Mutation Analysis of the Pyruvate Dehydrogenase E\textsubscript{1}\textalpha Gene in Eight Patients With a Pyruvate Dehydrogenase Complex Deficiency

Willy Lissens*, Linda De Meirleir, Sara Seneca, Chantal Benelli, Cécile Marsac, Bwee Tien Poll-The, Paz Briones, Wim Ruitvenbeek, Otto van Diggelen, Denis Chaigne, Vincent Ramaekers, and Ingeborg Liebaers

Department of Medical Genetics (W.L., L.D.M., S.S., I.L.) and Neuropediatrics (L.D.M.), University Hospital VUB, 1090 Brussels, Belgium; INSERM U30 (C.B.) and U75 (C.M.), Hôpital Necker Enfants-Malades, 75743 Paris, Hospices Civils de Strasbourg, 67098 Strasbourg (D.C.), France; University Hospital, 6500 HB Nijmegen (W.R.), Wilhelmina Kinderziekenhuis, 3501 CA Utrecht (B.T.P.-T.) and Department of Clinical Genetics, Erasmus University, 3000 DR Rotterdam (O.v.D.), the Netherlands; Institut de Bioquímica Clínica, CSIC, 08290 Barcelona (P.B.), Spain; Kinderklinik der Medizinischen Fakultät, 5100 Aachen (V.R.), Germany; Fax: 32-2-4775800

Communicated by Henrik H. Dahl

Most of the mutations causing deficiency of the pyruvate dehydrogenase (PDH) complex are in the X-linked E\textsubscript{1}\textalpha gene. We have developed a rapid screening method for the detection of mutations in this gene using reverse transcription of total RNA, polymerase chain reaction amplification of the whole coding region of the gene and single-strand conformation polymorphism (SSCP) analysis. With this method, we studied eight patients with a PDH complex deficiency, using cultured fibroblasts. In all patients, aberrant SSCP patterns were found and, after sequencing of the corresponding fragments, we were able to identify six new mutations and two mutations already described previously. The mutations are point mutations leading to amino acid substitutions (5) and direct repeat insertions (3). The presence of the mutations was confirmed in genomic fibroblast DNA. The 4 female patients were shown to carry both a normal and a mutated E\textsubscript{1}\textalpha gene. © 1996 WILEY-LISS, INC.

KEY WORDS: Pyruvate dehydrogenase E\textsubscript{1}\textalpha, RT-PCR, SSCP, Mutation analysis

INTRODUCTION

The pyruvate dehydrogenase (PDH) complex catalyzes the irreversible conversion of pyruvate to acetyl-CoA. The complex is localized in the mitochondria and connects glycolysis with the citric acid cycle and oxidative phosphorylation. It consists of multiple copies of three catalytic enzymes E\textsubscript{1}, E\textsubscript{2}, and E\textsubscript{3}, a protein with an unknown function (protein X) and two enzymes regulating the activation/inactivation of the E\textsubscript{1} enzyme.

Human PDH complex deficiency is one of the most prominent causes of primary congenital lactic acidosis (Robinson, 1989, 1993). Studies at both the molecular and protein levels have demonstrated that in most patients the reduction in activity of the complex is due to defects in the E\textsubscript{1} component (Robinson, 1989; Dahl et al., 1992). The E\textsubscript{1} enzyme is a heterotetramer of 2α and 2β-subunits, but so far only mutations in the E\textsubscript{1}\textalpha gene have been found. This gene is approximately 17 kilobase (kb) long, contains 11 exons, and is localized on the X-chromosome in band Xp22.1 (Koike et al., 1990; Maragos et al., 1989; Brown et al., 1989). mRNA is expressed in all tissues and is approximately 1.5 kb long, encoding a protein of 390 amino acids (Dahl et al., 1987; De Meirleir et al., 1988; Koike et al., 1988; Ho et al., 1989).

The diagnosis of PDH complex deficiency is based primarily on the measurement of lowered enzyme complex activity in tissues of the patients. Cultured skin fibroblasts are most frequently used for diagnosis. As previously mentioned, most of the mutations in PDH complex deficiencies are found in the E\textsubscript{1}\textalpha-subunit of the complex; however,

Received June 23, 1994; accepted February 1, 1995.

*To whom reprint requests/correspondence should be addressed.
the expression of this gene at the mRNA level does not appear to be altered in most of the patients (Dahl et al., 1992a, b; Dahl and Brown, 1994; De Meirleir et al., 1992, 1993, 1994; Chun et al., 1993; Wexler et al., 1992; Matthews et al., 1993; Hansen et al., 1993; Takakubo et al., 1993a, b; Endo et al., 1989, 1991). We describe the detection of mutations in the E\textalpha{} gene of eight patients with a PDH complex deficiency. Mutation detection was based on reverse transcription-polymerase chain reaction (RT-PCR) of the whole coding region of the E\textalpha{} gene, starting from mRNA isolated from fibroblasts, followed by single-strand conformation polymorphism (SSCP) analysis (Orita et al., 1989) and direct sequencing of aberrant SSCP fragments.

MATERIALS AND METHODS

RNA Preparation and Reverse Transcription

Fibroblasts of the patients were grown in Opti­
mum I medium (Gibco, Ghent, Belgium), supple­
mented with 5% fetal calf serum (FCS), 2 mM
glutamine, and 50 µg/ml penicillin/streptomycin. Total RNA was prepared from one or two 250-ml tissue culture flasks (Gibco) according to the
method of Chomczynski and Sacchi (1987). Five
µg of coral RNA was used for first-strand cDNA
synthesis (First-strand cDNA synthesis kit, Phar­
macia, Roosendaal, the Netherlands), according
to the manufacturer's instructions in a total vol­
ume of 33 µl.

PCR and SSCP Analysis of the PDH E\textalpha{} Gene

The whole coding sequence of the PDH E\textalpha{} gene was PCR amplified in six consecutive over­
lapping fragments (Table 1, fragments A–F). All reactions were performed in a final volume of 50 µl containing 5 µl of first-strand cDNA mixture, 10

<table>
<thead>
<tr>
<th>Pair</th>
<th>Name</th>
<th>Oligonucleotide</th>
<th>Length (bp)</th>
<th>Position^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>PDS1</td>
<td>5'-TGTGAGGAGCTCGCCGTCG-3'</td>
<td>317</td>
<td>69-88</td>
</tr>
<tr>
<td></td>
<td>PDS2</td>
<td>5'-CACAACTCTGACGAAAAACAG-3'</td>
<td>386-367</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>PDS7</td>
<td>5'-AGAGCTCTACCGCAATGGG-3'</td>
<td>335</td>
<td>311-330</td>
</tr>
<tr>
<td></td>
<td>PDS8</td>
<td>5'-AGGGCTAGAACTCCATCCG-3'</td>
<td>646-627</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>PDH34</td>
<td>5'-AGAACTCTACGGGGGCAATGGG-3'</td>
<td>307</td>
<td>578-599</td>
</tr>
<tr>
<td></td>
<td>PDH31</td>
<td>5'-AGATATCCATTCCATCCG-3'</td>
<td>884-865</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>PDH30</td>
<td>5'-TGCGGATGTCGTCAGCTACC-3'</td>
<td>281</td>
<td>687-706</td>
</tr>
<tr>
<td></td>
<td>PDH32</td>
<td>5'-GGTTAGCTGCACTCCATCCG-3'</td>
<td>967-948</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>PDS3</td>
<td>5'-AGTGGATGGAATGGATATCC-3'</td>
<td>248</td>
<td>864-883</td>
</tr>
<tr>
<td></td>
<td>PDS4</td>
<td>5'-TTTAGTTCTTCCACTGCG-3'</td>
<td>1,112-1,093</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>PDS5</td>
<td>5'-TAAGAAGTACCCATATTAGC-3'</td>
<td>280</td>
<td>1,041-1,060</td>
</tr>
<tr>
<td></td>
<td>PDS6</td>
<td>5'-GTCTGGTAGCCCCCTGAAGG-3'</td>
<td>1,321-1,302</td>
<td></td>
</tr>
</tbody>
</table>

^aPositions refer to the numbering of the PDH cDNA sequence in Dahl et al. (1992).

DNA Sequencing of PDH E\textalpha{} CDNA Fragments

After reverse transcription, the 6 PDH E\textalpha{} cDNA fragments were PCR amplified in a total volume of 100 µl. The reaction conditions were essentially the same as described above for SSCP analysis, except that 200 µM each of dNTP and 100 pmol of each primer was added. Radioactive nucleotides were omitted from the PCR mixtures,
and an extension time of 1 min was used. After
amplification, the PCR products were purified on a
 Centricon 100 microconcentrator (Amicon, Bev­
erly, MA, USA) and sequenced in both directions
 by dideoxynucleotide chain termination with the
PCR primers, using Sequenase Version 2.0 kit (US
Biochemical Corp., Beverly, MA, USA).

Patients

All patients studied had PDH complex activity
in fibroblasts, 10–50% of the mean of our control
values (Table 2). Patient 1 is a boy of nonconsan-
guinous parents. His initial development was nor-
mal. At the age of 2.5 years, during an intercurrent
infection, he became severely ataxic and hypo­
tonic, but he recovered within a few days. At the
age of 3 years, he presented with easy fatigability
and difficulties in climbing the stairs. This was
followed by episodes of dystonia of the lower limbs.
Ataxia and weakness increased progressively, pre­
vanting independent walking. Metabolic workup
revealed an increased blood lactate and pyruvate,
with normal lactate/pyruvate ratio. A sensorimotor
neuropathy was found. Magnetic resonance imaging
(MRI) of the brain showed hypodensities in the caudal
and lenticular nucleus. PDH activity in fibroblasts was
30% of normal. His condition continues to progress.

The clinical picture of patient 2 was very similar
to that of a patient described previously (De Meir­
leir et al., 1993). She presented with a severe de­
velopmental delay since birth. Myoclonic seizures
started at the age of 4 months. She also had agen­
sis of the corpus callosum, as well as cortical at­
rophy and microcephaly. PDH activity measured
in fibroblasts was 10% of normal.

In patient 3, a developmental delay with hy­
potonia was noted at the age of seven months. She
developed spastic diplegia and microcephaly. At
the age of seven years, she was severely retarded.
PDH activity in fibroblasts was 12% of normal.

Patient 4 also presented with developmental de­
lay and microcephaly. Spastic quadriplegia de­
veloped, and she became severely retarded. Com­
pared tomography (CT) scan of the brain
demonstrated severe cortical atrophy, and ventric­
ular dilation was seen. PDH activity in fibroblasts
was 40% of normal.

Patient 5 is a boy who was admitted at the age
of 16 months with an episode of somnolence, hy­
perventilation and choreic movements. Four ma­
ternal brothers died in the neonatal period of un­
known cause. Blood lactate and pyruvate were
ereated. MRI of the brain showed hyperintensi­
ties in the caudal and lenticular nucleus. A diag­
nosis of Leigh's encephalomyelopathy was pro­
posed. PDH activity in fibroblasts was 31% of
normal.

Patient 6 is a boy presenting with severe lactic
acidosis. He died at the age of 18 months. No
further clinical details are available. PDH activity
in his fibroblasts was 15% of normal.

Patient 7 has been previously described (Sengers
et al., 1983). Patient 8 is a boy presenting with
early onset lactic acidosis, hyperventilation, de­
velopmental delay, and failure to thrive. He died at
the age of 15 months. PDH activity in fibroblasts
was 15% of normal.

RESULTS

To permit rapid screening for mutations in the
PDH E1α gene, we have designed 12 oligonucle­
otide primers that permit amplification by PCR of
the whole coding sequence of the gene in six con­
secutive overlapping fragments (Table 1). After
reverse transcription of total RNA, isolated from
fibroblasts from eight patients and PCR amplifica­
tion of the six fragments starting from the resulting cDNAs, the fragments were subjected to SSCP analysis. For all eight patients, abnormal migrating bands were found, as compared to normal control samples (data not shown). The abnormal SSCP fragments were A for patient 1, B for patients 3 and 4, D and E for patient 5, E for patient 2, E and F for patient 8, and F for patients 6 and 7 (Table 2). In addition, normal migrating SSCP fragments were also detected in all female patients (patients 2, 3, 4, and 7), indicating that these females were heterozygotes carrying one normal and one mutated E$_{1a}$ gene.

The corresponding fragments were re-amplified from cDNA from each of these eight patients and sequenced in both directions. In each case, a mutation was found (Table 2). The sequencing results for patients 4, 6, 7, and 8 were reviewed by the editors, but are not shown. The heterozygous status of all female patients was confirmed. The presence of these mutations was confirmed in genomic fibroblast DNA of each patient. As expected, for the two patients showing two abnormal SSCP fragments (patients 5 and 8), the mutation was found in the overlap region of the SSCP fragments.

DISCUSSION

Deficiency of the PDH complex is mostly due to defects in the E$_1$ component of the enzyme (Robinson, 1991). So far, no mutations have been found in the β-subunit of E$_1$ (Chun et al., 1993), but about 30 mutations have been identified in the α-subunit. We have developed a rapid screening method for the detection of mutations in the E$_{1a}$ gene in patients with a PDH complex deficiency. It is based on RT-PCR, followed by SSCP analysis and direct sequencing of aberrant SSCP fragments. We have used this screening method for the analysis of the E$_{1a}$ gene in eight patients; aberrant SSCP fragments were found for each patient. Direct sequencing of the corresponding fragments revealed missense mutations in five patients and direct repeat insertions leading to a shift in the amino acid reading frame of the E$_{1a}$ gene in the other two patients. The presence of the mutations was confirmed in genomic DNA of all patients. The four female patients analyzed in this study were, as expected, carriers of both a normal and a mutated E$_{1a}$ gene. They predominantly express the mutated gene through nonrandom X-inactivation of the X-chromosome containing the normal E$_{1a}$ gene. This is supported by the low residual PDH complex activity (Table 1) and is also seen in SSCP analysis where the normal SSCP fragments were systematically less intense than the aberrant (mutant) fragments.

The five missense mutations are located in exons 3 (R72C), 4 (H113D), 5 (G162R), 8 (R263G), and 10 (R302C) and all involve a considerable change in the charge of the predicted amino acid substitution. Four of these mutations are in a C-G dinucleotide (R72C, G162R, R263G, and R302C), and three of them (R72C, G162R and R302C) could be explained by spontaneous deamination of 5-methylcytosine (Cooper and Krawczak, 1993). The amino acids at positions 72, 113, 162, 263, and 302 of the human E$_{1a}$ gene are all conserved in the somatic E$_{1a}$ genes of rat, mouse, and pig (Matuda et al., 1991; Fitzgerald et al., 1992; Sermon et al., 1990) and in the testis-specific E$_{1a}$ genes of human and mouse (Dahl et al., 1990; Fitzgerald et al., 1992). With the exception of the mother of patient 5, these mutations were also absent in the genomic DNA from leukocytes of the parents of the patients. Therefore, we believe that these mutations are disease causing. In patients 6, 7, and 8, the insertions introduce a shift in the amino acid reading frame. The direct repeat insertions in these patients predict truncated proteins starting from codons 387, 372, and 322, respectively, that are 13, 32, and 5 amino acids longer than native E$_{1a}$. The mutation in patient 8 was not present in genomic leukocyte DNA of his mother, indicating that the mutation either occurred de novo or is present in the germ-line of the mother. The parents of the two other patients were not available for study.

Two of the eight mutations found in our patients (R263G and R302C) have already been described previously (Wexler et al., 1992; Chun et al., 1993; Dahl et al., 1992b; De Meirleir et al., 1993). The clinical history of female patient 2 (R302C mutation) is very similar to already described patients carrying this mutation. This is also true for patient 7 with a 13-bp repeat insertion in exon 11 (Sengers et al., 1983). These girls presented with symptoms in the neonatal period and have severe developmental delay, dysmorphism, bouts of lactic acidosis, seizures and microcephaly with dilated ventricles. By contrast, in female patients 3 and 4, who have mutations in exons 4 and 5, the clinical onset is delayed until a few months after birth. They do not have severe cortical atrophy or developmental brain anomalies as in the two other females, but the clinical picture again results in a severe mental retardation with microcephaly and spastic quadriplegia.

The mutation R263G has previously been asso-
associated with Leigh’s encephalomyelopathy. The clinical picture of patient 5 is in accordance with this. The patient carrying the R72C mutation, patient 1, also fits this picture with episodic ataxia associated with muscle weakness as an initial symptom and progressing into a Leigh’s encephalomyelopathy. The clinical normal mother of patient 5 is a carrier of a normal and a mutated R263G E1α gene. In general, mutations in E1α are not present in the parents, suggesting that most PDH mutations represent new mutations (Dahl et al., 1992). The R263G mutation, as well as the R302C mutation, seem to be exceptions. Recently, familial transmission of a mutation leading to partial skipping of exon 6 of the E1α gene has also been demonstrated (De Meirleir et al., 1994). Nonrandom X-inactivation resulting in disproportional expression favoring the normal or the mutated allele could then explain either the normal or the affected phenotype in females carrying one of these mutations. Obviously males carrying the mutated allele would be affected. It has been suggested that the R263G mutation disrupts the subunit-subunit interaction of the E1α- and E1β-subunits resulting in the instability of E1. The mother of our patient had four brothers who died in the neonatal period of an unknown cause. Although it has not been possible to study these maternal brothers, the familial history is compatible with a R263G PDH E1α deficiency. The two other boys have mutations in exons 11 and 10 (patients 6 and 8); both presented with a severe neonatal lactic acidosis and early death.

Several methods have been described for the rapid detection of minor changes in nucleic acids (for review, see Grompe, 1993). We have chosen to use SSCP analysis for the detection of mutations in the PDH E1α gene because of its simplicity and sensitivity (Hayashi and Yandell, 1993). All the mutations described in this study were detected in SSCP by using 8% polyacrylamide gels (acrylamide-to-bisacrylamide ratio 37.5:1) containing 5% glycerol, at room temperature. Moreover, the pattern obtained from normal control samples were fully reproducible from experiment to experiment. Therefore, we always run the first SSCP under these conditions and only, when no aberrant migrating bands are found in patients, other SSCP conditions are used (Michaud et al., 1992). The possibility of splicing out of an exon from the gene was also largely taken into account by designing the SSCP primers. Splicing out of all exons, except exons 3 and 10, would immediately be obvious from the SSCP patterns. For mutations resulting in splicing out of exons 3 and 10, additional amplifications with primers PDS1/PDS8 and PDS3/PDS6 would be necessary.

The study of X-inactivation patterns, by analysing the methylation status of the hypervariable DXS255 locus, has been suggested as an aid in the diagnosis in females with a suspected PDH E1α deficiency (Brown and Brown, 1993). However, the methylation status at this locus may be affected by factors other than X-chromosome inactivation (Hendriks et al., 1991; Cachia et al., 1992). Moreover, skewed X-inactivation will only give an indirect indication of a possible involvement of the E1α gene in disease. Since the SSCP system described here permits a direct search for mutations in the gene, we believe that this system should be preferentially used for mutation detection.

In summary, we have developed a RT-PCR-based SSCP assay for the detection of mutations in the PDH E1α gene. Starting from total RNA, the result of the screening can be obtained in 72 hr. We have used this method in eight patients with a PDH complex deficiency and have found mutations in the E1α genes of all patients.

ACKNOWLEDGMENTS

This work was supported by grants from the National Fund for Scientific Research (Belgium, grant 3.0065.87) and the Research Council of the Vrije Universiteit Brussel. Thanks are due to Mrs. A. Delecroeuillière for excellent technical assistance and to Mrs. M.C. Decreton and Mr. E. Van Emelen for help in the preparation of the manuscript.

REFERENCES

Dahl H-H M, Brown GK (1994) Pyruvate dehydrogenase deﬁ-

