Regional Release and Removal of Catecholamines and Extraneuronal Metabolism to Metanephrines

GRAEME EISENHOFER, BENGT RUNDQUIST, ANDERS ÄNEMAN, PETER FRIBERG, NADER DAKAK, IRWIN J. KOPIN, MARIE-CÉCILE JACOBS, AND JACQUES W. M. LENDERS

Clinical Neuroscience Branch, National Institute of Neurological Disorders and Stroke (G.E., I.J.K.), and Cardiology Branch, National Heart Lung and Blood Institute (N.A.D.), National Institutes of Health, Bethesda, Maryland 20892; the Departments of Cardiology (B.R.), Physiology (A.A.), and Clinical Physiology (P.E.), University of Göteborg, Göteborg, Sweden; and the Department of Internal Medicine, St. Radboud University Hospital (M.-C.J., J.W.M.L.), Nijmegen, The Netherlands

ABSTRACT

Norepinephrine (NE) and epinephrine (E) are metabolized extraneuronally by catechol-O-methyl-transferase to the metanephrines (MNs), normetanephrine (NMN) and metanephrine (MN). Subjects in this study received infusions of tritium-labeled NE and E. Concentrations of MNs and catecholamines were measured in plasma flowing into and out of the heart, forearm, lungs, kidneys, mesenteric organs (gastrointestinal tract, spleen, and pancreas), liver, and adrenals to examine the regional production of MNs from circulating and locally released catecholamines. NE spillover from mesenteric organs and kidneys accounted for 64% of the spillover from all tissues. There was detectable spillover of E from nonextraneuronal tissues, but 91% was from the adrenals. The production of MNs from locally released and circulating catecholamines varied widely among tissues. The liver made the largest contribution to removal of circulating NE (57%) and E (32%) and the largest contribution to the production of MN (64%) and MN (37%) from metabolism of circulating catecholamines. In all other tissues more MNs were produced from locally released than from circulating NE. Thus, the metabolism of circulating NE was responsible for only 19% of the total production of MN. An even smaller portion (6%) of plasma MN was derived from metabolism of circulating E. Most plasma MN (91%) was produced within the adrenals, which also provided the largest single source (54%) of MN. The regional variation in extraneuronal production of MNs indicates considerable heterogeneity in how circulating and locally released catecholamines are handled by different tissues. The substantial contribution of the adrenals to the production of MNs explains the extraordinary sensitivity of these metabolites for the diagnosis of pheochromocytoma. (J Clin Endocrinol Metab 80: 3009–3017, 1995)

ESTIMATION of norepinephrine (NE) spillover into the circulation, using the dilution of iv infused [111]NE with endogenous NE, is a useful index of NE release from sympathetic nerves. Most released NE, however, is efficiently removed by neuronal and extraneuronal uptake, so that only a small portion escapes into the circulation. Additional measurements of the specific activity of [111]NE provides a useful index of NE release from sympathetic nerves. NE spillover from mesenteric organs and kidneys accounted for 64% of the spillover from all tissues. There was detectable spillover of E from nonextraneuronal tissues, but 91% was from the adrenals. The production of MNs from locally released and circulating catecholamines varied widely among tissues. The liver made the largest contribution to removal of circulating NE (57%) and E (32%) and the largest contribution to the production of MN (64%) and MN (37%) from metabolism of circulating catecholamines. In all other tissues more MNs were produced from locally released than from circulating NE. Thus, the metabolism of circulating NE was responsible for only 19% of the total production of MN. An even smaller portion (6%) of plasma MN was derived from metabolism of circulating E. Most plasma MN (91%) was produced within the adrenals, which also provided the largest single source (54%) of MN. The regional variation in extraneuronal production of MNs indicates considerable heterogeneity in how circulating and locally released catecholamines are handled by different tissues. The substantial contribution of the adrenals to the production of MNs explains the extraordinary sensitivity of these metabolites for the diagnosis of pheochromocytoma.

Subjects and Methods

Subjects

Subjects were studied as part of ongoing protocols at 3 different institutions: the NIH, the University of Göteborg, and St. Radboud University Hospital. Regional blood sampling was carried out in 77 subjects studied in a cardiac catheterization laboratory. 8 patients studied during surgical anesthesia, and 10 subjects studied in a patient

Received February 7, 1995. Revision received April 18, 1995. Accepted April 24, 1995.

Address all correspondence and requests for reprints to: Dr. Graeme Eisenhofer, Building 10, Room SN214, National Institutes of Health, 10 Center Drive, MS 8-1424, Bethesda, Maryland 20892-1424.
Blood sampling and blood flow determinations

Blood samples were collected into ice-cold tubes containing an anticoagulant [heparin, ethylenediamine tetracetae, or ethyleneglycol-bis-(β-aminoethy] ether)-N,N,N',N'-tetracetic acid] and stored on ice until studies were completed. Samples were then centrifuged at 4 °C, and plasma was separated for storage at −80 °C until assayed for plasma concentrations of catecholamines and MNs.

Assays

The MNs (NMN and MN) were extracted from 2 mL plasma using solid phase ion exchange columns and quantified by liquid chromatography with electrochemical detection [8]. The catecholamines (NE and E) were extracted from 1-mL samples of plasma using alumina and quantified by liquid chromatography with electrochemical detection [9]. The fractions of eluants leaving the electrochemical cell, followed by liquid scintillation spectrometry, enabled determination of plasma concentrations of [3H]-labeled catecholamines and MNs. Interassay coefficients of variation were 12.2% for NMN, 11.2% for MN, 6.5% for NE, and 11.4% for E. Intrasay coefficients of variation were 4.2% for NMN, 3.3% for MN, 1.9% for NE, and 3.0% for E.

Calculations

The fraction of catecholamine in in-flowing plasma removed during passage through an organ (fx) was estimated according to the equation:

\[f_x = \left(\frac{[\text{H}]C_i - [\text{H}]C_o}{[\text{H}]C_i} \right) \]

(Eq I), where

\[[\text{H}]C_i \] and

\[[\text{H}]C_o \] are the respective in-flowing and out-flowing plasma concentrations of [3H]-labeled catecholamine (disintegrations per min/mL). Rates of removal (picomoles per min) of catecholamines by a specific organ or tissue were estimated from the product of

\[f_x \] with the in-flowing plasma concentration of catecholamine and the plasma flow through the organ.

The specific activity (SA) of an [3H]-labeled catecholamine precursor or O-methylated amine metabolite in plasma (i.e. the concentration of tri- tium bound to the amine divided by the concentration of the amine) was estimated according to the equation:

\[SA = \frac{[\text{H}]}{A} \]

(Eq II), where

\[PL|A \] is the plasma concentration of the amine (picomoles per mL), and

\[[\text{H}]A \] is the plasma concentration of the tritium bound to the amine (disintegrations per min/mL), and SA is the specific activity of the [3H]-labeled metabolite in plasma.

The fraction of metabolite removed during passage through the organ (fxD) can then be estimated by correction of the out-flowing plasma concentration of endogenous metabolite for the contribution from in-flowing precursor according to the equation:

\[f_{xD} = \frac{M_1 - (M_0 - f_p \times M_0) / M_1}{M_1} \]

(Eq IV), where

\[M_0 \] and

\[M_1 \] are the respective concentrations of p-aminohippurate (picomoles per mL) of MN (or NMN in a denervated organ) in in-flowing and out-flowing plasma. Under the above conditions, the proportion (pD) of metabolite in out-flowing plasma derived from metabolism of in-flowing catecholamine can be estimated according to a previously described approach [10] using the equation:

\[p_D = \frac{SA_D - SA_0}{SA_D - SA_0} \]

(Eq III).

Blood sampling and blood flow determinations

Blood samples (10 mL) were collected into prechilled syringes at least 15 min after the start of radiotracer infusions. For patients studied in catherization laboratories, blood samples (10 mL) were taken simultaneously from a radial or femoral artery and from the coronary sinus (n = 62), the pulmonary artery (n = 36), or the right renal vein (n = 43). To examine MN production by the adrenals, blood samples were taken from an adrenal vein in four subjects and from the left and right renal veins in two subjects. In the latter subjects the catheter to the left kidney was advanced proximally to the vein draining the left adrenal so that the blood collected included effluent from both the left kidney and the left adrenal. Coronary sinus blood flow and cardiac output were determined by thermodilution, whereas renal blood flow was determined from the product of fxc with the in-flowing plasma concentration of catecholamine and the plasma flow through the organ.

The specific activity of a [3H]-labeled catecholamine precursor or O-methylated amine metabolite in plasma (i.e. the concentration of tritium bound to the amine divided by the concentration of the amine) was estimated according to the equation:

\[\text{SA} = \frac{[\text{H}]}{A} \]

(Eq II), where

\[\text{PL}|A \] is the plasma concentration of the amine (picomoles per mL), and

\[[\text{H}]A \] is the plasma concentration of the tritium bound to the amine (disintegrations per min/mL), and SA is the specific activity of the [3H]-labeled metabolite in plasma.

The fraction of metabolite removed during passage through the organ (fxD) can then be estimated by correction of the out-flowing plasma concentration of endogenous metabolite for the contribution from in-flowing precursor according to the equation:

\[f_{xD} = \frac{M_1 - (M_0 - f_p \times M_0) / M_1}{M_1} \]

(Eq IV), where

\[M_0 \] and

\[M_1 \] are the respective concentrations of p-aminohippurate (picomoles per mL) of MN (or NMN in a denervated organ) in in-flowing and out-flowing plasma. Under the above conditions, the proportion (pD) of metabolite in out-flowing plasma derived from metabolism of in-flowing catecholamine can be estimated according to a previously described approach [10] using the equation:

\[p_D = \frac{SA_D - SA_0}{SA_D - SA_0} \]

(Eq III).

Blood sampling and blood flow determinations

Blood samples (10 mL) were collected into prechilled syringes at least 15 min after the start of radiotracer infusions. For patients studied in catherization laboratories, blood samples (10 mL) were taken simultaneously from a radial or femoral artery and from the coronary sinus (n = 62), the pulmonary artery (n = 36), or the right renal vein (n = 43). To examine MN production by the adrenals, blood samples were taken from an adrenal vein in four subjects and from the left and right renal veins in two subjects. In the latter subjects the catheter to the left kidney was advanced proximally to the vein draining the left adrenal so that the blood collected included effluent from both the left kidney and the left adrenal. Coronary sinus blood flow and cardiac output were determined by thermodilution, whereas renal blood flow was determined from the product of fxc with the in-flowing plasma concentration of catecholamine and the plasma flow through the organ.

The specific activity of a [3H]-labeled catecholamine precursor or O-methylated amine metabolite in plasma (i.e. the concentration of tritium bound to the amine divided by the concentration of the amine) was estimated according to the equation:

\[\text{SA} = \frac{[\text{H}]}{A} \]

(Eq II), where

\[\text{PL}|A \] is the plasma concentration of the amine (picomoles per mL), and

\[[\text{H}]A \] is the plasma concentration of the tritium bound to the amine (disintegrations per min/mL), and SA is the specific activity of the [3H]-labeled metabolite in plasma.

The fraction of metabolite removed during passage through the organ (fxD) can then be estimated by correction of the out-flowing plasma concentration of endogenous metabolite for the contribution from in-flowing precursor according to the equation:

\[f_{xD} = \frac{M_1 - (M_0 - f_p \times M_0) / M_1}{M_1} \]

(Eq IV), where

\[M_0 \] and

\[M_1 \] are the respective concentrations of p-aminohippurate (picomoles per mL) of MN (or NMN in a denervated organ) in in-flowing and out-flowing plasma. Under the above conditions, the proportion (pD) of metabolite in out-flowing plasma derived from metabolism of in-flowing catecholamine can be estimated according to a previously described approach [10] using the equation:

\[p_D = \frac{SA_D - SA_0}{SA_D - SA_0} \]

(Eq III).
was estimated according to the equation \(P_{f} = \frac{[1^3]H]M_{0} - ([1^3]H]M_{1} \times f_{x0})}{([1^3]H]C_{2} \times f_{x2})} \) (Eq VI), where \([1^3]H]M_{0}\) and \([1^3]H]M_{1}\) are the respective concentrations of \([1^3]H\)-labeled MN or NMN in inflowing and outflowing plasma, and the other terms are described in Eq I and IV above.

The spillover of NMN or MN derived from local metabolism of the NE or E extracted from in-flowing plasma by the organ or tissue (S_p) was then estimated using the equation \(S_{p} = \frac{(p_{x} \times f_{x} \times C_{0}) \times F}{(E \times F)} \); all terms are described in Eq I, I, and VI above. The spillover of MNM derived from metabolism of locally released NE was then estimated by subtraction of \(S_{p} \) from the total spillover of NMN.

Plasma flows in the forearm were measured in units of milliliters per 100 mL tissue/min, so that forearm spillovers have units of picomoles per 100 mL/min. Previously documented data about the density of skeletal muscle (12) and the mass of skeletal muscle in the body as a function of gender and body weight (13) were used to transform rates of catecholamine and MN spillover and removal for the forearm into rates for skeletal muscle throughout the body (units of picomoles per min). The above transformation assumes that spillovers from the forearm reflect spillovers from skeletal muscle elsewhere in the body.

Rates of spillover of catecholamines and MNs from the adrenals were estimated using two methods. In the two patients from whom blood samples were obtained from the right renal vein and the common vein draining the left kidney and left adrenal gland, spillovers were estimated from the product of renal plasma flow and differences in catecholamine or MN concentrations at the two sampling sites. In the other patients from whom adrenal venous blood samples were obtained, adrenal spillovers of catecholamines were estimated according to Eq V above. Adrenal spillovers of MNs were estimated similarly, except that no correction was made for fractional extractions, which were assumed to be negligible in relation to the arterial-venous increase in concentrations.

Adrenal blood flow was assumed to equal 30 mL/min, as derived from previously documented data (14, 15).

Statistical methods

Results are expressed as means with variance for paired data (i.e., in-flowing and out-flowing plasma concentrations of MNs and fractional extractions of NE and E) using t test of the difference and for other data using SEM. Plasma concentrations of catecholamines and MNs are not normally distributed. Therefore, levels of statistical significance were determined using nonparametric methods; Wilcoxon's signed rank sum test was used for comparisons of paired data, and the Mann-Whitney test was used for comparisons of other data. Unless stated, statistical significance was defined as \(P < 0.05 \).

Results

Regional differences in plasma MNs

There was a 12 ± 2% arterial-venous increase (\(P < 0.001 \)) in plasma concentrations of NMN across the heart (Table 1). No other organ, apart from the adrenals, showed evidence of local production of NMN, as indicated by increases in NMN concentrations from in-flowing to out-flowing plasma. In contrast, concentrations of MN in inflowing plasma were consistently higher (\(P < 0.01 \)) than those in out-flowing plasma for every tissue, except the adrenals. The kidneys and liver showed the largest arterial-venous decreases (\(P < 0.005 \)) in plasma MN. These organs also showed decreases (\(P < 0.01 \)) in inflowing to out-flowing plasma concentrations of NMN, indicating local extraction of both NMN and MN. Local production of MNs was most evident for the adrenals, which showed a 10-fold arterial-venous increase in plasma NMN and an 87-fold increase in plasma MN.

Handling of MNs by the transplanted and innervated heart

In contrast to the innervated hearts of normal volunteers and patients with angina, in which there were small, but fairly consistent, increases (\(P < 0.002 \)) in NMN from arterial to coronary venous plasma, patients with heart transplants showed consistent arterial-coronary venous decreases (\(P < 0.02 \)) in plasma NMN (Fig. 1, top panel). Plasma concentrations of MN showed similar arterial-coronary venous decreases (\(P < 0.02 \)) in both innervated control subjects and denervated heart transplant patients (Fig. 1, bottom panel). This and lack of a difference in arterial and coronary venous concentrations of \([3^3]H]MN\) resulted in a highly consistent 20.2 ± 2.2% increase (\(P < 0.001 \)) in the specific activity of \([3^3]H]MN\) from arterial to coronary venous plasma.

In contrast to the increase in specific activity of \([3^3]H]MN\) across the heart, control subjects showed a small, but consistent, decrease (\(P < 0.001 \)) in the specific activity of \([3^3]H]NMN\) from arterial to coronary venous plasma. On the other hand, heart transplant patients showed an increase (\(P < 0.03 \)) in the specific activity of \([3^3]H]NMN\) from arterial to coronary venous plasma (Fig. 2, lower panel). Control subjects showed a large decrease (\(P < 0.001 \)) in the specific activity of \([3^3]H]NE\) from arterial to coronary venous plasma, whereas patients with heart transplants showed a much smaller arterial-venous decrease (\(P < 0.05 \)) in the specific activity of \([3^3]H]NE\) across the heart (Fig. 2, upper panel).

The fractional extraction of \([3^3]H]NE\) was decreased by 81% in patients with heart transplants compared to that in innervated controls (0.70 ± 0.02 vs. 0.13 ± 0.2). Correction of out-flowing plasma concentrations of MNs for the contribution from metabolism of in-flowing catecholamines (see Eq IV in Materials and Methods) indicated no difference between fractional cardiac extractions of plasma MN (0.20 ± 0.05) and MN (0.21 ± 0.01) in patients with heart transplants.

TABLE 1. Concentrations of metanephrines in plasma flowing into and out of various organs and tissues

<table>
<thead>
<tr>
<th>No.</th>
<th>Inflowing</th>
<th>Outflowing</th>
<th>SED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart</td>
<td>NMN</td>
<td>57</td>
<td>0.293</td>
</tr>
<tr>
<td></td>
<td>MN</td>
<td>62</td>
<td>0.256</td>
</tr>
<tr>
<td>Forearm</td>
<td>NMN</td>
<td>10</td>
<td>0.260</td>
</tr>
<tr>
<td></td>
<td>MN</td>
<td>10</td>
<td>0.279</td>
</tr>
<tr>
<td>Lungs</td>
<td>NMN</td>
<td>34</td>
<td>0.317</td>
</tr>
<tr>
<td></td>
<td>MN</td>
<td>36</td>
<td>0.260</td>
</tr>
<tr>
<td>Kidneys</td>
<td>NMN</td>
<td>41</td>
<td>0.246</td>
</tr>
<tr>
<td></td>
<td>MN</td>
<td>41</td>
<td>0.246</td>
</tr>
<tr>
<td>Mesenteric organs</td>
<td>NMN</td>
<td>7</td>
<td>0.399</td>
</tr>
<tr>
<td></td>
<td>MN</td>
<td>8</td>
<td>0.283</td>
</tr>
<tr>
<td>Liver</td>
<td>NMN</td>
<td>7</td>
<td>0.384</td>
</tr>
<tr>
<td></td>
<td>MN</td>
<td>7</td>
<td>0.243</td>
</tr>
<tr>
<td>Adrenals</td>
<td>NMN</td>
<td>4</td>
<td>0.378</td>
</tr>
<tr>
<td></td>
<td>MN</td>
<td>4</td>
<td>0.274</td>
</tr>
</tbody>
</table>

Results represent mean plasma concentrations (picomoles per mL) with variance between inflowing and outflowing concentrations shown by the se of the difference (SED).

^a Significantly higher concentration in outflowing than inflowing plasma.

^b Significantly lower concentration in outflowing than inflowing plasma.
Regional differences in specific activities of plasma [3H]MNs

Changes in specific activities of [3H]NMN from in-flowing to out-flowing plasma showed considerable variation among different tissues (Fig. 3). Like the heart, mesenteric organs showed an arterial-venous decrease (P < 0.02) in the specific activity of [3H]NMN, whereas increases (P < 0.02) in [3H]NMN specific activity were observed across the kidneys and liver. There were no differences in specific activities of [3H]NMN in the in-flowing and out-flowing plasma of the forearm and lungs.

In contrast to the variable changes in specific activities of [3H]NMN from in-flowing to out-flowing plasma of different tissues, specific activities of [3H]MN showed consistent increases (P < 0.02) from in-flowing to out-flowing plasma for the heart, forearm, lungs, mesenteric organs, liver, and kidneys (Fig. 3). The magnitude of the increase in specific activity of [3H]MN was highly variable from organ to organ. The liver showed the largest increase, with a specific activity of [3H]MN in out-flowing plasma that was 97.3 ± 19.8% higher than that in in-flowing plasma. The lungs showed the smallest increase, with a specific activity of [3H]MN in out-flowing plasma that was 9.0 ± 2.8% higher than that in in-flowing plasma. The adrenals, in contrast to all other tissues, showed a large arterial-venous fall in the specific activity of plasma [3H]MN (data not shown).

Regional extractions of catecholamines

Differences in magnitudes of increases in specific activities of [3H]MN from in-flowing to out-flowing plasma among the different organs and tissues (Fig. 3) showed a pattern similar to the differences in regional fractional extractions of [3H]E (Fig. 4). The lungs, with the lowest fractional extraction of [3H]E, also had the smallest increase in specific activity of [3H]MN from in-flowing to out-flowing plasma. The liver, with the highest fractional extraction of [3H]E, also had the largest increase in [3H]MN specific activity from in-flowing to out-flowing plasma. In contrast, there was no relationship between fractional extractions of [3H]E and differences in specific activities of [3H]NMN in in-flowing and out-flowing plasma.

Fractional extractions of [3H]NE showed variable differences from those of [3H]E, depending on the tissue (Fig. 4). The fractional extraction of [3H]E was 35 ± 2% lower than that of [3H]NE in the heart, 10 ± 2% higher than that of [3H]E in the forearm, 10 ± 4% higher than that of [3H]E in the kidneys, not different in mesenteric organs, and 4 ± 1% lower than that of [3H]E in the liver.
Regional extractions of MN

Fractional extractions of MN by the various organs and tissues were lower than those of the catecholamines, but, in general, showed similar variation among organs as the precursor amines (Table 2). The highest fractional extraction of MN was in the liver; the lowest was in the lungs.

Regional removals and spillovers of catecholamines

Rates of NE spillover and removal showed wide variation among different tissues and organs (Table 3). As expected, the adrenals showed the largest spillover of E, amounting to 91% of the summed total (Table 4). The highest spillover rates of NE were observed for the kidneys and mesenteric organs, whereas the liver made the largest contribution to the removal of circulating NE and E. Although there were large differences between NE spillover and removal rates among individual tissues, the sum of NE spillover rates for all tissues was similar to the sum of removal rates.

Regional metabolism of catecholamines to MNs

Only small proportions (<6%) of the E or NE extracted from the plasma entering the various organs and tissues appeared in the plasma effluent as MN or NMN (Tables 3 and 4). Conversion of extracted catecholamines to MNs varied widely among tissues and organs; it was highest in the liver and lowest in the heart. Between 30–200% more MN appeared in out-flowing plasma from extracted E than NMN from extracted NE.

Much more NMN was derived from the metabolism of locally released than circulating NE for all tissues, apart from the liver (Table 3). The liver, producing 60% of its NMN from extracted NE, also made the largest single contribution (54%) to the NMN derived from metabolism of circulating NE.
TABLE 2. Regional fractional extractions and removal rates of metanephrines

<table>
<thead>
<tr>
<th>Group</th>
<th>Fractional extraction (%)</th>
<th>Removal rates (pmol/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MN</td>
<td>NMN</td>
</tr>
<tr>
<td>Heart</td>
<td>19.9 ± 1.2</td>
<td>5.8 ± 0.7</td>
</tr>
<tr>
<td>Skeletal muscle</td>
<td>39.1 ± 1.9</td>
<td>40.1 ± 8.5</td>
</tr>
<tr>
<td>Lungs</td>
<td>7.2 ± 1.5</td>
<td>71.2 ± 19.7</td>
</tr>
<tr>
<td>Kidneys</td>
<td>40.4 ± 1.5</td>
<td>60.6 ± 4.4</td>
</tr>
<tr>
<td>Mesenteric organs</td>
<td>30.5 ± 4.0</td>
<td>61.5 ± 13.9</td>
</tr>
<tr>
<td>Liver</td>
<td>68.5 ± 4.2</td>
<td>184.2 ± 33.4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results represent the mean ± SEM. Fractional extractions of MN were estimated from decreases in inflowing and outflowing plasma MN concentrations (see Table 1) after correction of the outflowing concentration for the contribution of local metabolism of extracted E (see Eq IV in Materials and Methods). Removal rates were estimated from the product of the fractional extraction of MN, the inflowing plasma concentration of MN or NMN, and the plasma flow through the organ.

However, only 19% of the NMN produced by all tissues was derived from metabolism of NE after entry into the circulation; most (81%) was derived from metabolism of locally released NE before entry into the circulation. Regional spillovers of NMN derived from locally released NE were typically a small fraction (3–13%) of NE spillovers; the exception to this was the adrenals, where NMN spillover was 33% that of NE spillover. The adrenals also made the single largest contribution (23%) to the spillover of NMN from all tissues.

The pattern of total and regional spillovers of MN derived from locally released and removed E (Table 4) showed some similarities to the pattern for NMN (Table 3), but also many differences. Similar to the situation for NMN, the adrenals made the largest single contribution to the combined spillovers of MN from all organs and tissues; however, the extent of this contribution (91%) was much larger than that for NMN (23%).

Some spillover of E was detected from most organs and tissues, although far less than from the adrenals. Thus, like NMN, some spillover of MN from these extraadrenal tissues was derived from metabolism of locally released E (Table 4). However, unlike the situation for NMN, all extraadrenal tissues produced more MN from E removed from the circulation than from locally released E. Similar to the situation for NE and NMN, the liver made the single largest contribution to removal of circulating E and produced the most MN from circulating E. However, metabolism of E after its release into the circulation made only a minor (6%) contribution to total MN production, and only a small amount (3%) of MN was produced locally from E released by extraadrenal tissues. Most MN (91%) was formed by local metabolism of E produced within the adrenals.

Discussion

In addition to providing an examination of regional release and removal of NE and E, this study shows how the catecholamines are metabolized to MNs after their local release within tissues or removal from the circulation. There are considerable differences in the production of MNs among various tissues. The adrenals in particular are an important source of MNs, providing an explanation for the extraordinary sensitivity of these metabolites for the diagnosis of pheochromocytoma.

The lower concentrations of NMN in hepatic and right renal venous plasma than in arterial plasma agree with previous findings (16). This and the extraction of MN by all extraadrenal tissues indicate that assessment of regional production of MNs, like catecholamines, requires consideration of their local removal. For catecholamines, this is achieved by analysis of arterial-venous decreases in the specific activity of iv infused 3H-labeled catecholamines (11). The pronounced decrease in the specific activity of 3HNE from arterial to coronary venous plasma in control subjects and the negligible decrease in heart transplant patients, who have little cardiac NE release (17), illustrate how arterial-venous decreases in the specific activity of plasma 3HNE reflect local release of endogenous NE.

Differences in specific activities of 3HNMN are more complex to interpret than those in 3HNE. The decrease in specific activity of 3HNE from in-flowing to out-flowing plasma is dependent only on local release of unlabeled NE, whereas any change in that of 3HNMN is dependent on both metabolism of locally released NE and 3HNE removed from in-flowing plasma. Reversal of the normally observed arterial-coronary venous increase in plasma MN to a decrease in heart transplant patients reflects the lack of cardiac NE release in these subjects; the resulting single source of MN from in-flowing plasma NE together with the much higher specific activity of plasma 3HNE than of 3HNMN results in an increase in the specific activity of 3HNMN from arterial to coronary venous plasma. In the innervated heart, additional production of MN from locally released unlabeled NE results in an overall arterial-venous decrease in 3HNMN specific activity.

Increases in specific activity of plasma 3HNMN across all tissues, except the adrenals, reflect a similar situation to the transplanted heart, where specific activity differences depend on the extraction, but not the local release, of catecholamines. The variable regional differences in specific activity of 3HNMN reflect differences in the amounts of MN derived from locally released or extracted NE. The liver, with the largest removal and smallest spillover of NE, also had the largest in-flowing to out-flowing increase in the specific activity of plasma 3HNMN.

In all tissues, except the adrenals, regional spillovers of MN were determined using the fractional extractions of MN, which were assumed to equal those of NMN. Fractional extractions of MN were determined after correction of the amount of locally extracted E converted to MN; it was assumed that the amount of locally released E converted to MN was negligible. Both assumptions deserve comment. Similar total body clearances of MN and MN and equal contributions of deamination to plasma clearances of both metabolites (7) support the assumption of equivalent fractional extractions of MN and NMN. Further support is provided here by the similar fractional extractions of MN and NMN in transplanted hearts. The small, but detectable, spillover of E from extraadrenal tissues is in agreement with previous find-
TABLE 3. Regional spillover and removal rates of NE and spillovers of NMN derived from NE released locally or removed from plasma

<table>
<thead>
<tr>
<th>Adrenals</th>
<th>Heart</th>
<th>Lungs</th>
<th>Kidneys</th>
<th>Mesenteric organs</th>
<th>Liver</th>
<th>Kidneys</th>
<th>Lungs</th>
<th>Heart</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5 ± 0.7</td>
<td>4.0 ± 1.4</td>
<td>3.3 ± 1.3</td>
<td>6.4 ± 1.6</td>
<td>5.4 ± 1.3</td>
<td>4.1 ± 0.8</td>
<td>4.2 ± 1.3</td>
<td>4.6 ± 1.6</td>
<td>10.7 ± 0.1</td>
</tr>
<tr>
<td>335 ± 96</td>
<td>342 ± 96</td>
<td>358 ± 97</td>
<td>363 ± 98</td>
<td>370 ± 99</td>
<td>377 ± 100</td>
<td>385 ± 101</td>
<td>393 ± 102</td>
<td>393 ± 103</td>
</tr>
</tbody>
</table>

TABLE 4. Regional spillover and removal rates of E and spillovers of MN derived from E released locally or removed from plasma

<table>
<thead>
<tr>
<th>Adrenals</th>
<th>Heart</th>
<th>Lungs</th>
<th>Kidneys</th>
<th>Mesenteric organs</th>
<th>Liver</th>
<th>Kidneys</th>
<th>Lungs</th>
<th>Heart</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2 ± 0.1</td>
<td>0.5 ± 0.3</td>
<td>1.7 ± 0.4</td>
<td>3.4 ± 1.9</td>
<td>10.1 ± 5.6</td>
<td>448.8 ± 193</td>
<td>465</td>
<td>29</td>
<td>494</td>
</tr>
<tr>
<td>9 ± 3</td>
<td>23 ± 5</td>
<td>20 ± 1</td>
<td>27 ± 1</td>
<td>1.7 ± 0.4</td>
<td>0.2 ± 0.1</td>
<td>3.16</td>
<td>76</td>
<td>382</td>
</tr>
</tbody>
</table>

EXTRANEURONAL CATECHOLAMINE METABOLISM

Although most NMN derived from circulating NE is formed in the liver, the most important single source of NMN is the adrenals. There is some previous evidence for an adrenal source of NMN; catechol-O-methyltransferase is present in adrenal tissue (24), plasma NMN concentrations are lower in adrenalectomized patients than in control subjects (20), and plasma NMN concentrations are higher in the common vein draining the left kidney and the left adrenal gland than the vein draining the right kidney (16). The present study extends these findings by showing 10-fold higher NMN concentrations in adrenal venous than arterial plasma and a 23% contribution of the adrenals to circulating NMN.

In humans, only 10% of the MN in plasma is derived from circulating E, suggesting that the other 90% is formed from O-methylation of E in the adrenals (20). This conclusion is supported here by the 87-fold increase in plasma concentrations of MN from arterial to adrenal venous plasma, which translates into a 91% contribution of the adrenals to the spillover of MN from all tissues.

The finding that the adrenals are a major source of circulating MNs has important implications for the use of these metabolites in the diagnosis of pheochromocytoma. The superiority of 24-h urinary excretion rates of MNs over other catecholamine metabolites for the diagnosis of pheochromocytoma (25, 26) is explained not only by preferential metabolism of circulating catecholamines by extraneuronal path-
Eisenhofer et al.

Although this study provides a comprehensive examination of regional spillover and removal rates of MNs and catecholamines, it should be recognized that the data were obtained from a variety of patient groups studied under different conditions. Thus, some caution must be exercised in extrapolating the present comparisons among tissues to normal regional variations in sympathetic outflow and catecholamine metabolism. The present data, however, do indicate wide regional variability in the extraneuronal production of MNs from catecholamines released locally or removed from the circulation. The substantial contribution of the adrenals to production of MNs explains the extraordinary sensitivity of these metabolites for the diagnosis of pheochromocytoma.

Acknowledgments

The authors are grateful for the expert technical assistance of Douglas Hooper and Aneili Ambrin, and thank Dr. David S. Goldstein for helpful discussion during preparation of the manuscript.

References

Call for Abstracts

Diabetic Foot Research

Investigators involved in diabetic foot research are encouraged to submit abstracts by January 5, 1996, for the 56th Annual Meeting of Scientific Sessions of the American Diabetes Association, June 8–11, 1996. Original data may be accepted for exhibition in abstract, poster, and/or oral presentations.

Abstract applications and meeting information may be obtained by contacting: Jill Thompson, American Diabetes Association, 1660 Duke Street, Alexandria, VA 22314. Phone: 800-232-3472 ext. 212; Fax: 703-683-1839.