots against recombinant products. From this screening, one consistently well recognized clone, DG671, was selected and submitted to further studies.

Affinity-purified human Abs on DG671 were found to be strongly reactive by IFA with the surface of sporozoites from NF54 strain (see below) showing an evenly distributed labeling over the entire surface, which was also detectable in four additional sporozoite isolates from Thailand (not shown).

Sequence analysis of the DG671 clone showed that the 249-base pair fragment contains only one open reading frame, encoding an 83-aa nonrepeat stretch (Fig. 1A). PCR amplification of DNA from this region in 5 Asian and 2 African culture-adapted strains, and in 16 isolates from Senegal, showed no size polymorphism (e.g., Fig. 1C). The SALSA polypeptide is rich in glutamic acid (17%), lysine (19%), and serine (13%), but contains no methionine or cysteine.

Affinity-purified Abs

Affinity-purified Abs on DG671 were found to be strongly reactive by IFA with the surface of sporozoites from NF54 strain (see below) showing an evenly distributed labeling over the entire surface, which was also detectable in four additional sporozoite isolates from Thailand (not shown).

Sequence analysis of the DG671 clone showed that the 249-base pair fragment contains only one open reading frame, encoding an 83-aa nonrepeat stretch (Fig. 1A). PCR amplification of DNA from this region in 5 Asian and 2 African culture-adapted strains, and in 16 isolates from Senegal, showed no size polymorphism (e.g., Fig. 1C). The SALSA polypeptide is rich in glutamic acid (17%), lysine (19%), and serine (13%), but contains no methionine or cysteine.

Affinity-purified Abs

Affinity-purified Abs on DG671 were found to be strongly reactive by IFA with the surface of sporozoites from NF54 strain (see below) showing an evenly distributed labeling over the entire surface, which was also detectable in four additional sporozoite isolates from Thailand (not shown).

Sequence analysis of the DG671 clone showed that the 249-base pair fragment contains only one open reading frame, encoding an 83-aa nonrepeat stretch (Fig. 1A). PCR amplification of DNA from this region in 5 Asian and 2 African culture-adapted strains, and in 16 isolates from Senegal, showed no size polymorphism (e.g., Fig. 1C). The SALSA polypeptide is rich in glutamic acid (17%), lysine (19%), and serine (13%), but contains no methionine or cysteine.

Affinity-purified Abs

Affinity-purified Abs on DG671 were found to be strongly reactive by IFA with the surface of sporozoites from NF54 strain (see below) showing an evenly distributed labeling over the entire surface, which was also detectable in four additional sporozoite isolates from Thailand (not shown).

Sequence analysis of the DG671 clone showed that the 249-base pair fragment contains only one open reading frame, encoding an 83-aa nonrepeat stretch (Fig. 1A). PCR amplification of DNA from this region in 5 Asian and 2 African culture-adapted strains, and in 16 isolates from Senegal, showed no size polymorphism (e.g., Fig. 1C). The SALSA polypeptide is rich in glutamic acid (17%), lysine (19%), and serine (13%), but contains no methionine or cysteine.

Affinity-purified Abs

Affinity-purified Abs on DG671 were found to be strongly reactive by IFA with the surface of sporozoites from NF54 strain (see below) showing an evenly distributed labeling over the entire surface, which was also detectable in four additional sporozoite isolates from Thailand (not shown).

Sequence analysis of the DG671 clone showed that the 249-base pair fragment contains only one open reading frame, encoding an 83-aa nonrepeat stretch (Fig. 1A). PCR amplification of DNA from this region in 5 Asian and 2 African culture-adapted strains, and in 16 isolates from Senegal, showed no size polymorphism (e.g., Fig. 1C). The SALSA polypeptide is rich in glutamic acid (17%), lysine (19%), and serine (13%), but contains no methionine or cysteine.

Affinity-purified Abs

Affinity-purified Abs on DG671 were found to be strongly reactive by IFA with the surface of sporozoites from NF54 strain (see below) showing an evenly distributed labeling over the entire surface, which was also detectable in four additional sporozoite isolates from Thailand (not shown).

Sequence analysis of the DG671 clone showed that the 249-base pair fragment contains only one open reading frame, encoding an 83-aa nonrepeat stretch (Fig. 1A). PCR amplification of DNA from this region in 5 Asian and 2 African culture-adapted strains, and in 16 isolates from Senegal, showed no size polymorphism (e.g., Fig. 1C). The SALSA polypeptide is rich in glutamic acid (17%), lysine (19%), and serine (13%), but contains no methionine or cysteine.

Affinity-purified Abs

Affinity-purified Abs on DG671 were found to be strongly reactive by IFA with the surface of sporozoites from NF54 strain (see below) showing an evenly distributed labeling over the entire surface, which was also detectable in four additional sporozoite isolates from Thailand (not shown).

Sequence analysis of the DG671 clone showed that the 249-base pair fragment contains only one open reading frame, encoding an 83-aa nonrepeat stretch (Fig. 1A). PCR amplification of DNA from this region in 5 Asian and 2 African culture-adapted strains, and in 16 isolates from Senegal, showed no size polymorphism (e.g., Fig. 1C). The SALSA polypeptide is rich in glutamic acid (17%), lysine (19%), and serine (13%), but contains no methionine or cysteine.
FIGURE 3. Localization of SALSA in P. falciparum sporozoites (A, C, and D) and liver stages (B and E). Affinity-purified Abs to SALSA were allowed to react: A, with the surface of P. falciparum sporozoites (NF54 strain) in a wet IFA assay; B, with liver forms from Carnoy's fixed biopsies obtained in Cebus monkeys, revealed by FITC-labeled Abs; C and D, with NF54 sporozoite sections revealed with protein A-gold 30-nm particles; E, liver forms of P. falciparum (NF54) revealed using protein A-gold particles of 10-nm size; the gold particles are distributed in the granular material present between the parasitophorous vacuole membrane and the two liver stage merozoites (M) which can be seen in the figure, in fully mature liver forms obtained in the chimpanzee.

Species specificity

IFA was negative on sporozoites of P. vivax and on sporozoites and liver stages of the rodent species P. yoelii and P. berghei. This was confirmed by analysis of reactivity of the DG671 Ag with sera from heterologous malarial infections. In Western blots, the β-galactosidase-DG671 recombinant protein was not recognized by human sera after P. vivax (four sera), P. ovale (two sera), P. malariae (two sera), and P. cynomolgi (two sera) infection, or by mouse sera after P. berghei and P. yoelii infections (three sera containing significant amounts of Abs to Ags of the homologous species). In addition, three mAbs identified as specific for three non-CS sporozoite surface Ags of P. yoelii (17) showed no cross-reactivity with DG671.

The relationship between SALSA and other Ags of the pre-erythrocytic phase was investigated. Abs to SALSA did not react with CS construct DG705 (a clone containing a long stretch of NANP repeats) or with DG176 (a clone encoding part of CS region I). These Abs also failed to react and SALSA DNA failed to hybridize with the other 119 pre-erythrocytic-stage recombinant clones that were screened (Fig. 1B).

Antigenicity: B and T cell responses in exposed individuals

The high prevalence of Abs in man was one of the original criteria of selection for SALSA. This was further evaluated in 269 individuals, ages 1 to 75 yr, originating from three areas of Africa that have distinct levels of transmission, and was compared with responses to CS repeats, LSA-1, and blood stages Ags. Results are detailed in Figure 4. The proportion of individuals having detectable Abs specific for either one or the other SALSA peptide was found to be high as compared with the other Ags studied, particularly in the area of Podor (Senegal), which is an area of very low endemicity by African standards (it was estimated that mosquitoes inject virulent sporozoites from 1 to 5 times/year/individual) (22). This suggests that low amounts of the native SALSA protein are capable of inducing an immune response in humans. The overall prevalence of responses in all age groups varied from one area to the other, from 64 to 90% for SALSA-1 peptide, from 82 to 88% for SALSA-2, and from 53 to 65% for the recombinant R32et32 from the CS protein (Fig. 4, IA, 2A, and 3A), whereas prevalences ranged from 65 to 80% for anti-Resa and from 76 to 91% for whole anti-blood stage Ags measured by IFA (not shown). Similarly, the overall mean titers of Abs directed to the above three molecules were 2.63 to 3.84, 4.45 to 5.70, and 1.89 to 2.58, respectively (for details per age group, see Fig. 4, IB, 2B, and 3B). In each area there was, as is the case of responses to many malarial Ags, an age-dependent increase of both prevalence and titers of Abs, particularly among the younger subjects. From one area to the other, there was a correlation between either prevalence or mean titer, and the mean number of sporozoite inclusions in the area: prevalence and titers are lower in Podor (Senegal), where individuals receive an average of 1 to 5 infective bites, than in Ankazobe (Madagascar), where transmission is only slightly higher (10 infective bites/individual/year on average), while in Donse (Burkina Faso), where transmission averages 100 infective bites/individual/year, a larger proportion of children harbor SALSA-specific Abs. These data confirm that SALSA-1 and SALSA-2 aa sequences define one or several B cell determinants. Those defined by SALSA-2 appear to be more immunogenic when presented by the parasite, since there are higher prevalences and higher Ab titers against this peptide in the two areas of lower endemicity and in each age group. Ab prevalences were also assessed by Western blot against DG671 recombinant protein, using a subset of 30 individuals spanning all age groups, from each of the above three areas. Ab prevalences measured in this way were 87, 90, and 95%, respectively, of the individuals studied in Podor, Ankazobe, and Donse (not shown).

Lymphocyte studies in 111 individuals from the low-transmission area of Ankazobe in Madagascar revealed the presence of T cell-stimulatory epitopes within both SALSA-1 and -2 peptides. The prevalence of T cell responders to SALSA-1 or SALSA-2 was of the same order of magnitude as to the CS Th-2r epitope (Table II). Proliferative responses to the two SALSA peptides were in several instances dissociated, probably due to individual MHC restriction, so that in total 22.5% of the cohort investigated showed a significant lymphocyte proliferation to either one or both of the peptides. Results were negative in 22 nonexposed controls who were studied in parallel, indicating that the peptides had no mitogen or superantigen activity (not shown). IFN-γ secretion was measured to provide an additional marker of T cell Ag stimulation, and also because it is, to date, the most potent cytokine against liver stage development. The proportion of individuals responding
by specific secretion of IFN-γ was greater than those showing proliferative responses and was significantly higher for SALSA-2 than SALSA-1, the total reaching 52% of the subgroup studied (Table II).

Immunogenicity: B, Th, and CTL activity in immunized animals

To investigate Th cell activity, outbred Swiss CB 1 mice were immunized by injection of 50 μg of SALSA-1 peptide (without carrier) on day 0. They were boosted on day 40 with 50 μg of the purified DG671 recombinant protein (containing both SALSA-1 and SALSA-2 peptide sequences). The high IgG Ab response towards SALSA-2 peptide indicated that a secondary response occurred, presumably via help mediated by cells primed with the aa sequence of SALSA-1 peptide (Fig. 5). Mice sera also reacted with P. falciparum sporozoites and liver stages by IFA, indicating additionally that the polypeptide properly mimicked the native molecule. In contrast, the Ab response to SALSA-1 was much weaker (Fig. 5A). The relative dominance of SALSA-2 was underlined when, after two injections in outbred mice of 50 μg of each peptide, SALSA-2, but not SALSA-1, induced Ab strongly reactive with the original peptide and with sporozoite and liver stages (mean ELISA ratio, 9.5; IFA, 1/400). Three immunizations with the β-galactosidase-fused DG671 protein induced Abs reacting with both peptides.

The liver stages are immunologically unique in the life cycle of Plasmodium sporozoites, because they develop within a host cell that expresses MHC class I molecules. The evidence for CDS-mediated cytotoxicity in rodents suggests that target Ag(s) can be adequately transported and suitably expressed on the host cell membrane. Cytolytic activity was therefore sought in lymphocytes from two chimpanzees, Bart and Socrates, who received three injections of the purified SALSA recombinant protein adsorbed on alum and were subsequently exposed to live sporozoites.

Specific Abs and strong Th cell responses were recorded in samples taken before and 1, 3, 8, and 12 mo after exposure to live sporozoites. Abs towards SALSA-1 and SALSA-2 were detected after immunization (e.g., ELISA ratios of 9.1 and 24, respectively, in Bart and labeling of the 70-kDa protein in Western analyses; Fig. 2, lane F), decreased in the following months and were boosted by the challenge. Stronger T cell responses towards SALSA-2 than SALSA-1 were recorded at various time points.

Table II. Prevalence of lymphocyte responses to SALSA and Th2r peptides among exposed individuals from Ankazobe, Madagascar

<table>
<thead>
<tr>
<th></th>
<th>Proliferation (S > 2)</th>
<th>IFN-γ Secretion (≥2 IU/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th2r</td>
<td>12/85 (14.1%)</td>
<td>9/26 (34.1%)</td>
</tr>
<tr>
<td>SALSA-1</td>
<td>17/111 (15.3%)</td>
<td>12/50 (24%)</td>
</tr>
<tr>
<td>SALSA-2</td>
<td>14/111 (12.6%)</td>
<td>22/50 (44%)</td>
</tr>
<tr>
<td>SALSA-1 and/or SALSA-2</td>
<td>25/111 (22.5%)</td>
<td>26/50 (52%)</td>
</tr>
</tbody>
</table>

FIGURE 4. Mean prevalence (A) (gray background) and titers (B) (clear background) against SALSA-1 (black columns) and SALSA-2 (vertical stripes) peptides, and recombinant R32et32 (clear columns) in: Donse (Burkina Faso; 4-1), Ankazobe (Madagascar; 4-2) and Poder (Senegal; 4-3) populations. Prevalence (A) is expressed as the percentage of positive individuals in each age group. Titer (B) is expressed in arbitrary units representing the ratio of experimental OD value to healthy controls + 3 SD. Age groups ranges are shown on the abscissa.
A potent, peptide-specific cytolytic effect was detected for SALSA-1 (vertical stripes) and SALSA-2 (hatched columns) peptides. The high response to SALSA-2 at day 60 is suggestive of a secondary type of response, indicating Th activity provided by SALSA-1.

In contrast, both assays were negative in two control animals immunized with the β-galactosidase carrier molecule alone and in two chimpanzees immunized with other LSAs before and after the challenge.

For CTL assays, PBLs from Bart were taken 9 mo after challenge, and cell lines were established by in vitro stimulation with SALSA-1 and -2 peptides for 7 days before performing the assay. A potent, peptide-specific cytolytic effect was detected for SALSA-2 and, to a lesser extent, for SALSA-1-stimulated cells against autologous PHA blasts (Fig. 6, A and B). The lysis was peptide specific, as negative results were obtained with control peptide-pulsed target cells (Fig. 6, C and D), and with SALSA-2-specific effector cells towards SALSA-1-pulsed targets (not shown in the figure). In the cells from the other immunized chimpanzee, Socrates, a similar cytolytic activity towards SALSA-1-pulsed cells was observed (Fig. 6E), whereas no CTL activity to SALSA peptides was detected in material taken at the same time points from the four control animals, despite the fact that they had received a similar sporozoite challenge.

In samples taken from Bart 18 and 20 mo after challenge, CTL activity was still detectable (specific lysis 60–30% in the two successive assays). The animal was then immunized again with SALSA material, and in samples taken 30 days after this boost the CTL activity was restored to the high initial levels (Fig. 6E). This result was confirmed in cells from a second sample drawn at 65 days (not shown). In both cases, responses were clearly shown to be class I-restricted, as in the presence of Mab W6/32 the CTL activity specific of each peptide was totally abolished (Fig. 6E, black columns), whereas this was not the case when using anti-HLA-DR Abs (not shown).

Discussion

To date, attempts to develop a malaria vaccine have primarily focused on the asexual blood stage and on CS, the major sporozoite surface Ag, whereas the liver stage of parasite development has attracted relatively little interest. Through rodent malaria models, it has recently become clear that LS are susceptible to attack by a variety of immune effectors, including the direct and indirect effects of Ab and T cells. The main difficulties in exploiting this progress for the development of a pre-erythrocytic stage vaccine are twofold: 1) the malaria pre-erythrocytic stage (MPES) antigenic repertoire remains largely unknown; and 2) protective mechanisms vary widely between the rodent/Plasmodium combinations used. None of the combinations is considered to be more relevant to the human situation than the others (6, 34). Thus it is still not clear which molecule(s) inducing which mechanism(s) has the most promise against P. falciparum (or P. vivax) MPES in humans. The novel MPES molecule that we identify here is a sporozoite surface and liver stage Ag that is a potential target for several protective defense mechanisms, particularly in view of its ability to induce B, Th, and CTL responses that may act successively on sporozoites and LS.

We have undertaken molecular characterization sufficient to demonstrate that SALSA does not represent any of the P. falciparum genes reported to date. It does not contain any repeated motif. The region of the SALSA gene we have characterized was chosen, apart from its stage expression, based on Ab detection, yet was found to contain valuable T cell determinants. The prevalence of Ab in a limited selective panel of sera was a complementary initial
selection criterion, and further Ab studies confirmed that the molecule contains potent B cell epitopes. Indeed, the proportion of individuals carrying Abs directed to each peptide is relatively high in all three transmission areas studied and in each age group. The prevalence and titer of Abs were consistently higher to SALSA-2 than to SALSA-1 in the three areas, indicating that the former peptide defines a major B cell epitope.

One of the remarkable features of those SALSA B cell determinants is that, in contrast to many of the *P. falciparum* proteins characterized to date, they are not defined by repeats. Indeed, in most molecules, such as MSA1, MSA2, GLURP, etc., from blood stages, or CS, LSA-1, or STARp from pre-erythrocytic stages, the repeat region is the main target of Abs relative to nonrepeated regions (15, 35). Moreover, long series of repeats can bind more Ab molecules than single, nonrepeated epitopes. Nevertheless, our study shows that the prevalence and titer of Abs to SALSA exceed that directed to CS repeats, a recognized dominant epitope on sporozoites, to RESA repeats, or to STARp repeats (V. Pasquete, D. A. Fidock, E. Badell, W. Eling, H. Gras-Masse, and P. Drulhe, manuscript in preparation), are similar to the dominant repeated epitope of LSA-1 in the same study population (15) and are well above the prevalences of Abs directed to nonrepeated regions of CS (11) or LSA-1 (15).

For the analysis of B cell responses, the two areas of low malaria transmission (by African standards) of Podor and Ankazobe provide a more discriminative tool than the “standard” savanna hyperendemic area of Donse. Results for these two areas, particularly in young children, reveal the remarkable immunogenicity of SALSA, when considering that individuals receive about 1 to 10 infective bites per year and that each inoculation is made of about 10 sporozoites only, of which about one-half can be expected to transform into liver schizonts (23, 36). Nevertheless, more than one-half of the younger children in these two areas have detectable Abs to SALSA peptides. This is consistent with the identification of Th cell epitopes in the same molecule. A similarly high prevalence of Ab responders to SALSA-2, more than to SALSA-1, was also observed in other regions of Africa, reaching 85% of all age groups in the Senegalese village of Dielmo (J. L. Sarthou et al., manuscript in preparation) and above 90% in adults living in Kilifi in Kenya (J. Sherwood et al., unpublished data).

From a functional point of view, Abs directed to sporozoite surface proteins, such as CS and STARp, have been shown to reduce in a dose-dependent manner the rate of sporozoite invasion into hepatocytes (7) (V. Pasquetto, D. A. Fidock, E. Badell, W. Eling, H. Gras-Masse, and P. Drulhe, manuscript in preparation). The identification of SALSA extends the range of Ags that can be targeted by Abs at the sporozoite level. Preliminary studies in our laboratory indicate that anti-SALSA peptide Abs can significantly reduce sporozoite invasion, thus confirming the surface-accessible location of the molecule (V. Pasquetto et al., manuscript in preparation).

SALSA being expressed on sporozoites, and during liver stage development, offers possibilities for both humoral and cellular immune targeting. In view of the potential role for CD8+ cytotoxic T lymphocytes (CTLs) in malaria, as well as naturally exposed human populations, pointing to CTL activity as a most critical defense against LS. Since the initial observation that μ-suppressed mice can be effectively protected by immunization with irradiated sporozoites (44), there has been increasing evidence in favor of a major role of CTL cells, particularly of the CD8+ subset (45).

In individuals of diverse MHC haplotypes protected by irradiated sporozoites, it is clear that CTLs must be directed to a range of epitopes from various LS-expressed molecules. The identification of two of the SALSA molecule-bearing epitopes targeted by CTLs expands the range of potential epitopes for this critical defense mechanism. CTL activity was detected in a consistent manner in successive samples, and although the level of lysis was variable over time, it was found to be peptide specific, genetically restricted, and class I dependent.

In view of the complex set of immunization and challenges in the chimpanzees studied, the induction pathway for these cells is not clear. Immunization by soluble molecules is not generally thought to allow Ag presentation by the endogenous pathway such that association with class I molecules occurs. The ability of SALSA to induce T cells and the critical role of Th in all types of B cell- and T cell-dependent responses leads us to believe that the major CD8+ CTL expansion occurred as a secondary type of response at the time of parasite challenge. The non-specific persistence of circulating CTLs is in keeping with this hypothesis, given
that Th cells would be expected to play a role in the sustained production of both Ab and CD8+T cells specific for the Ag.

In conclusion, the identification of the SALSA protein confirms the existence of additional Ags on the surface of sporozoites and provides further information on the antigenic content of P. falciparum liver stages. Preliminary data from immunized chimpanzees point to a protective role for SALSA, suggesting that we have identified an additional vaccine candidate for pre-erythrocytic stage immunization. SALSA has attractive antigenic features, including 1) a high frequency of B and T cell responders in individuals with various genetic background and 2) the presence of epitopes for both Th and Tcytotoxic cells within the limited regions studied. As well as the high prevalence of responders, the detection of gene fragments of similar size in over 20 isolates suggests that the gene is well conserved among P. falciparum isolates. SALSA expression at two successive stages of parasite development may allow for a wider array of immune effectors to act against a single parasite product (for example invasion-inhibition of sporozoites by Abs, opsonization by macrophages, Ab-dependent cellular cytotoxicity, lymphocyte cytotoxicity on infected liver cells, and IFN-γ-mediated blockade of LS development). The presence of epitopes that are potent stimulators of T cell activities is a critical feature in favor of this newly identified Ag.

Acknowledgments

The authors thank D. Rason and all of the team in Madagascar—B. Galey, C. Marchand, J. Chapin, A. Scherf, G. Langsley, W. Eling, and A. van Belkum—for their important contributions to this research and C. Leecler for helpful criticism. Experimental work with chimpanzees was conducted after approval from an externally appointed, independent ethical review committee.

References

