Fibroinflammatory Pseudotumor of the Ear

A Locally Destructive Benign Lesion

Jef J. S. Mulder, MD; Cor W. R. J. Cremers, MD, PhD; Frank Joosten, MD; Anne Wiersma, MD; Paul van den Broek, MD, PhD

We describe three cases of a fibroinflammatory pseudotumor (tumefactive fibroinflammatory lesion) of the middle and inner ear. The patients presented with total deafness in the affected ear and no response to caloric stimulation. The computed tomographic pattern showed destruction of inner ear structures and a typical widening of parts of the labyrinth. Magnetic resonance imaging performed in all three patients showed an extension greater than expected based on computed tomographic images of both areas of destruction, as well as areas of radiologic normality. An enhancing mass was seen in the inner ear with a characteristic extension into both the internal auditory canal and the middle ear. A transotic approach or subtotal petrosectomy was used to remove the tumor in all three cases. Although histologically benign, these tumors are locally destructive and, as such, behave like a neoplastic lesion. They are composed of fibrovascular tissue admixed with chronic inflammatory cells. To our knowledge, this is the first report on pseudotumors of the middle ear, inner ear, and internal auditory canal. Inflammatory pseudotumor used to be a somewhat confusing term for a recognized entity of unknown origin. It is likely that infection is an important contributing factor in the development of these lesions. Although surgical removal seems to be the treatment of choice, no clear judgment of its prognosis can be made owing to the rarity of this tumor.

Except for the deafness there were no significant complaints. Otoscopic examination revealed fluid behind the left tympanic membrane that simulated otitis media with effusion. Facial nerve function was undisturbed. Audiometry revealed total deafness in the left ear, while the hearing in the right ear was normal. High-resolution computed tomography (CT) in the axial plane with coronal reformatted images revealed that the contour and diameter of the internal auditory canal were normal, although the funnix of the canal seemed to be enlarged. The contours of the geniculate ganglion were normal. The ossicles were present and in their normal anatomic position. The bony contours of the vestibule were indistinct. The superior semicircular canal showed a widened lumen and had sclerotic margins. The whole tympanic cavity was filled with soft tissue, and the pneumatized mastoid cavity was not aerated. Magnetic resonance imaging (MRI) of the ear before and after gadolinium–diethylene-triamine-pentaacetic acid contrast enhancement using a surface coil showed an enhancing mass in the tympanic cavity and inner ear and also a mass in the internal auditory canal.

Based on the total deafness in the left ear, the lack of response using ear, nose, and throat recordings for caloric testing, and the destruction of the labyrinth with an erosion of the internal auditory canal, a radical mastoidectomy in 1983 after which otorrhea persisted, was referred to our hospital. Otoscopic examination showed a large polyp near the promontory. The right ear was totally deaf, and the left ear showed a mainly sensorineural hearing loss with a mean of 20 dB at 0.5, 1, and 2 kHz. The vestibular test showed no response using ear, nose, and throat recordings for caloric testing on the right side. High-resolution CT scans in the axial and coronal planes showed normal contours and a normal diameter of the internal auditory canal. The fundus of the canal was enlarged. The geniculate ganglion was normal, but the windings of the cochlea, the vestibule, as well as the contours of the semicircular canals could not be detected. The vestibule was totally replaced by a soft-tissue mass. The mastoid cavity was detected, but no parts of the ossicular chain were visible. Magnetic resonance imaging showed an enhancing mass in the mastoid cavity and inner ear extending into the internal acoustic canal and the cochlea.

A modified transtotic approach, including removal of the promontory and cochlea, exposing the internal auditory canal, was performed. A reddish tumor was removed in toto. The lesion extended into the internal auditory canal and had also eroded the sheath of the carotid artery and the facial nerve. The tumor was dissected from the facial nerve, which was preserved. The tumor was further removed, leaving a large cavity in the petrous bone, which was filled with abdominal fat. A blind sac closure of the external auditory canal was made. The histologic diagnosis was consistent with a fibroinflammatory pseudotumor.

CASE 2

A 38-year-old woman, who had previously undergone six surgical procedures in her right ear because of chronic otitis and cholesteatoma and a radical mastoidectomy in 1983 after which otorrhea persisted, was referred to our hospital. Otoscopic examination showed a large polyp near the promontory. The right ear was totally deaf, and the left ear showed a mainly sensorineural hearing loss with a mean of 20 dB at 0.5, 1, and 2 kHz. The vestibular test showed no response using ear, nose, and throat recordings for caloric testing on the right side. High-resolution CT scans in the axial and coronal planes showed normal contours and a normal diameter of the internal auditory canal. The fundus of the canal was enlarged. The geniculate ganglion was normal, but the windings of the cochlea, the vestibule, as well as the contours of the semicircular canals could not be detected. The vestibule was totally replaced by a soft-tissue mass. The mastoid cavity was detected, but no parts of the ossicular chain were visible. Magnetic resonance imaging showed an enhancing mass in the mastoid cavity and inner ear extending into the internal acoustic canal and the cochlea.

A modified transtotic approach, including removal of the promontory and cochlea, exposing the internal auditory canal, was performed. A reddish tumor was removed in toto. The lesion extended into the internal auditory canal and had also eroded the sheath of the carotid artery and the facial nerve. The tumor was dissected from the facial nerve, which was preserved. The tumor was further removed, leaving a large cavity in the petrous bone, which was filled with abdominal fat. A blind sac closure of the external auditory canal was made. The histologic diagnosis was consistent with a fibroinflammatory pseudotumor.

CASE 3

A 50-year-old woman presented with a chronic otitis with otorrhea, otalgia, and a blind sac closure was made to the external auditory canal. The final histologic diagnosis was consistent with a fibroinflammatory pseudotumor.

Figure 1. Case 3. High-resolution computed tomographic scan of the right temporal bone. Top, A transverse plane, widening of the superior semicircular canal (arrows). Center, Direct coronal plane, soft-tissue mass in the external auditory canal, tympanic cavity, and inner ear with destruction of the vestibule. Normal scutum (thin arrow), ossicles (O), tegmen (curved white arrow), and basilar turn of the cochlea (open black arrow). Bottom, Coronal image, more posterior than that seen in the center illustration with normal internal canal (open arrows), but with widening and destruction of the vestibule (white arrow).

A long-standing history of sinusitis was also present. An otoscopic examination revealed abundant otorrhea on the right side obstructing the view of the tympanic membrane. No other ear, nose, or throat abnormalities were found. Audiometry showed a deaf ear on the right side and a mean sensorineural loss of 35 dB at 0.5, 1, and 2 kHz on the left side. The right vestibulum did not show any function on electronystagmography. High-resolution CT scans in the axial and
Figure 2. Case 3. Magnetic resonance imaging of the skull base. Left, T1-weighted image in the transverse plane showing pathologic soft tissues filling the right inner ear structures and mastoid. Center, T1-weighted image in the coronal plane after gadolinium-diethylene-triamine-pentaacetic acid contrast enhancement showing a strongly enhancing mass with extension in the internal auditory canal (white arrow). Right, T2-weighted image. Normal signal intensities on the nonaffected left side in the cochlea (curved white arrow) and labyrinth (thick white arrow) and total signal loss on the affected right side. The fundus of the internal canal on the right side is filled with a mass (long white arrow).

Figure 3. A 6-μm paraffin section demonstrating a moderately cellular process consisting of loosely arranged plump spindle cells with a patchy mononuclear inflammatory infiltrate (hematoxylin-eosin, x40).

coronal planes showed that the contours and diameter of the internal auditory canal, fundus, geniculate ganglion, and cochlea were normal. The contours of the vestibule and lateral semicircular canal could not be detected, while the superior and posterior semicircular canals were widened. The ossicles were visible and in their normal anatomic position. Soft tissue was present in the tympanic cavity, and the pneumatized mastoid cavity was not aerated (Figure 1). Magnetic resonance imaging showed a strongly enhancing mass in the middle and inner ear and in the cochlea and internal canal. Pathologic signal loss of the inner ear structures was present on the T1-weighted images (Figure 2). A subtotal petrosectomy was performed, preserving the labyrinth and cochlea, and a tumor was removed from the internal auditory canal, the cochlea, semicircular canals, and the eustachian tube, which was finally sealed off. A blind sac closure of the external auditory canal was made, and the cavity was filled with abdominal fat. Histologic examination of the specimen was consistent with a fibroinflammatory pseudotumor.

HISTOPATHOLOGIC FINDINGS

Histologic examination in these three cases showed features consistent with a moderately cellular process, consisting of loosely arranged plump spindle cells (Figure 3). Nuclear pleomorphism and mitotic activity were minimal. A conspicuous patchy mononuclear inflammatory infiltrate was present. There was no birefringent material, and additional stainings did not reveal any microorganisms. These tumors were not covered by a distinct epithelial layer. Bone erosion was evident.

COMMENT

The term inflammatory pseudotumor is a confusing and possibly ambiguous designation for a recognized entity of unknown origin. For a long time, inflammatory pseudotumor has been confused with plasma cell granuloma or fibrous histiocytoma in the lung. Even the first description of two cases of inflammatory pseudotumors in the lung by Brunn does not correspond with the definition used today. We propose to follow the histologic typing of tumors of the upper respiratory tract and ear, as used in the International Histological Classification of Tumors.
series, according to the World Health Organization (Geneva, Switzerland) criteria. In this internationally accepted classification, the fibroinflammatory pseudotumor is described in the naso-sal cavity and paranasal sinuses, nasopharynx, larynx, hypopharynx, and trachea; but, interestingly, the same histologic entity is not described as occurring in the middle and inner ear. Indeed, to our knowledge, the occurrence of these inflammatory pseudotumors in the middle and inner ear, apart from one case involving the facial nerve, has not been described previously. We did find two reports on plasma cell granulomas in the middle ear, but, as stated before, it was clearly another histologic entity.

Apart from the abdominal organs, inflammatory pseudotumors may be found in the respiratory tract, especially in the lung. In the ear, nose, and throat region, single case reports on inflammatory pseudotumors of the subglottis, lymph nodes and neck, retropharyngeal and parapharyngeal space, paranasal sinuses, skull base, and, as was mentioned before, on the facial nerve, have been published, but, again, in all these publications, the histologic features are not uniform. The pathogenesis of fibroinflammatory pseudotumors is unknown, although, according to the literature, it seems likely that it concerns a nonspecific inflammatory response to different stimuli, especially chronic infection.

In the lung, the prognosis of previously described inflammatory pseudotumors is excellent following surgical removal. Because these lesions may mimic malignancies clinically, it is obvious that lobectomy is the treatment of choice. Less is known about the necessity for maintaining chest tumor registry.

In conclusion, fibroinflammatory pseudotumors are benign but locally destructive lesions that have not been described as occurring in the middle ear. Destruction of inner ear structures and widening of the labyrinth were present on CT scans in all our patients. The lesion also shows enhancement with intravenous contrast. At surgery, these tumors are firm and well delineated. Although surgical removal seems to be the treatment of choice, no clear prognosis can be given regarding lesions in the ear because of the relatively short follow-up periods in these cases.

Accepted for publication February 19, 1995.

The authors thank J. M. Robinson and B. W. Codling, Gloucestershire, England, for revising the manuscript; H. M. Peters, MD, and M. Pruszczyński, MD, Nijmegen, for the histopathologic pictures; and J. Meeuwsen, Nijmegen, for the photography.

Correspondence to Department of Otorhinolaryngology-Head and Neck Surgery, Radboud University Hospital, Philips van Leydenlaan 15, 6500 HB Nijmegen, the Netherlands (Dr Mulder).

REFERENCES