Regional Metastasis in Head and Neck Squamous Cell Carcinoma: Revised Value of US With US-guided FNAB

Robert P. Takes, MD • Paul Knegt, MD, PhD • Johannes J. Manni, MD, PhD • Cees A. Meeuwis, MD, PhD
Henri A. M. Marres, MD, PhD • Hubert A. A. Spoelstra, MD • Maarten F. de Boer, MD • I. Bruaset, MD
Jacques A. van Oostayen, MD • Johan S. Laméris, MD, PhD • René H. Kruyt, MD, PhD • Frank B. M. Joosten, MD
J. Han J. M. van Krieken, MD, PhD • Fred T. Bosman, MD, PhD • Sonja C. Henzen-Logmans, MD, PhD
J. M. Wiersma-van Tilburg, MD • Jo Hermans, PhD • Robert J. Baatenburg de Jong, MD, PhD

PURPOSE: To verify the acclaimed accuracy of ultrasound (US) combined with US-guided fine-needle aspiration biopsy (FNAB) in the detection of lymph node metastasis in the neck and to evaluate the interobserver variability.

MATERIALS AND METHODS: In a prospective, multicenter study of 185 patients with head and neck squamous cell carcinoma, US (n = 238 neck sides) with US-guided FNAB (n = 178 neck sides) was used for evaluation of the lymph node status of the neck. Findings were correlated with those of histopathologic examination in 238 neck sides.

RESULTS: US with US-guided FNAB had a sensitivity of 77% and a specificity of 100%. Nineteen of 178 aspirations were nondiagnostic. There were no significant differences between the four participating hospitals or the individual sonologists (P > .05).

CONCLUSION: Sensitivity of US with US-guided FNAB was slightly lower compared with previous reports. Specificity was similar to previous reports. Interobserver variability appeared to be low. The validity of US with US-guided FNAB is high and warrants widespread use of the procedure for evaluation of the neck.

Index terms: Biopsies, technology, 28.1261 • Head and neck neoplasms, metastases, 997.33 • Head and neck neoplasms, staging, 997.91 • Ultrasound (US), guidance, 28.12985, 28.12986

Radiology 1996; 198:819-823

1 From the Departments of Otolaryngology and Head and Neck Surgery (R.P.T., R.J.B.d.J.), Radiology (J.A.v.O.V.), and Pathology (J.H.J.M.v.K.), University Hospital Leiden, Bldg 1-H4, Rijnborweg 10, PO Box 9001, 2300RC Leiden, The Netherlands; the Departments of Otolaryngology and Head and Neck Surgery (P.K., H.A.A.S.), Radiology (J.S.L.), and Pathology (P.T.B.), University Hospital Rotterdam; the Departments of Otolaryngology and Head and Neck Surgery (C.A.M., M.F.d.B.), Radiology (R.H.K.), and Pathology (S.C.H.L.), Daniël den Hoed Cancer Center, Rotterdam; the Departments of Otolaryngology and Head and Neck Surgery (J.J.M., H.A.M.M.), Maxillofacial Surgery (I.B.), Radiology (F.B.M.J.), and Pathology (J.M.W.v.T.), University Hospital Nijmegen; the Department of Otolaryngology and Head and Neck Surgery, University Hospital Maastricht (J.M.W.v.T.); and the Department of Medical Statistics, State University of Leiden (J.H.). Received June 14, 1995; revision requested June 28; revision received November 7; accepted November 14. Address reprint requests to R.J.B.d.J.

Abbreviations: FNAB = fine-needle aspiration biopsy, SCC = squamous cell carcinoma.
sonologists between March 1992 and September 1993. All patients with head and neck SCC (nonirradiated or irradiated) who underwent neck dissection(s) as part of their treatment were eligible for this study.

The neck of each patient was examined by an experienced head and neck oncologist (F.K., J.J.M., C.A.M., H.A.M.M., H.A.A.S., M.F.D.B., R.J.B.d.J.). The findings were recorded, together with other relevant clinical information. At this stage, cytologic examination was not performed. Subsequently, the neck was examined by one of the sonologists (J.A.v.O., J.S.L., R.H.K., F.B.M.J.). All clinical information was provided. The findings of the sonologist(s) were recorded on a worksheet. Subsequently, US-guided FNAB of nodes that were depicted with US was performed in 178 cases. In case of multiplicity, US-guided FNAB was performed of the largest node, nodes showing central hypoechogenicity, or the most cranial and caudal nodes in the areas at highest risk for metastasis. The US examinations and the US-guided FNABs were performed with the following scanners: a model 620/650CL (Aloka, Tokyo, Japan), with a 7.5-MHz linear-array probe; a model SSA 250A (Toshiba Europe, Zoetermeer, The Netherlands), with a 7.5-MHz mechanical sector type of probe with a built-in water path; and a model 128 XP (Acuson, Mountain View, Calif), with a 7-MHz linear-array probe. The procedure was performed as described previously (20,25) (Figure).

Cytologic examination was performed by experienced cytopathologists. Nondiagnostic aspirations had to be repeated. Because the trauma associated with rigid endoscopy may cause an increase in the number and size of lymph nodes, both palpation and US were preferably performed before endoscopy.

Neck dissection had to be performed within 3 weeks. The specimen was labeled, together with other relevant clinical information, within 3 weeks. The specimen was labeled and the combined results of a group of 33 sonologists (78 neck sides) who performed FNAB were compared with the results of the histopathologic examination. We considered the results per neck side since the treatment of metastatic disease is for a neck rather than for a single node. The detection of a single metastasis results in the inclusion of 238 neck sides. The primary tumor sites and tumor stages are listed in Table 2.

Palpation and US with US-guided FNAB

The results of US with US-guided FNAB are shown in Table 1. With palpation, a sensitivity of 66% and a specificity of 92% were achieved (Table 3). For US with US-guided FNAB, a sensitivity of 77% and a specificity of 100% were found (Table 1). Some nodes detected with palpation were not detected by using US with US-guided FNAB. Therefore, the results of palpation and US with US-guided FNAB are supplementary.

RESULTS

A total of 185 patients (133 men, 52 women; age range, 25–85 years; mean age, 59 years) participated in this study. Of these, 132 patients underwent unilateral and 53 patients underwent bilateral neck dissection, resulting in the inclusion of 238 neck sides. The primary tumor sites and tumor stages are listed in Table 2.

A considerable proportion of the aspirates (19 of 178 cases) were nondiagnostic, and FNAB was not repeated. In fact, in most cases of initially nondiagnostic aspirates, FNAB was not repeated. Histologic examination of the neck dissection specimens revealed that 12 of these specimens in fact contained metastases and seven had reactive nodes. This might suggest that a nondiagnostic aspirate is more likely to be from a metastatic node. However, the proportion of metastatic nodes (12 of 19 nodes) reflects the prevalence of lymph node metastases in the entire population (155 of 238 cases). For the present study, the nondiagnostic aspirates were excluded.

Sonologists and Hospitals

To evaluate the interobserver variability, we compared the results of six sonologists who examined at least 13 neck sides (varying from 13 to 53 neck sides) and the combined results of a group of 33 sonologists (78 neck sides) who performed the examination less frequently. No statistically significant differences were found between the characteristics of these (groups of) sonologists (Table 3) or between the participating hospitals (data not shown, χ² = .14).

Primary Tumor Sites and Neck Levels

The results of US with US-guided FNAB for different primary tumor sites are summarized in Table 3. Although there seem to be marked differences, note that the number of cases in some of the groups is fairly small. There were no statistically significant differences in sensitivity for the different primary sites (P = .51).
negative
negative/total 110
positive/total 109
different neck levels (I–V), we investigated whether metastases were missed more often in particular regions. The number of lymph node metastases per level was listed, and the fraction of metastases not detected by using US with US-guided FNAB was calculated. No level was listed, and the fraction of metastases per number of lymph node metastases per level is based on morphologic characteristics remains difficult and unreliable.

US is characterized by a superior sensitivity rate for detection of lymph nodes (3,30). The detection of more lymph nodes, however, inevitably leads to a lower specificity: A considerable proportion of the lymph nodes detected with US will be benign. As with CT and MR imaging, differentiation between reactive and metastatic nodes is based on morphologic characteristics (13,28,31). This leads to a relatively low specificity, although some authors reported high specificity rates up to 91% with US alone (30).

With the introduction of the concept of US-guided FNAB (19,20), the high sensitivity of US is combined with the high specificity of cytologic examination (20). Sensitivity and specificity have been reported as high as 98% and 95%, respectively. In a subsequent similar study, other authors reported an even higher specificity of 100% but at the expense of a lower sensitivity of 90% (13). Critics, however, doubted that these rates could be reproduced if the technique was performed by different sonologists in “daily practice.”

DISCUSSION

To evaluate differences in detecting metastases in lymph nodes of the different neck levels (I–V), we investigated whether metastases were missed more often in particular regions. The number of lymph node metastases per level was listed, and the fraction of metastases not detected by using US with US-guided FNAB was calculated. No statistically significant differences were found between the various levels ($P = .52$) (Table 4).

To assess the status of lymph nodes in the neck in patients with head and neck SCC, various (imaging) techniques have been explored. CT and MR imaging allow detection of small structures, such as lymph nodes, with high sensitivity. Although several radiologic characteristics of metastatic nodes have been defined (size, shape, central necrosis, obliteration of fascial planes, contiguous nodes), several authors have criticized these criteria (4,12,15–17,27–29). In our opinion, differentiation between benign and metastatic nodes only on the basis of radiologic characteristics remains difficult and unreliable.

In our study, only patients undergoing neck dissection as part of their treatment were included because histologic examination was used as the standard of reference. Although this introduces an inevitable bias by increasing the number of cases with metastatic disease, all reports of studies of US with US-guided FNAB, CT, or MR imaging are subject to this limitation.

The accuracy and sensitivity of US with US-guided FNAB in our study were not as high as found in previous studies. The specificity, however, was comparable. Compared with other diagnostic imaging techniques, the sensitivity of US with US-guided FNAB found in our study is in the range of that reported for CT (4,6,9,12,13,15,16) and MR imaging (5,9). The high specificity of up to 100% found in the present and previous studies (13,20) compares favorably with that of CT and MR imaging. Most studies concerning CT found a specificity of no more than 70%–85% (4,9,12,13,15,16). A few studies found higher specificity rates (up to 94%) by using morphologic criteria (28).

In most studies concerning the value of CT and MR imaging for assessment of the neck, morphologic and/or size criteria are used. By choosing an optimal cutoff point, false-positive and false-negative results will be introduced. As a consequence, in these studies, a higher sensitivity results in a lower specificity and vice versa. For example, Stevens et al (12), Close et al (15), Hillsamer et al (9), and Friedman et al (11) found sensitivity rates of 97%, 86.5%, 84%, and 95%, respectively, paired to a much lower specificity of 82%, 71%, 71%, and 77%, respectively.

In contrast, Feinmesser et al (4) found a relatively low specificity of 60% with a higher specificity of 85%. Although US alone suffers from the same phenomenon, US with US-guided FNAB does not because US determines the sensitivity and US-guided FNAB the specificity.

Another factor influencing the results of these studies is the frequency of metastasis. Studies with a high number of patients having metastasis or advanced-stage disease will show higher sensitivity rates for the studied diagnostic techniques. For example, in studies with a relatively high number of cases with clinically or histologically positive nodes, higher sensitivity rates for CT were obtained, up to 91% (6,12,15), whereas in studies with more cases with negative nodes, sensitivity rates for CT were lower (eg, 60%) (4).

In our study, only patients undergoing neck dissection as part of their treatment were included because histologic examination was used as the standard of reference. Although this introduces an inevitable bias by increasing the number of cases with metastatic disease, all reports of studies of US with US-guided FNAB, CT, or MR imaging are subject to this limitation.

The accuracy and sensitivity of US with US-guided FNAB in our study were not as high as found in previous studies. The specificity, however, was comparable. Compared with other diagnostic imaging techniques, the sensitivity of US with US-guided FNAB found in our study is in the range of that reported for CT (4,6,9,12,13,15,16) and MR imaging (5,9). The high specificity of up to 100% found in the present and previous studies (13,20) compares favorably with that of CT and MR imaging. Most studies concerning CT found a specificity of no more than 70%–85% (4,9,12,13,15,16). A few studies found higher specificity rates (up to 94%) by using morphologic criteria (28).

In most studies concerning the value of CT and MR imaging for assessment of the neck, morphologic and/or size criteria are used. By choosing an optimal cutoff point, false-positive and false-negative results will be introduced. As a consequence, in these studies, a higher sensitivity results in a lower specificity and vice versa. For example, Stevens et al (12), Close et al (15), Hillsamer et al (9), and Friedman et al (11) found sensitivity rates of 97%, 86.5%, 84%, and 95%, respectively, paired to a much lower specificity of 82%, 71%, 71%, and 77%, respectively.

In contrast, Feinmesser et al (4) found a relatively low specificity of 60% with a higher specificity of 85%. Although US alone suffers from the same phenomenon, US with US-guided FNAB does not because US determines the sensitivity and US-guided FNAB the specificity.

Another factor influencing the results of these studies is the frequency of metastasis. Studies with a high number of patients having metastasis or advanced-stage disease will show higher sensitivity rates for the studied diagnostic techniques. For example, in studies with a relatively high number of cases with clinically or histologically positive nodes, higher sensitivity rates for CT were obtained, up to 91% (6,12,15), whereas in studies with more cases with negative nodes, sensitivity rates for CT were lower (eg, 60%) (4).

In our study, only patients undergoing neck dissection as part of their treatment were included because histologic examination was used as the standard of reference. Although this introduces an inevitable bias by increasing the number of cases with metastatic disease, all reports of studies of US with US-guided FNAB, CT, or MR imaging are subject to this limitation.

The accuracy and sensitivity of US with US-guided FNAB in our study were not as high as found in previous studies. The specificity, however, was comparable. Compared with other diagnostic imaging techniques, the sensitivity of US with US-guided FNAB found in our study is in the range of that reported for CT (4,6,9,12,13,15,16) and MR imaging (5,9). The high specificity of up to 100% found in the present and previous studies (13,20) compares favorably with that of CT and MR imaging. Most studies concerning CT found a specificity of no more than 70%–85% (4,9,12,13,15,16). A few studies found higher specificity rates (up to 94%) by using morphologic criteria (28).

In most studies concerning the value of CT and MR imaging for assessment of the neck, morphologic and/or size criteria are used. By choosing an optimal cutoff point, false-positive and false-negative results will be introduced. As a consequence, in these studies, a higher sensitivity results in a lower specificity and vice versa. For example, Stevens et al (12), Close et al (15), Hillsamer et al (9), and Friedman et al (11) found sensitivity rates of 97%, 86.5%, 84%, and 95%, respectively, paired to a much lower specificity of 82%, 71%, 71%, and 77%, respectively.

In contrast, Feinmesser et al (4) found a relatively low specificity of 60% with a higher specificity of 85%. Although US alone suffers from the same phenomenon, US with US-guided FNAB does not because US determines the sensitivity and US-guided FNAB the specificity.
showed superior results of US with US-guided FNAB (13).

Another advantage of US with US-guided FNAB over CT and MR imaging is the lower cost (in the Netherlands, the costs of CT are about four times as high as those of US with US-guided FNAB). Moreover, for US with US-guided FNAB, patients do not have to lie down (for a prolonged period of time), which is more convenient in these predominantly elderly and/or dyspneic patients. Contrary to CT and especially MR imaging, US will not be problematic in patients inclined to claustrophobia. Finally, in our opinion, FNAB is hardly a more invasive or risky procedure than the administration of intravenous contrast material in CT or MR imaging.

Unfortunately, in 19 cases of nondiagnostic aspirates, FNAB was not repeated. Repeating these aspirations, as was requested according to the protocol, would definitely have improved the test results. We cannot, however, prove this with our material because for most cases of nondiagnostic aspirates, FNAB was not repeated. The rate of nondiagnostic US-guided FNABs (19 [11%] of 178 aspirates) is in the range found in previous studies (1%–15%) (20,32,33).

Our data show that the results of US with US-guided FNAB are not as investigator dependent as often suggested. No major differences were found between experienced and less experienced sonologists.

Although the differences were not statistically significant, it appeared that the accuracy of US with US-guided FNAB was determined by the site of the primary tumor. There are two explanations for this finding. First, this may be due to a difference in frequency (Table 3). This influences, in particular, the negative and positive predictive values. Second, different primary tumors metastasize to different neck levels, and lymph node metastases in some levels are more difficult to detect by using US with US-guided FNAB than others. This phenomenon has been described in earlier studies (34,35). In our study, it seemed more difficult to detect lymph node metastases in levels I and V than in levels II, III, and IV, although the differences were not statistically significant. Therefore, the favorable sensitivity rates for laryngeal and pharyngeal carcinoma when compared with floor of mouth or oropharyngeal carcinoma may be because the former metastasize less frequently to level I.

The difficulty in the detection of nodes in level I by using US with US-guided FNAB may be caused by the mandible. However, nodes missed with US at this level may be detected with palpation: With bimanual palpation, examination of level I is relatively easy to perform. If the results of palpation are added to the results of US with US-guided FNAB, the often suggested inaccuracy of palpation may improve the test characteristics of US with US-guided FNAB.

In this prospective, multicenter study, the sensitivity of US with US-guided FNAB appeared to be slightly lower compared with that of previous studies but comparable with the sensitivity of CT and MR imaging. The specificity of US with US-guided FNAB found in our study is similar to that of previous studies and superior to the specificity of CT and MR imaging. Repeating FNAB for nondiagnostic aspirates may further improve the test characteristics of US with US-guided FNAB.

Palpation remains an important tool for assessment of the lymph nodes of the neck. A combination of palpation and US with US-guided FNAB improves the sensitivity of the diagnostic procedure. In addition, in this study, the often suggested interobserver variability of US and US-guided FNAB could not be confirmed. The results of this study can be considered as a validation of and recommendation for the use of US with US-guided FNAB for evaluation of the neck in patients with head and neck SCC.

References

