Routine Individual Feedback on Requests for Diagnostic Tests:

An Economic Evaluation

RON A. G. WINKENS, MD, PhD, ANDRÉ J. H. A. AMENT, PhD, PETER POP, MD, PhD, PETER H. A. RENIERS, RICHARD P. T. M. GROL, PhD, J. ANDRÉ KNOTTNERUS, MD, PhD

The authors assessed the economic consequences of routine individual feedback on test requests provided to 85 family physicians in a region with 187,000 inhabitants. In a retrospective study as part of a quasi-experiment, cost trends in a region where feedback was provided over a seven-year period were compared with cost trends elsewhere in The Netherlands without feedback. Data on variable costs were obtained for 400 individual tests that accounted for 90% of all requests. Differences in request trends thus were transformed to savings in costs of diagnostic testing, taking account of the extra costs of providing the feedback. Expenditures for diagnostic testing declined after the start of the feedback, despite the costs of providing the feedback. The savings increased as the feedback continued. Compared with the trend elsewhere without feedback, over seven years a total net sum of 1.4 million U.S. dollars was saved. Routine individual feedback is therefore economically worthwhile.

Key words: economic evaluation; feedback; diagnostic testing; quality assurance; cost containment. (Med Decis Making 1996;16:309-314)

Expenditures for diagnostic testing in health care are increasing yearly. Factors such as defensive behavior of physicians, advances in technology, and the increased number of persons seeking medical care are responsible for this increase. Although increases in health care costs occur in conjunction with increases in the use of medical care and health services such as diagnostic tests, the health status of the populations of Western countries does not seem to improve correspondingly.

In the last few decades several methods have been applied to improve test-ordering behaviors and to halt the growth in expenditures for diagnostic testing. The provision of feedback about test ordering is one way to achieve this goal. Various studies have demonstrated the effects of such feedback. In most of these reports, the results are expressed in terms of reductions in test use and corresponding savings in the expenditures for diagnostic testing. Feedback apparently can influence test-ordering behavior, but soon after the feedback is discontinued the effects diminish. Hence, the long-term effect of feedback is also important.

The provision of feedback is considered to be a time-consuming, and therefore expensive, method of changing physicians' test-ordering behaviors. The benefits of feedback in financial terms are often questioned, and, based on the findings of Schroeder et al., feedback might be considered not economically worthwhile. In Schroeder's study, the savings achieved by the reduction in test use were outweighed by the extra costs of the provision of the feedback itself. However, this conclusion need not apply to all situations. Feedback can be provided in various ways and thus can have different outcomes. Moreover, like many others, Schroeder et al. provided feedback over only a relatively short period of two years. If feedback is provided over a prolonged period as a routine procedure, there is a good chance that the savings in the costs of diagnostic testing eventually will exceed the costs of the provision of feedback. Thus, whether feedback is economically worthwhile has still not been established.

The cost-effectiveness of an intervention such as the provision of feedback about diagnostic test requests is difficult to determine, since the cost and benefit of the final outcome per patient are un-
known and, moreover, depend on the underlying disorder. With regard to diagnostic testing, the underlying disorders vary widely. An alternative method to determine the economic consequences of feedback on the ordering of diagnostic actions is to evaluate expenditures for diagnostic tests before and during the period when feedback is being provided and to estimate the losses or savings in costs by comparing these expenditures with those in a concurrent control situation without feedback, taking into account factors of influence.

Since 1985, the Diagnostic Coordinating Center Maastricht (DCC) has been providing individual feedback about diagnostic test ordering as a routine procedure. This feedback demonstrably improved the appropriateness of the test-ordering behaviors of those physicians who received it. Although the principal goal was to improve the rationality of test-ordering behaviors, the feedback also appears to affect the number of requests for diagnostic tests. Overviews showed that the start of the feedback was followed by a reduction in the total number of tests ordered. Requests for several tests that were frequently discussed in the feedback (and were designated inappropriate for the indications for which they were requested) decreased markedly, with reductions of up to 95% after two years of feedback. Requests for other tests decreased as well, probably as a result of a general learning effect. Even the last overviews (ending with 1992) showed persistent decreases in the numbers of requests. This result undoubtedly had financial implications, which had been indicated only roughly on the basis of charges for diagnostic testing. Savings in charges, however, do not reflect the economic benefits reliably. Charges include both variable and fixed costs. Fixed costs are much less relevant for assessing cost savings since they do not change when request numbers change. Therefore, we analyzed the economic consequences of feedback in more detail, looking only at variable costs of tests. The following questions were addressed:

- Is feedback economically (financially) worthwhile?
- Are the costs of the feedback itself outweighed by the savings in variable costs for diagnostic testing?

Methods

BACKGROUND

The DCC coordinates all the test requests of the 85 affiliated family physicians serving a (quite stable) catchment population of currently 187,000. Since 1985, written feedback has been provided twice each year to every individual family physician in the area, discussing test-ordering behavior and the appropriateness of a large variety of tests. The feedback is based on analyses of request forms filled out by the individual family physician in the course of one month. Thus, the feedback concerns real cases from daily family practice. First, an overview is given of the tests requested in that month. Second, the rationality of the requests for the tests ordered is discussed. Because the request form offers clinical data about the patient (history, physical findings, suspected diagnosis, known diseases, reason for request, etc.), it is feasible to assess rationality. The requested tests are related to the clinical data of the patient provided on the request form; this combination is compared with criteria for a good diagnostic work-up as available in accepted regional guidelines and standards of the Dutch College of General Practitioners (NHG). The feedback includes comments about inappropriate requests and recommendations for rational diagnostic work-ups. Examples of requests are given, in which patients are mentioned by name and date of birth. Test results are considered only when in the feedback report the physician is asked to consider the effect of the receipt of normal or abnormal test results on his or her work-up. The comments are provided by a respected expert peer who is a specialist in internal medicine.

THE STUDY DESIGN

Retrospectively, as part of a quasi-experiment, we assessed the financial effect of feedback in trend analyses on two different levels. First, we assessed the decrease in expenses for the tests discussed in the feedback that were considered inappropriate or even unreliable. Especially for these tests, decreases in the numbers of requests, and thus cost savings, were expected. In order to assess the relative change compared with the situation should no feedback have been provided, we used data from a comparable laboratory elsewhere in The Netherlands that had not provided feedback in the same period as a control situation.

Second, we looked at our variable-cost trend for all the test requests taken together. This is relevant because a general learning effect not only decreased the numbers of requests for the tests discussed in the feedback but also appeared to decrease requests for tests not so discussed. The effects of feedback are thus not restricted to requests for tests discussed in feedback. The full extent of the economic effects was assessed by using the nationwide cost trend as a control (in The Netherlands, there is virtually no feedback about test requests outside the Maastricht region). The nationwide cost trend for all diagnostic testing by all Dutch family physicians to-
gather has been assessed in other studies.14,15 In this
comparison, the expenditures incurred for the pro-
vision of the feedback were considered as well.

In both trend analyses, several factors were con-
cidered. In The Netherlands there are fixed charges
per test, but it is generally assumed that these
charges do not reflect the actual situation, especially
when the numbers of tests change. In previous anal-
yses, however, only these charges were used.12,13

When the volume of tests changes, some cost fac-
tors, such as manpower, remain relatively constant.
Other costs vary with the numbers of tests. In order
to determine the actual change in costs due to the
feedback, we considered only these variable costs,
among which were the costs of materials (disposa-
bles, chemicals, etc.) and equipment (by interest and
depreciation). Cost of manpower was not consid-
ered. This may have led to an underestimation of
the savings achieved.

In the assessment of costs and savings incurred
through feedback, the expense of the provision of
the feedback itself was considered. For the hours
spent in developing the feedback, the salary costs of
an expert reviewer and administrative support were
calculated. Only small proportions of the costs of
materials and postal charges were taken into ac-
count. The costs of providing the feedback amounted
to approximately $55,000 per year (for peer reviewer,
secretarial assistance, equipment, and materials) and
were relatively stable during the study period.

\textbf{DATA COLLECTION}

Data were available from our center for requests
received over the period 1983–1991. Control data
from another Dutch laboratory were available over the
same period. This laboratory was comparable to
our center with regard to degree of urbanization
and average family practice size. Data could be com-
pared for 44 tests that could be requested in both
regions (predominantly hematologic, serologic, and
clinical chemistry tests), representing approximately
70% of all requests for diagnostic tests made by fam-
ily physicians in our region. These 44 tests include
virtually all of the tests frequently discussed in the
feedback since 1985. However, far more tests than
these 44 are discussed in the feedback.

Comparable data reflecting the overall request
trends for primary care in The Netherlands were
obtained from the literature.14,15 Variable costs per
test were obtained from the administrative depart-
ment of the University Hospital Maastricht. These
variable costs were determined at one single point
of time. Changes may occur over time in the variable
costs per test, but consideration of such changes
was beyond the scope of this investigation.

\textbf{THE ANALYSIS}

The numbers of requests per test were multiplied
by the variable cost per test. To correct for differ-
ences in the numbers of patients, control laboratory
data were indexed to the Maastricht level in 1984.
Thus, an indexed total sum per test per year was
obtained. From the total savings, the yearly costs of
providing the feedback were subtracted. The savings
due to the feedback were determined on every level
by comparing actual expenditure (including the
costs of provision of the feedback) per year with the
expenditure if no feedback had been provided.

\textbf{Results}

Variable costs per test unfortunately could not be
obtained for all tests available at the Maastricht di-
agnostic center. In total, 630 tests are available at our
center. Variable costs were available for more than
400 different tests (65%). However, these 400 tests
represent more than 90% of the total number of all
requests by family physicians. Only about 190 of
these tests are requested regularly. Virtually all of
these 190 tests are included in the 400 different tests
for which variable costs were available. The tests for
which variable costs could not be obtained were
several (seldom requested) radiologic tests and all
endoscopic test procedures. For all 44 tests for
which comparable data were available from the
control laboratory, variable costs were obtained.

Test-ordering behaviors changed considerably be-
beginning with the start of the feedback in 1985.15 Re-
ductions in the numbers of requests were especially
evident for hematology and clinical chemistry (ta-
ble 1).

Compared with the control laboratory, the costs
resulting from requests for the 44 tests at our center
decreased beginning in 1985, whereas the corre-
sponding costs increased almost continuously at the
control laboratory (table 2). In 1985, the variable
costs for the 44 tests decreased by 12.5% with feed-
back, compared with the trend without feedback. In
1991, this decrease was 57%. However, the marked
reduction in the volume of requests was accompa-
nied by only a small economic benefit: the savings
were outweighed by the costs of providing the feed-
bak.

At the DCC, far more tests can be requested (and
are discussed in the feedback) than the 44 that are
comparable with the data available from the control
laboratory. To gauge the full economic conse-
quences of routine individual feedback, the com-
plete package of all requests must be considered.
The overview of the total costs incurred when feed-
back was used to change test-ordering behaviors
The economic consequences of feedback are not easy to assess. A cost-effectiveness study is difficult to perform. An economic evaluation can show only part of the economic effects. Moreover, we had no data about patient outcomes. The possible side effects of feedback on test-ordering behaviors are important. For example, a physician might refer more patients to a hospital when the use of outpatient diagnostic tests is discouraged. A separate study showed that the number of hospital referrals in Maastricht did not increase after the start of the feedback in 1985. The trend in hospital referrals was comparable to the nationwide referral trend. Also, we faced the problem of missing data. Variable costs could not be obtained for all the tests that can be requested by family physicians. Unfortunately, so far in the literature costs or savings have been based on charges and not on variable costs.

Ideally, the study design would have been a prospective, randomized controlled trial. In our assessment of the economic effects of feedback on test-ordering behaviors, such a design was no longer feasible. The feedback procedure started in 1985, and, due to lack of manpower, a prospective ran-

Table 3 • Variable Costs and Savings for All Tests except Endoscopies That Can Be Requested at the Diagnostic Coordinating Center (DCC)*

<table>
<thead>
<tr>
<th></th>
<th>Costs according to National Trend</th>
<th>Costs at the DCC</th>
<th>Reduction Year to Year</th>
<th>Savings† through Feedback Year to Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983</td>
<td>$494,350</td>
<td>$512,075</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1984</td>
<td>$529,398</td>
<td>$529,398</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1985</td>
<td>$567,842</td>
<td>$488,081</td>
<td>$79,761</td>
<td>$24,761</td>
</tr>
<tr>
<td>1986</td>
<td>$605,455</td>
<td>$435,243</td>
<td>$173,212</td>
<td>$118,122</td>
</tr>
<tr>
<td>1987</td>
<td>$651,779</td>
<td>$458,000</td>
<td>$215,779</td>
<td>$160,779</td>
</tr>
<tr>
<td>1988</td>
<td>$699,299</td>
<td>$450,844</td>
<td>$247,455</td>
<td>$192,425</td>
</tr>
<tr>
<td>1989</td>
<td>$747,971</td>
<td>$463,240</td>
<td>$284,731</td>
<td>$229,731</td>
</tr>
<tr>
<td>1990</td>
<td>$601,357</td>
<td>$471,559</td>
<td>$239,792</td>
<td>$274,792</td>
</tr>
<tr>
<td>1991</td>
<td>$585,401</td>
<td>$434,487</td>
<td>$241,914</td>
<td>$306,814</td>
</tr>
</tbody>
</table>

*Costs for the DCC region according to the trends before and after 1984 are estimated on the basis of the nationwide trend.
†After subtraction of the costs of providing feedback.
The provision of the feedback has since led to considerable changes. Further changes are likely to be much more difficult to achieve, invoking the law of "diminishing results." In our region a "new" prospective study of the economic effects of the provision of feedback on the totality of requests would have been overtaken by events, and therefore it might have traced only minor additional effects.

The difference between our results and those of other studies of feedback is remarkable. Our feedback is actually the first that has resulted in long-lasting and wide effects and major savings. This can be explained by two features of our feedback: first, the feedback covers a wide variety of tests; and second, the feedback has been provided as a routine procedure over many years. In an earlier study, feedback reduced the costs (charges) of diagnostic testing over two years, but the money spent on providing the feedback outweighed the savings. The savings might have increased if the feedback had been continued in that study, leading, eventually, to a different conclusion. Moreover, the feedback appeared to have a general learning effect on the ordering of tests that it did not cover. This may have been due to the decision-analytic approach of the feedback and to general remarks about the value of diagnostic testing. For example, test requests to confirm a diagnosis are not recommended when complaints, signs, and symptoms make the pretest probability of a positive result high. Such general remarks apply to all testing.

The savings found for the 44 tests that were comparable with the control laboratory's tests were small, despite the considerable changes in the numbers of requests published earlier. This is because these 44 tests are predominantly low-cost tests. The determination of the economic feasibility of routine individual feedback can, however, be obtained only by looking at the overall picture of all requests. The results suggest that even when the extra costs of providing the feedback are considered, the feedback has been economically worthwhile from the start.

Our calculations take no account of changes in laboratory staffing. Theoretically, a reduction in the number of requests will in time lead to a cutback in staff.

The variable costs were held stable in all calculations over the period 1983–1991. Undoubtedly, due to factors such as inflation, the variable costs would have increased slightly over this nine-year period. On the other hand, due to automation, some variable costs might have decreased. Altogether, we did not expect any substantial effect on the results of the study when the costs per test are assumed to be stable. Also, the costs of providing the feedback turned out to be stable between 1985 and 1991. Any potential reduction in cost that might have been expected to accrue from more experience with the procedure (greater efficiency) was outweighed by the involvement of more tests, making the cost of feedback relatively independent of the number of tests discussed.

As already mentioned, variable costs were available for tests accounting for 90% of all requests. The remaining 10% included all endoscopies. They are the most expensive tests that can be requested at our center. The total costs in the Maastricht region therefore are likely to be higher than those shown in table 3. The absence of data about endoscopies is inconsequential in the comparison with the nationwide trend, since in the nationwide data, costs of endoscopies are included only to a small extent. There are only a few regions in The Netherlands (one of them being Maastricht) where family physicians can request endoscopy; in the other regions, referral to a specialist is needed. Consequently, for the comparison of the Maastricht region's cost trend with the nationwide cost trend, endoscopy is relatively unimportant.

During 1990 and 1991, in an investigation of the rationality of requests for diagnostic tests, feedback was provided for tests not discussed before, including several radiologic tests. The numbers of requests of these radiologic tests decreased, especially in the second year of the trial. This outcome could explain the inordinate increase in the savings in 1991. The feedback provided during this period was merely an extension of the usual feedback and therefore did not increase the cost of providing the feedback.

In all calculations, variable costs were considered without possible fees for any specialist involved. These fees are in fact variable costs as well. However, the true costs of specialist involvement (e.g., for x-ray interpretation) are not known. The estimated extra savings would have been considerable.

During the study, we were the only center in The Netherlands that was using request forms on which detailed clinical data could be mentioned. Such a form is a prerequisite for assessing the rationality of requests for diagnostic tests. The form could influence test-ordering behavior as well, but this possible effect should not be overestimated. In our region, the trend in the numbers of requests for tests between 1978 and 1984 (increase) was similar to the nationwide trend, despite the introduction of our request form in 1980.

Aside from all reductions in test use and (after taking into account the extra costs of providing the feedback) the corresponding savings in costs, it should be emphasized that the main purpose of our feedback was to improve the rationality of requests for diagnostic tests and make test use appropriate. In our opinion, feedback should always focus on
quality of care, apart from the possible economic benefits.

On the basis of the size of our catchment population, we can roughly estimate what such feedback might have achieved on a national level, treating variable costs as equal throughout the country. The population of our catchment area is 187,000, which is 1.32% of the Dutch population. Had feedback been provided nationwide, a total amount of more than 106 million U.S. dollars would have been saved in The Netherlands after seven years.

We conclude that routine individual feedback about the test requests of family physicians is economically worthwhile. The longer the feedback is continued, the greater the savings are. This applies only when the feedback is focused on a wide range of diagnostic tests.

References