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Making a difference 
 
For human beings, speech constitutes a very efficient means of communication. This 
has induced many people to think that speech might also be a very efficient means of 
communication between human beings and machines. For this reason, attempts have 
been made to use speech as input to computers. The term Automatic Speech 
Recognition (ASR) is used for the technology that is required to transform ‘speech’ 
into ‘text’. Since the emergence of the first automatic speech recognizer in 1952 
(Davis et al., 1952), substantial progress has been made in the field of ASR. What 
started as recognition of ten digits spoken in isolation by a single speaker has now 
evolved to speaker-independent, large-vocabulary recognition of fluent, 
extemporaneous speech. In spite of the progress that has been made, a gap still exists 
between the performance of human beings and machines on speech recognition. For 
instance, Lippmann (1997) showed that the performance of present-day speech 
recognizers is at best one order of magnitude worse than human speech recognition on 
similar tasks.  

There are a number of differences in the way speech is decoded by human 
beings and by machines that could explain why ASR performance has not yet reached 
the same level of performance as human speech recognition. One of the main 
differences between human and machine speech recognition is that human beings use 
much more information for speech decoding than machines do. For instance, most 
human beings use two ears for hearing, whereas speech recognizers usually process a 
single stream of speech. Furthermore, a speech recognizer can only recognize the 
words that are contained in its vocabulary. Another difference is that human beings 
have certain expectations on the kind of speech that is likely to be produced. These 
expectations can be flexibly and quickly adjusted, depending on the speaker who is 
talking and the topic of the conversation. This kind of quick adaptation is hardly used 
in ASR systems. Other examples of information that machines can use only to a 
limited extent compared to human beings is information on intonation, stress, speaking 
rate, and pronunciation variation.  

Pronunciation variation refers to the fact that words can be pronounced in many 
different ways. Differences exist in the way speech is pronounced by various speakers, 
but even if the same speaker utters a word more than once, it will never be pronounced 
in exactly the same way. Humans usually have no difficulties in processing different 
pronunciation variants of the same word, since they have knowledge of pronunciation 
variation. However, for speech recognizers, pronunciation variation forms a problem, 
because, in general, speech recognizers do not explicitly take into account the different 
ways in which words can be pronounced. In the beginning of ASR research, the 
amount of variation in pronunciation was limited by using only isolated words. Since 
then, the type of speech that can be processed has evolved from isolated words to 
spontaneous speech. Especially in spontaneous speech the amount of pronunciation 
variation is very large. Words are more connected to each other in spontaneous speech. 
As a consequence, the pronunciation of one word is influenced by that of adjacent 
words. Furthermore, words are usually articulated less carefully in spontaneous 
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speech. Modeling pronunciation variation is seen as a possible way of improving the 
performance of ASR systems that handle spontaneous speech. The research described 
in this thesis constitutes an attempt to find an adequate way of explicitly modeling 
Dutch pronunciation variation in order to improve the performance of ASR. 

The body of this thesis consists of four articles describing research related to 
modeling pronunciation variation. The articles are preceded by six chapters that 
provide the context for the research reported on in this thesis. The organization of 
these chapters is as follows. Chapter 1 explains the operation and architecture of the 
speech recognizer that is used in this research. Chapter 2 deals with the various 
sources of pronunciation variation, and explains why pronunciation variation is 
problematic for ASR. Chapter 3 describes the goals and the general research 
methodology. Subsequently, the articles are summarized in Chapter 4, and the results 
are discussed in Chapter 5. Finally, the major conclusions are given in Chapter 6, 
together with some recommendations for future research.  

  The main part of this thesis consists of four articles that are published in or 
submitted to scientific journals. Our general method of modeling pronunciation 
variation requires information on the occurrence of the pronunciation variation to be 
modeled. In order to obtain this information, we use our speech recognizer to make 
transcriptions of large amounts of speech material. This procedure is called automatic 
transcription. During automatic transcription, the CSR decides which of a number of 
possible variants best matches the actual pronunciation. The first two articles of this 
thesis are concerned with this kind of automatic transcription. The goal of the first 
article is to assess the quality of the automatic transcriptions made by the speech 
recognizer by comparing them with transcriptions made by expert linguists. In the 
second article, some of the properties of the speech recognizer that influence the 
quality of automatic transcriptions are investigated in order to obtain better quality 
automatic transcriptions. Both articles show that our method of obtaining automatic 
transcriptions can be used meaningfully in the research on modeling pronunciation 
variation. The automatic transcription procedure is used as part of a general method of 
modeling pronunciation variation that is employed in the last two articles. In the third 
article, pronunciation variation is modeled in a knowledge-based manner. To this end, 
we selected five frequently occurring phonological processes to be modeled in our 
speech recognizer. However, not all pronunciation variation that is present in our 
speech material is described in the literature. For this reason, in addition to our 
knowledge-based approach, we also adopted a data-driven approach to model 
pronunciation variation. In the data-driven approach, the speech recognizer is used in 
order to obtain transcriptions of the pronunciation variation that is present in our 
speech material. The work on data-driven modeling of pronunciation variation is 
described in the fourth article.  

The research on modeling pronunciation variation showed that both our 
knowledge-based and our data-driven approaches for modeling pronunciation 
variation lead to improvements in recognition performance. In other words: Making a 
difference (differentiating) between various pronunciation variants does indeed make a 
difference in the performance of automatic speech recognition. 



Chapter 1 3 

1 Speech recognizer and speech material 
 
The research described in this thesis was carried out within the framework of the 
Priority Programme Language and Speech Technology (PP-TST1) of the Dutch 
Organization for Scientific Research (NWO2). The PP-TST started in 1995 and 
finished in 2000. The programme was carried out at the University of Nijmegen 
(KUN), the Center for Research on User-System Interaction (IPO), the University of 
Amsterdam (UvA), and the University of Groningen (RUG), in close collaboration 
with Philips Corporate Research and KPN Research. The goal of the PP-TST was to 
conduct fundamental and applied research in the context of a spoken dialogue system. 
The spoken dialogue system that was developed provides information on train 
timetables in the Netherlands over the telephone, and is called OVIS. OVIS is an 
acronym for ‘Openbaar Vervoer Informatie Systeem’ (‘Public Transportation 
Information System’). The OVIS spoken dialogue system is briefly described in 
section 1.1. The research in this thesis is only concerned with the speech recognition 
component of OVIS. The architecture and operation of the speech recognition 
component are explained in more detail in section 1.2. Finally, section 1.3 describes 
the speech material that has been used for the experiments in this thesis. 

1.1 The OVIS spoken dialogue system 

The architecture of OVIS is shown in Figure 1. To illustrate how the system operates, I 
will use an example. A person (the user) calls OVIS to obtain a travel advice. First, the 
system has to detect that there is a telephone call coming in. This interaction between 
the telephone line and OVIS is handled by the Telephone Interface. When the call is 
established OVIS replies with a welcome message, and asks the following question: 

OVIS: “From which station to which station would you like to travel?” 

The user responds to the system by giving information on the desired connection, e.g.: 

user: “I want to travel from Utrecht to Nijmegen” 

The user’s utterance is processed by the Speech Recognition module. This component 
converts the incoming speech signal into a sequence of words. The recognized 
sequence of words are passed to the Natural Language Processing module (Bonnema 
et al., 1997; Van Noord et al., 1999), which searches for relevant information in the 
sequence of recognized words. Not all words contain relevant information. In the 
example, ‘from Utrecht’, ‘to Nijmegen’ are the relevant words in the sentence, because 
it can be inferred from these words that ‘Utrecht’ is the departure station and that 
‘Nijmegen’ is the destination station. The Dialogue Management module (Veldhuijzen 
van Zanten, 1998) checks whether the information provided by the user is complete. 
The departure time is unknown in the example. Thus, the Dialog Management module 
passes a message to the Natural Language Generation module (Theune, 2000), 

                                                 
1 Prioriteitprogramma Taal- en Spraak Technologie  
2 Nederlandse organisatie voor Wetenschappelijk Onderzoek 
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containing information about the data that is still missing. The Natural Language 
Generation module then formulates a question (text), which is converted into a speech 
signal by the Speech Synthesis module (Klabbers, 2000). Finally, the speech is sent to 
the Telephone Interface and the user will hear the following question: 

OVIS: “At what time do you want to travel from Utrecht to Nijmegen?” 
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Figure1: Architecture of the OVIS Spoken Dialogue System 

 
Suppose the user answers this question as follows: 

user: “I want to depart tomorrow, at eight o’clock in the morning” 

Now, the whole process is repeated: the Speech Recognition module recognizes the 
words, the Natural Language Processing module searches for the relevant 
information, and the Dialogue Management module checks whether the travel inquiry 
of the user is completely specified. Since the user has now provided all information, 
the timetable information is looked up in the Database, and the travel advice is 
formulated (text) by the Natural Language Generation module. Finally, the speech 
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signal generated by the Speech Synthesis module is passed to the Telephone Interface, 
resulting in the following travel advice: 

OVIS: “The train from Utrecht to Nijmegen departs at ten to eight from 
platform eleven. It arrives in Nijmegen at a quarter to nine on platform one.”  

After giving the travel advice, the system will enquire whether the user wants 
additional or other information. If the user does not want more information, the system 
will thank the user and the connection will be closed. Otherwise, the whole process 
starts all over again. 

1.2 The speech recognition component 

The research described in this thesis is only concerned with the Speech Recognition 
component of the OVIS system, i.e., a Continuous Speech Recognizer (CSR) that 
converts an incoming speech signal into a corresponding sequence of words (text). 
Before a CSR can process a speech signal, the signal needs to be converted into a 
representation that is suitable for automatic speech recognition. Section 1.2.1 describes 
this conversion, which is called acoustic pre-processing. Furthermore, a speech 
recognizer can only be used if it is trained. The training procedure is described in 
section 1.2.2. Finally, in section 1.2.3, the whole recognition process is described in 
more detail.  

1.2.1 Acoustic pre-processing 

The most common approach to acoustic pre-processing is to convert the speech 
waveform into a sequence of acoustic feature vectors, which together form a compact 
representation of the spectral characteristics of the speech. Figure 2 shows an overview 
of the acoustic pre-processing that is used in our speech recognizer. The acoustic 
features that we used are Mel Frequency Cepstral Coefficients (MFCCs). 

The first step is to convert the analog speech signal into a digital representation. 
To this end, the pressure (or voltage) value of the speech waveform is determined at 
equally spaced time points. The telephone speech that enters the CSR component in 
OVIS is already digitized. A sample is taken 8 times per ms; thus the sample 
frequency is 8 kHz (step � in Figure 2). The second step is to extract the speech 
waveform for (overlapping) short time intervals; this is called Time Windowing (step 
� in Figure 2). In our CSR, the acoustic features are calculated every 10 ms for time 
intervals of 16 ms. The speech signal is also pre-emphasized by applying high-
frequency amplification to compensate for the attenuation caused by the radiation from 
the lips. The next step is the calculation of the spectral characteristics of the speech 
signal. To this end, a Fast Fourier Transform (FFT) of the windowed speech signal is 
calculated to obtain the FFT-based spectrum (step � in Figure 2). Next, Mel-Scaled 
Filters are applied (step � in Figure 2). Mel-scaling approximates the frequency 
resolution of the human ear. In order to make the statistics of the speech power 
spectrum approximately Gaussian, log compression is applied (step � in Figure 2). A 
Discrete Cosine Transform (DCT) is applied to the filterbank outputs in order to 
decorrelate the spectral representation of the speech signal (step � in Figure 2). By 
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using the DCT, the number of spectral parameters representing the speech is reduced, 
but as much as possible of the relevant information is retained. For historical reasons 
the result of the DCT is called cepstral coefficients. Finally, the first 14 cepstral 
coefficients and the 14 corresponding time differentials (� in Figure 2) are retained, 
thus obtaining a 28-element acoustic vector.  
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Figure 2: Acoustic pre-processing for obtaining MFCC -based feature vectors. 
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1.2.2 Training 

Nowadays, CSRs are probabilistic engines. This means that a CSR calculates the 
probability of a word sequence W given the acoustic signal X: P(W|X). From among 
all possible word sequences, the word sequence ��with the highest probability is the 
one that is recognized: 
 

X)|P(W  argmaxW
W

^
=                        (1) 

 
According to Bayes’ theorem, this can be written as follows: 
 

P(X)

W)P(W)|P(X
 argmaxW

W

^
=                      (2) 

 
Since P(X) is independent of W: 
 

W)P(W)|P(X argmaxW
W

^
=                      (3) 

 
This means that maximizing P(W|X) is equal to maximizing the product of the 
following two probabilities: 

• P(X|W): The probability of observing a sequence of acoustic vectors given the 
hypothesized sequence of words. This term can only be computed after the fact, 
i.e., after the observation of a specific speech signal.  

• P(W): The probability of observing the hypothesized sequence of words. This 
probability is independent of the observed acoustic vectors. Therefore, this term 
represents the prior probability. 

The statistical model that we use to estimate the acoustic probability P(X|W) is called 
the acoustic model. Acoustic models are trained for all basic sound units of Dutch and 
for some non-speech sounds (see Appendix A). The basic sound units are very similar 
to what linguists call the phonemes of a language. As the Dutch phonemes /l/ and /r/ 
have different acoustic properties depending on their position in the syllable (post- or 
pre-vocalic), we distinguish between two types of /l/ and /r/. Different realizations of 
the same phoneme are also called allophones. The term phones is used to refer to the 
basic sound units in this thesis, as it covers both allophones and phonemes. The 
procedure for training the acoustic models is schematically presented in Figure 3.  

 In order to estimate the parameters of the acoustic models, it is necessary to 
have a large amount of recorded speech material with corresponding orthographic 

transcriptions. Orthographic transcriptions describe the words that are spoken in each 
utterance (text). In addition to the training material, a training lexicon is needed, which 

lists all words occurring in the training material together with a phone transcription.
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Figure 3: Training the acoustic models 

 
A phone transcription is the sequence of phones that represents the pronunciation of 
the word. For each utterance in the training material, the phone transcriptions of the 
words are looked up in the training lexicon. The speech signal together with the 
concatenated phone transcriptions of the individual words serve as input for training 
the acoustic models. The training procedure consists of the following two steps: 

• Viterbi alignment. The goal of alignment is to segment the speech, i.e. given the 
speech signal and corresponding phone transcription it is determined which parts of 
the speech signal corresponds to which phone in the phone transcription. An 
efficient algorithm for finding the optimal alignment is the Viterbi algorithm. The 
Viterbi algorithm finds the optimal alignment based on maximal (acoustic) 
likelihood.  
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• Model estimation. After alignment, all parts of the speech material that correspond 
to the same phone are statistically processed. This results in a stochastic model - 
called a hidden Markov model (HMM) - for each basic recognition unit (see 
Appendix A). Each HMM consists of a sequence of states connected by arcs. Each 
state consists of an N-dimensional probability density function (pdf), where N is 
the number of elements in the acoustic vectors. To obtain reliable estimates of the 
parameters of the pdfs, it is necessary to use a large number of realizations of each 
phone.  

Since no HMMs are available for the calculation of the acoustic likelihoods the first 
time the Viterbi alignment is made, one usually starts with a linear segmentation, i.e. 
each phone is assigned an equal duration. Based on this linear segmentation, the initial 
HMMs are estimated. These HMMs can subsequently be used to make a new Viterbi 
alignment. Next, the HMMs can be re-estimated based on the new alignment. During 
each iteration, the likelihood that the models generate the observations increases. The 
process continues until the likelihood improvements drop below a certain threshold or 
until a pre-defined number of iterations is reached.  

The prior probability P(W) is estimated by the language model. A simple but 
effective way of doing this is to use N-grams, in which it is assumed that the 
probability of a word is dependent on the previous (N-1) words. To estimate the N-
gram probabilities, large amounts of text data are usually used. Our CSR uses a 
unigram (N=1) and bigram (N=2) language model, which are estimated from the 
orthographic transcriptions of the training material. The material to train the language 
model should ideally be recorded with an online version of the application. However, 
this is a circular problem since a language model is needed in order to be able to use 
the application. In order to solve this problem, a bootstrap method is often used. This 
means that an initial language model is constructed (for instance manually), and using 
this initial language model new material is collected that can subsequently be used to 
improve the language model. Both the acoustic models and the language model were 
bootstrapped in OVIS (see section 1.3). In research situations, a speech database is 
usually divided into two parts: The first part is used to train the acoustic models and 
the language model (training material), whereas the second part is used for 
recognition experiments (test material).  

1.2.3 Recognition 

Once the acoustic models and language model of the CSR have been trained, the CSR 
can be used for recognition. An overview of the recognition process is given in Figure 
4. Since the CSR can only recognize words that are present in the lexicon, the lexicon 
needs to contain all the words that one can expect to be used by the people who are 
addressing OVIS. For instance, all train station names and all days of the week are 
included in the OVIS recognition lexicon. During the recognition phase, the CSR 
attempts to recognize an unknown sequence of words. To this end, all possible 
sequences of words allowed by the lexicon and the language model are generated. If 
all possible sequences of words had to be evaluated for the full duration of the 
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utterance, the computational requirements would be prohibitive. Therefore, all 
hypotheses are scored according to their likelihood. This score is a combination of two 
scores: the acoustic score determined by the HMMs, and the language model score. 
The majority of the hypotheses are less likely than the best one, and therefore they can 
safely be removed from the list of possible solutions. Finally, the output of the 
recognition process is the most likely sequence of words.  
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Figure 4: Recognition process 

1.3 The VIOS speech material 

The first version of OVIS was put into use in December 1995. This version was 
gradually improved by means of a bootstrap method (Strik et al., 1997). The first 
version of the phone models was trained using 2,500 Polyphone utterances (den Os et 
al., 1995). The initial language model was trained on answers of people who addressed 
a version of OVIS in which - instead of speech - text was used as input for the system. 
Next, a small group of people received the telephone number of OVIS and were 
requested to call it regularly. Whenever a sufficient amount of new data was collected, 
language models and acoustic models were retrained. In this way, the acoustic and 
language models were gradually improved. From April to June 1997, new speech 
material was recorded. During this recording period, people from all over the 
Netherlands were invited to call the system. Compared to the people who called the 
first version of OVIS, this second group of people is much more heterogeneous and 
also more representative of the potential users of the OVIS system. The database that 
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is recorded with OVIS is called ‘VIOS’. The VIOS material was orthographically 
transcribed by native speakers of Dutch. The output of the CSR (the sequence of 
words with the highest score) was used as a starting point for transcription by 
manually correcting it if necessary. The sex of the speakers was determined by the 
transcribers through auditory impression. Table 1 summarizes the main characteristics 
of the OVIS speech material. 

Table 1: Characteristics of VIOS material 

name VIOS 1 VOIS 2 VIOS 1+2 
recording period Dec. ‘95 – Jun. ‘96 Apr. ‘96 – Jun. ’97 Dec. ‘95 – Jun. ’97 
# dialogs 3,531 7,190 10,721 
# utterances 33,471 65,929 99,400 
# words 108,844 184,513 293,357 
# phones 1) 431,536 718,282 1,149,818 
male speakers 57% 75% 68% 
female speakers 42% 19% 29% 
other speakers 2) 1% 6% 3% 
speech 45% 42% 43% 
silence 55% 58% 57% 
total duration 25.0 hours 42.6 hours 67.6 hours 
1) based on canonical transcriptions, 2) children, mixed speakers or speaker sex unknown 
  
Table 2 shows the selections of the VIOS material used for the various experiments. In 
the column ‘VIOS’ the recording period is denoted (see Table 1): ‘1’ denotes the first 
recording period and ‘2’ the second. The column ‘#utts’ shows the number of 
utterances. For the recognition experiments, the test set perplexity is given in the 
column “PP”. In article 3, the same material was used for the recognition experiments 
as for error analysis, whereas in article 4 different sets of material were used. No 
overlap exists between the material used for training and performing the recognition 
experiments and the material used for error analysis. 
 

Table2: Selections of VIOS material used in the four articles 

training recognition experiments error analysis 
phonetic 

transcriptions  
# utts VIOS # utts VIOS PP # utts VIOS # utts VIOS 

article 1 25,104 1 - - - - - 186 1+2 
article 2 25,104 1 482 1+2 33 - - 482 1+2 
article 3 25,104 1 6,276 1 30 6,276 1 - - 
article 4 59,640 1+2 19,880 1+2 28 19,880 1+2 - - 
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Figure 5 shows the cumulative proportion of the total VIOS material as a function of 
word frequency rank. It can be seen that the 10 most frequent words make up about 
40% of the total material. They are all short words consisting of one syllable (‘nee’, 
‘ja’, ‘naar’, ‘uur’, ‘van’, ‘ik’, ‘wil’, ‘om’, ‘u’, ‘dank’). 
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Figure 5: Cumulative distribution of word frequency rank 

 
Figure 6 shows the cumulative proportion of the VIOS utterances as a function of 
utterance length, i.e. the number of words per utterance. It can be seen that 40% of the 
utterances consist of a single word.  
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Figure 6: Cumulative distribution of utterance length
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2 Pronunciation Variation 
 
When listening to the VIOS speech material, it is immediately clear that words are 
pronounced in many different ways. The fact that words can be pronounced differently 
depending on various factors is called pronunciation variation. Different sources of 
pronunciation variation can be distinguished. The distinction given here is adopted 
from Strik and Cucchiarini (1999). 

2.1 Sources of pronunciation variation 

A first major distinction can be drawn between interspeaker and intraspeaker 
pronunciation variation. Interspeaker variation refers to variation in pronunciation of 
different speakers, whereas intraspeaker variation refers to pronunciation variation of 
the same speaker. To a large degree interspeaker variation is caused by anatomical 
differences between speakers. For example, male and female speakers and children 
have different speech characteristics. Interspeaker variation also exists due to the fact 
that speakers of the same language may speak different dialects or speak with a 
different accent (Laver, 1994). The accent will depend on factors such as region of 
origin, socioeconomic background, level of education, sex and age. In addition to the 
factors mentioned so far, another important source of variation is the interlocutor, 
since it is known that speakers are influenced by the person they are talking to. The 
interlocutor is a computer in OVIS. However, part of the callers to the system seem to 
behave as if they were talking to a human being. For instance, people say: “I don’t 
want to go there, madam3”. 

Intraspeaker pronunciation variation also depends on many different factors. 
The first factor is the extent to which words are connected to each other. If words are 
pronounced in isolation, there is almost no interaction between the words. 
Furthermore, people tend to articulate isolated words more carefully. On the other 
hand, in connected speech all sorts of interactions may take place such as assimilation, 
co-articulation, reduction, or deletions and insertions of phones. The degree to which 
these phenomena occur will vary, depending on the style of speaking. As speech 
becomes less formal, the syllable structure of words may be reorganized, and there 
may be changes in pitch and loudness (Laver, 1994, pp. 66-69). The VIOS data show 
that the manner in which people address the system varies, ranging from very sloppy 
articulation to hyper-articulation. Another factor that influences the way people speak 
is their emotional state (Murray and Arnott, 1993). This source of variation is present 
in the VIOS material. For instance, if the system misunderstands what has been said, 
people tend to get irritated, which influences the way they speak. A non-linguistic 
factor that influences the way people speak is background noise. People tend to speak 
differently in the presence of background noise (Lombard effect). Some environmental 
noise is present in the VIOS material, e.g. music, other people talking, car noise, or 
noise due to a low-quality telephone connection.  

                                                 
3 “Daar wil ik niet naar toe, mevrouw” 
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The OVIS speech recognizer is an example of a recognizer that handles 
extemporaneous speech. Furthermore, OVIS can be called nation-wide, and speakers 
of different sex and age call the system. For all of these reasons it is clear that all the 
above-mentioned factors that influence the way people speak will vary over a wide 
range for the VIOS speech material. Therefore, the VIOS material is a good 
framework for studying the effect of pronunciation variation on the performance of 
ASR systems. In the next section, we will explain why pronunciation variation is 
problematic for ASR. 

2.2 Why is pronunciation variation problematic for ASR? 

In the baseline system, both the lexicons for training and recognition contain a single 
phone transcription for each word. This phone transcription is the most likely 
pronunciation according to the linguistic literature and is called the canonical phone 
transcription. Using a lexicon with only one phone transcription per word leads to 
suboptimal performance when words are not pronounced canonically: Fosler-Lussier 
(1999, pp.63-64) and McAllaster et al. (1998) showed that the word accuracy on 
Switchboard data is 11-12% lower for the words that are not pronounced canonically. 
This degradation in recognition performance is caused by a mismatch between the 
actual pronunciation of the word and the pronunciation as denoted in the lexicon. This 
mismatch causes problems both during recognition and training.  
 To explain why the mismatch is problematic, an example of a non-canonical 
pronunciation is given in Figure 7. Suppose that the canonical pronunciation of the 
Dutch city ‘Delft’ is /dElft/ (phone transcriptions are given in SAMPA4 notation). 
An example of a non-canonical pronunciation is /dEl@f/. In the realized 
pronunciation, the speech sound /@/ is inserted between the /l/ and the /f/, and the 
final /t/ is deleted. 
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Figure 7: Example of a non-canonical pronunciation (/dEl@f/) 

 
During recognition, the total acoustic score of the realized pronunciation of the word 
Delft (/dEl@f/) is lower than it would have been if the spoken phone sequence had 
been exactly equal to the canonical phone transcription in the lexicon (/dELft/). The 
acoustic scores for /l/ and /f/ are likely to be lower, because the part of the acoustic 
signal that is used to calculate an acoustic score for the phones /l/ and /f/ contains the 
acoustic signal of the inserted /@/. Furthermore, the acoustic score for the /t/ is also 
likely to be lower since no /t/ is pronounced, and consequently, parts of the speech 

                                                 
4 http://www.phon.ucl.ac.uk/home/sampa/dutch.htm 
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signal of the /f/ may be used to calculate the acoustic score for the phone /t/. Figure 8 
shows the mismatch due to the non-canonical pronunciation /dEl@f/. The parts of the 
realized pronunciation that do not match the canonical pronunciation are indicated 
with grey; these parts of the speech signal will have a low acoustic score. 
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Figure 8: Mismatch due to non-canonical pronunciation (/dEl@f/) 

 
The low acoustic score that is assigned to the mismatching parts might degrade 
recognition performance. Suppose that there is another word in the lexicon that does 
not differ very much from the word Delft, for example elf 5 (/Elf/). This word differs 
only in two phones from the realized pronunciation (/dEl@f/), since the deletion of 
the /d/ and /@/ in /dEl@f/ results in the pronunciation /Elf/. If the acoustic score for 
the word, /Elf/, is higher than the acoustic score of /dELft/, the incorrect word 
/Elf/ might be recognized. 

During training, the mismatch between the actual pronunciation and the 
canonical pronunciation in the training lexicon will result in contaminated acoustic 
models. Let us consider the same example and suppose the realized pronunciation is 
/dEl@f/. During training, the canonical phone transcription is looked up in the 
training lexicon. Next, the Viterbi algorithm is used to align the canonical transcription 
with the speech signal. Suppose the alignment between the speech signal and the 
canonical phone transcription is as given in Figure 8. Since the HMMs are trained on 
the Viterbi alignments, this means that three HMMs may become contaminated: the 
/l/-HMM and /f/-HMM are contaminated with parts of the speech signal of the 
inserted /@/, and the /t/-HMM is contaminated with the acoustic signal of the /f/ or 
with the acoustic signal of the word that follows ‘Delft’ in the utterance. The 
contamination of the HMMs might lead to recognition errors as the contaminated 
HMMs are less discriminative. 

The kind of pronunciation variation described in this section is an example of 
segmental variation: It can be described as substitutions, insertions and deletions of 
phones. In this thesis, pronunciation variation is described in this way. In other words; 
the pronunciation variation is modeled at the level of the phones. Alternatives to phone 
level pronunciation variation modeling will be discussed in section 5.2.3. 
 

                                                 
5 eleven 
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2.3 Overview of methods to model pronunciation variation in ASR 

Strik and Cucchiarini (1999) give an overview of the literature on modeling 
pronunciation variation for ASR. It is difficult to give a precise definition of 
pronunciation variation for ASR. Strictly speaking, one could say that almost all ASR 
research is about modeling pronunciation variation. For example, HMM modeling is a 
way of accounting for segmental and temporal variation. In this section, the research 
described in this thesis will be positioned in the categorical framework Strik and 
Cucchiarini (1999) present. 

A first distinction is based on whether the pronunciation variation occurs within 
words or across word boundaries. In article 3, we modeled both within-word and 
cross-word variation. We started off by modeling within-word variation. The CSR 
used in this research employs a single-pass search. This type of decoding helps to limit 
computing time, but one of the limitations of strict single-pass search is that it is 
difficult to model cross-word processes. To model cross-word variation we employed 
two methods that can be used in our single-pass decoder. To this end, we selected 
frequent word sequences from the VIOS-material. Next, a number of phonological 
cross-word phenomena were applied to these word sequences in order to obtain cross-
word variants. For the first method, the cross-word variants of individual words in the 
word sequences were added to the lexicon. For the second method, the word sequences 
were joined together, thus forming multi-words, and the multi-words and their variants 
were added to the lexicon. 

A second distinction that Strik and Cucchiarini (1999) make concerns the 
source from which the information on pronunciation variation is retrieved. Two types 
of information sources are distinguished: In knowledge-based studies, information on 
possible pronunciation variation is primarily derived from sources that are already 
available in the literature. In data-driven studies, the information on possible 
pronunciation variation is obtained from the speech in the training database. In this 
thesis both approaches are used. Article 3 describes a knowledge-based method of 
modeling pronunciation, whereas article 4 concerns a data-driven method of modeling 
pronunciation variation. 

A third distinction that is made concerns the information representation. The 
information about pronunciation variation can be formalized or not. In general, 
formalization means that a more abstract and compact representation is chosen. Data-
driven information on pronunciation variation can be formalized, e.g. by rewrite rules, 
artificial neural networks, phone confusion matrices, or decision trees. We use rewrite 
rules in the data-driven approach described in article 4. In knowledge-based studies, 
the information on possible pronunciation variation obtained from linguistic studies 
can be formalized in the form of phonological rules. In general, these are optional 
phonological rules concerning deletions, insertions, and substitutions of phones. We 
used five optional phonological rules in the knowledge-based approach described in 
article 3. The obvious alternative to using formalizations is using an approach in which 
all possible variants are generated without recourse to some form of rules. Generation 
can be a manual process, or transcriptions observed in a database can be used. The 
most important difference between using formalizations or not is the way in which 
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variants can be generated for a specific task. One of the advantages of using 
formalizations is that variants can be generated for unseen and new words. However, a 
disadvantage of employing formalizations is possible undergeneration and 
overgeneration of variants. (Cohen, 1989; Strik and Cucchiarini, 1999) 

The last distinction that Strik and Cucchiarini (1999) make concerns the level of 
modeling. Most CSRs consist of three levels: the lexicon, the phone models and the 
language model. Pronunciation variation is modeled at all these three levels in this 
thesis. Section 3.2.2 explains the general method of modeling pronunciation at all 
three levels of the CSR. This general method is used both in the knowledge-based and 
in the data-driven methods. 

For both the knowledge-based and the data-driven method, information is 
needed on the frequency and identity of the pronunciation variants that occur in the 
training data. In order to obtain this information on pronunciation variation, usually 
phonetic transcriptions of the training material are made. These transcriptions can be 
obtained manually, but the use of automatically obtained phonetic transcriptions is 
becoming more common (Strik and Cucchiarini, 1999). An important advantages of 
making automatic phonetic transcriptions is that it is less time-consuming, and 
therefore, less costly than making manual transcriptions. Another argument in favor of 
automatic transcriptions is that they are more in line with the phone strings obtained 
later during recognition in the system (see Riley et al., 1999). For these reasons, we 
used automatically obtained phonetic transcriptions in the research reported in this 
thesis. A detailed analysis of the automatic transcription procedure is presented in 
article 1 and article 2.  

Strik and Cucchiarini (1999) observe that in most studies the emphasis is on 
reduction of the error rates. In order to find out how and why improvements are 
obtained, recognition errors should be studied in more detail, i.e. a more detailed error 
analysis should be carried out. In the research reported in this thesis, we do not limit 
ourselves to measure performance improvement in terms of Word Error Rate (WER), 
but an attempt is also made to understand how the recognition process is affected by 
modeling pronunciation variation. To this end, error-analysis of the results of 
modeling pronunciation variation is performed; see article 3 and article 4. 
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3 Goals and methodology 

3.1 Goals 

The first goal of this thesis is to investigate whether the performance of ASR can be 
improved by explicit modeling of segmental pronunciation variation. Besides 
improving recognition performance we also hope to gain more insight into the effect 
of modeling pronunciation. Furthermore, since automatic phonetic transcription of 
pronunciation variants forms a vital component of the research methodology, a second 
goal is to assess the quality of our automatic transcriptions and to investigate how they 
may best be obtained. In the next two sections, the method for obtaining automatic 
phonetic transcriptions and the general method for modeling pronunciation variation is 
explained. 

3.2 Methodology 

3.2.1 Automatic phonetic transcription 

Phonetic transcriptions are needed for two purposes in the research described in this 
thesis. First of all, for the data-driven method to model pronunciation variation, the 
pronunciation variants need to be obtained. To this end, phonetic transcriptions of the 
training material are made. Second, our general method of modeling pronunciation 
variation requires information on the occurrence of the pronunciation variants to be 
modeled. In order to obtain this information, phonetic transcriptions are also needed. 
In this thesis, the phonetic transcriptions are made automatically, i.e. by a speech 
recognizer. Almost invariably, the automatic phonetic transcriptions are ‘broad 
phonetic’, or phonemic transcriptions.  

Automatic phonetic transcriptions can be made in several ways. One approach 
that has been used is to perform phone recognition. In this kind of recognition, phones 
are recognized instead of words. The recognizer is often constrained by a phone N-
gram, and by penalties on the generation of sequences comprising many short phones. 
However, the content of speech (the orthographic transcription) is often available. In 
this case, the corresponding canonical phonetic transcription can be used as a starting 
point for automatic transcription. The phonetic transcription is looked up in a lexicon. 
Based on this phonetic transcription a limited number of possible pronunciation 
variants are generated by applying some kind of rules, e.g. phonological rules (e.g. 
Lamel and Adda, 1996), data-derived rules (e.g. Kessens et al., 2000), or by using 
decision trees (e.g. Riley et al., 1999). The task of the CSR is now to decide for each 
word which of the possible variants best matches the acoustic signal. This approach to 
obtaining automatic phonetic transcriptions is called forced recognition (or forced 
alignment) and is used in this thesis.  

During forced recognition/alignment a Viterbi alignment of the speech material 
is made for all possible sequences of pronunciation variants and the sequence of 
variants with the highest likelihood is chosen. If the prior probabilities of the 
pronunciation variants of the same word are exactly equal during forced 
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recognition/alignment, the choice for a specific variant is determined solely by the 
acoustic likelihoods. However, sometimes weighted prior probabilities for the 
pronunciation variants are used during forced recognition/alignment. Kipp et al. 
(1997) use manually labeled data in order to obtain the prior probabilities for the 
pronunciation variants. Riley et al. (1999) and Saraçlar (2000) use the pronunciation 
probabilities derived from decision trees as weights during alignment. In our automatic 
transcription procedure, the CSR is forced to choose between the various 
pronunciation variants by using an utterance specific language model. This language 
model is trained for each individual utterance on a corpus consisting of 100,000 
repetitions of the utterance. In this way, the weight of the language model is largely 
increased, making it virtually impossible to recognize other words than the ones 
present in the utterance. During forced recognition, all variants of the same word are 
assigned equal prior probabilities, thus the choice for a specific pronunciation variant 
is solely determined by the acoustics.  

For the data-driven method to model pronunciation variation, forced 
recognition is performed twice. The first time, forced recognition is performed in order 
to obtain transcriptions of the pronunciation variation occurring in the training 
material. The pronunciation variants that can be chosen during forced recognition are 
obtained by starting with a canonical phone transcription for each word. Next, a very 
large number of hypothetical variants are generated. This is done by generating all 
possible variants in which one or more phones in the canonical phone transcription are 
deleted. For each utterance, the automatic transcriptions are aligned with the 
concatenation of the canonical transcriptions of the words in the utterance. On the 
basis of these alignments, data-driven rules are derived. Next, the data-driven rules are 
selected and used to generate pronunciation variants. Subsequently, the resulting set of 
variants is used in a second forced recognition that is carried out to obtain information 
on the frequency of occurrence of the variants. With the same aim, forced recognition 
is performed for the knowledge-based method. The pronunciation variants are 
automatically obtained by applying five phonological rules to the canonical 
transcriptions of the words in the lexicon. In the next section, it is explained how the 
information on the occurrence of the variants is used in our general method to model 
pronunciation variation.  

3.2.2 Modeling pronunciation variation 

For both the knowledge-based (article 3) and the data-driven approach (article 4), a 
general method of modeling pronunciation variation was used. This method implies 
incorporating pronunciation variation at all three levels in the CSR: the lexicon, the 
phone models, and the language model.  
 
• Modeling pronunciation at the level of the lexicon:  

Pronunciation variants are added to the baseline recognition lexicon. In this way, a 
lexicon is obtained that contains multiple pronunciations for some of the words. By 
using the multiple pronunciation lexicon, we expect recognition performance to 
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improve, because the mismatch between the realized pronunciation and the 
pronunciation in the lexicon is reduced. 
 

For modeling pronunciation variation at the other two levels of the CSR, an extra step 
is needed. This step consists of obtaining automatic phonetic transcriptions of the 
training corpus by performing forced recognition (see section 3.2.1).  
 
• Modeling pronunciation variation at the level of the phone models:  

The phone models are retrained on the new automatic phonetic transcriptions of the 
training corpus. Since we expect that there will be less mismatch between the new 
phone transcriptions and the acoustic signals, the retrained phone models should be 
less contaminated, and should therefore perform better. 

 
• Modeling pronunciation variation at the level of the language model:  

A new language model is calculated from the new automatic transcriptions of the 
training corpus. In the baseline language model, all pronunciation variants of the 
same word are assigned equal prior probabilities. However, in the new language 
model, different variants of the same word are assigned their own specific 
probabilities. These probabilities are estimated from the automatic transcriptions of 
the training corpus.  

3.2.3 Evaluation 

The first objective of this thesis is to improve the recognition performance of our CSR 
by modeling pronunciation variation. As a measure of recognition performance, we 
used the WER, which is defined as follows: 

• x100%
N

IDS
WER

++=  (4) 

where S is the number of substitutions, D the number of deletions, I the number of 
insertions, and N the total number of words. 
          
The second objective of this thesis is to assess the quality of our automatic phonetic 
transcriptions and to investigate how they can best be obtained. As a measure of 
quality, we used agreement between the automatic phonetic transcriptions and human 
reference transcriptions; the higher the agreement, the better the quality of the 
automatic phonetic transcriptions. As a measure of agreement we used Cohen’s kappa 
(κ), which corrects for chance agreement (Cohen, 1968):  

• Cohen’s
c

co

P100

PP

−
−=�    (5) 

Po = percentage of agreeing pairs of judgements (observed agreement) 
Pc = percentage of agreeing pairs on the basis of chance (expected agreement) 
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where, Pc is calculated as follows: 

• .i

v

1j,i
j.c PPP ∑

=
= x 100% (6) 

Pi. = marginal fraction of row i (ni./N) 
P.j = marginal fraction of column j (n.i/N) 
N  =  number of judged objects 
v  = number of categories 

 
When the distribution of scores across the different categories substantially differs 
from uniformity, Pc is high. The examples given in Table 6 clarify this point. Example 
A shows a situation in which much more 0-s than 1-s are used. In this case, Pc is 
90.5%. Example B shows a situation in which the 0-s and 1-s are more uniformly 
distributed: Pc is 50%.  
 
Table 6: Two examples of distributions of scores amongst the two judgers (humans 
and CSR) 

A humans B humans 

i j 0 1 Pi. 
 

i j 0 1 Pi. 

0 .9 .05 .95  0 .45 .05 .5 
1 .05 0 .05  1 .05 45 .5 

CSR 

P.j .95 .05   

CSR 

P.j .5 .5  
 
In the extreme case that all objects are assigned to the same category, κ cannot be 
calculated. The values of κ range from –1 (total disagreement) to 1 (perfect 
agreement). 
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4 Summaries of the articles 

4.1 Summary 1 

 
“Obtaining phonetic transcriptions: a comparison between expert listeners and a 
continuous speech recognizer”, published in Language & Speech 44 (3), pp. 377-403. 
 
In this article, we investigate whether a continuous speech recognizer (CSR) can be 
used to obtain automatic phonetic transcriptions of speech. The automatic 
transcriptions were made by using the CSR in forced recognition mode. During forced 
recognition, the CSR chooses the variant that best matches the acoustic signal from 
among a number of possible pronunciation variants. The pronunciation variants were 
automatically generated by applying the following five optional phonological rules to 
the words in the baseline lexicon: /n/-deletion, /r/-deletion, /t/-deletion, /@/-deletion 
and /@/-insertion (Booij, 1995; Cucchiarini and van den Heuvel, 1999). Two 
experiments were carried out in which the performance of the CSR was compared to 
the performance of expert listeners. However, given that human listeners can make 
mistakes it is not possible to obtain a completely error free human reference 
transcription with which the automatic transcriptions can be compared (Cucchiarini, 
1993). To (partly) circumvent this problem, two strategies were used to obtain a 
human reference transcription. In the first experiment, a majority vote procedure was 
used, i.e., the reference transcription is based on the judgment of the majority in a 
group of listeners. In the second experiment, a consensus transcription was made, i.e., 
two (or three) transcribers have to agree on each individual symbol to be transcribed. 
For evaluation, binary scores were derived: "1" if the rule was applied, or "0" if the 
rule was not applied. As a measure of agreement we used Cohen’s kappa (�) (see 
section 3.2.3). 
 
Experiment 1 
The manual transcriptions in the first experiment were made by nine expert linguists 
who all have experience in making phonetic transcriptions for their own 
investigations. The transcription task was exactly the same for the transcribers and the 
CSR, namely a forced choice from among a number of possible pronunciation 
variants. For the 291 words for which the variants had to be chosen, 467 binary scores 
per subject were obtained. Different reference transcriptions were obtained, depending 
on the minimum number of listeners that had to agree. The transcriptions for which the 
minimum number of agreeing listeners is not reached were excluded from analysis. 
This means that the higher the minimum number of listeners, the stricter the reference 
transcription, and the more transcriptions are excluded from analysis. 

Four types of comparisons were performed in which the CSR’s transcriptions 
were compared to the transcriptions made by the linguists. First, a pairwise 
comparison was performed for each pair of listeners and for each CSR-listener pair. 
This comparison showed that the agreement values for six of the listeners do not differ 
significantly from each other, whereas the agreement values of two listeners are 



Chapter 4 23 

 

significantly higher and those of one of the listeners and the CSR are significantly 
lower than the rest. The average κ-value for the listener-listener pairs is 0.63, whereas 
the average κ-value for the CSR-listener pairs is 0.55. Second, we compared the 
listeners’ and the CSR’s transcriptions to reference transcriptions with varying degrees 
of strictness. We found that the CSR’s agreement values increased if a stricter 
reference transcription was used. In a third comparison, we investigated the agreement 
values for the individual rules. This comparison revealed that the results are rule-
dependent: the absolute agreement values for both listeners and CSR vary per rule; the 
differences in agreement values between CSR and listeners vary per rule, and the 
range in agreement values for the listeners is quite variable per rule. Finally, in a 
fourth comparison we examined the differences in transcriptions between the listeners 
and the CSR. We found that the human transcribers scored a phone as present more 
often than the CSR did. As we hypothesize that this difference might be of durational 
nature and as the difference is especially large for the /@/-deletion rule, we determined 
the duration of the /@/s in the context of the /@/-deletion rule based on an automatic 
segmentation of the transcription material. This analysis showed that half of the /@/s 
with a very short duration are detected by the humans, but not by the CSR. This result 
indicates that the human listeners and the CSR may have a different durational 
threshold for detecting the /@/ in the context of the /@/-deletion rule. 
 
Experiment 2 
In order to investigate why the results were quite different for /@/-deletion as opposed 
to /@/-insertion, we conducted a second experiment. To this end, consensus 
transcriptions were made for words for which the /@/-deletion and /@/-insertion rule 
are applicable. Five duos and one trio were asked to reach consensus on the 
transcription (using IPA6 symbols) of what was articulated at the indicated spot in the 
word, i.e., where the conditions for application of the rule were met. The transcribers 
were students who had all followed the same transcription course. Comparison of the 
consensus transcriptions with the automatic transcriptions revealed that most of the 
/@/s that have a short duration according to the listeners were denoted as ‘not present’ 
by the CSR. This is further evidence that the listeners and the CSR may have different 
durational thresholds for detecting the phone /@/. Furthermore, we found that for the 
/@/s in the context of the /@/-deletion rule often something other than deletion or /@/ 
was transcribed, indicating that /@/-deletion is a more variable process than /@/-
insertion.  
 
The two experiments conducted in this study revealed that overall the machine’s 
transcription performance is significantly different from the listener’s performance. 
However, if we consider the individual rules, not all differences appeared to be 
significant. Furthermore, it should be kept in mind that significant lower agreement 
values were also found for one of the listeners. Although there are significant 
differences between the CSR and the listeners, the difference in performance may be 
acceptable, depending on what the transcriptions are needed for.  
                                                 
6 IPA=International Phonetic Alphabet, see http://www2.arts.gla.ac.uk/IPA/fullchart.html 
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4.2  Summary 2 
 
“On automatic phonetic transcription quality: Lower WERs do not guarantee better 
transcriptions”, submitted to Computer, Speech & Language. 
 
In this study, we investigated a number of issues related to the quality of automatic 
phonetic transcriptions obtained by using the CSR in forced recognition mode. The 
pronunciation variants were automatically generated by applying the same five 
phonological rules as in article 1 to the words in the canonical lexicon. For each phone 
that could possibly be deleted or inserted, a binary score was obtained: (1) if the rule 
was applied and (0) if this was not the case. As a quality measure of the automatic 
transcriptions, we used agreement between the automatic transcriptions and the human 
reference transcriptions: The higher the agreement with the human reference 
transcriptions, the better the quality of the automatic transcriptions. As in article 1, 
Cohen’s kappa (�) was used as a measure of agreement (see section 3.2.3). 

Both majority vote and consensus reference transcriptions have been used. The 
majority vote reference transcriptions were identical to those in article 1; thus, in total, 
467 binary scores were obtained. The consensus transcriptions were made by the same 
students as in article 1. However, a difference is that the transcriptions in this study are 
made for whole utterances. In total, 770 binary scores were obtained from these 
utterances, as the context for one of the five rules applying was met 770 times.  
 
Properties of a CSR versus transcription quality 
The first goal of this investigation was to determine how various properties of a CSR 
affect the quality of the resulting automatic transcriptions. The properties of the CSR 
that were investigated are all related to the acoustic models (HMMs). The first 
property concerns the HMM topology. In article 1, we found indications that the 
human listeners and the CSR have a different durational threshold for detecting the 
phone /@/. Furthermore, Brugnara et al. (1993) found that a better phone accuracy is 
obtained when HMMs are used with a minimum duration that is shorter than the 
duration of our baseline HMMs. For these reasons, we investigated whether 
agreement could be increased by using an HMM topology for the /@/ that has a 
shorter minimum duration than the baseline /@/-HMM. The results show that the CSR 
does indeed detect more /@/s when the HMM with a shorter minimum duration is 
used. However, the increase in the overall agreement values is not very large.  

The second property that we investigated concerns the degree of contamination 
in the HMMs. Since the speech material used for training contains a great deal of 
variation in pronunciation, but the baseline training lexicon contains only one 
canonical transcription for each word, the HMMs are contaminated. One of the 
approaches we used to reduce the contamination due to this mismatch is retraining the 
phone models using automatic transcriptions of the training material which were 
obtained through forced recognition in previous research (Wester et al., 1998a). If we 
use the HMMs from this research to make automatic transcriptions, the overall 
agreement values improved. Similar results have been reported by Saraçlar (2000). A 
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second way of reducing the part of the mismatch between the transcription of the 
training material and the actual pronunciation is to take the most frequently occurring 
pronunciation to train the HMMs. These HMMs also improved the overall agreement 
values. A third way of reducing the mismatch is to train the HMMs on read speech 
instead of on spontaneous speech. As the amount of variation in spontaneous speech 
tends to be larger than in read speech, it is to be expected that HMMs trained on read 
speech will also be less contaminated. Our results indeed show that higher agreement 
values are found for the read speech HMMs. 

The third property that we investigated concerns the type of HMMs, namely 
context-independent (CI) versus context-dependent (CD) HMMs. Since CD-HMMs 
generally yield lower WERs, one could expect that CD-HMMs would also improve 
transcription quality. Compared to using CI-HMMs, the agreement values for the CD-
HMMs deteriorated for the majority vote material, whereas a small improvement was 
found for the consensus material. The deterioration in agreement for the majority vote 
material is mainly caused by the /r/-deletion rule. Using CD-HMMs, the CSR unjustly 
detects more /r/s. The different /r/-deletion results for the majority vote and the 
consensus material are probably related to the fact that the words for which the 
transcriptions of /r/-deletion were made are considerably different in the two types of 
material. 

Finally, we also investigated the effect of combinations of properties. If CD-
HMMs are trained on automatic transcriptions (obtained through forced recognition) 
instead of training them on canonical transcriptions, the contamination within the CD-
HMMs is reduced and the quality of the transcriptions is improved. The combination 
of two other properties, namely pronunciation variation modeling and using a ‘short’ 
HMM for the phone /@/, also resulted in a further improvement of transcription 
quality.  

In this study, the quality of the automatic transcriptions was evaluated by 
measuring agreement with human reference transcriptions based on a majority vote 
principle and with consensus reference transcriptions. For the majority vote 
transcriptions, the overall κ-value (all rules) varies between 0.46 and 0.63. For the 
consensus transcriptions, the overall κ-value varies between 0.43 and 0.51. The 
difference in absolute agreement values might be explained by the transcribers’ 
differences in level of experience, by the fact that the focus in the two transcription 
tasks was different, and by differences in the number of transcribers that were used to 
obtain the reference transcriptions. Although the absolute agreement values varied for 
the two types of reference transcriptions, the general trends that we observed were 
very similar. To conclude, we have shown that changing the properties of a CSR can 
improve the quality of the automatic transcriptions produced. Furthermore, we found 
that by combining these changes in properties the quality of automatic transcription 
can be improved even further: The κ-values could be improved by 0.08 for the 
consensus transcriptions, and by 0.125 for the majority vote transcriptions. 
 



26 Summaries of articles 

WER versus transcription quality 
Intuitively one might expect that the CSR that obtains the lowest WER on some 
reference recognition task will also yield the best automatic transcriptions. However, 
on second thoughts, speech recognition may well be quite a different task from 
automatic transcription. Therefore, our second goal was to investigate whether lower 
WERs do indeed predict higher quality automatic transcriptions. We observed that 
there is no clear relation between the WER obtained with a certain CSR and its 
transcription quality. Therefore, we can conclude that for obtaining automatic 
transcriptions, taking the CSR with the lowest WER is not always the optimal solution. 
Rather, one should concentrate on the properties that the CSR should have in order to 
make optimal transcriptions. The best thing to do is to use a CSR that is optimized for 
making automatic transcriptions. 
 
4.3 Summary 3 

“Improving the performance of a Dut ch CSR by modeling within-word and cross-
word pronunciation variation”, published in Speech Communication 29, pp. 193-207. 

Modeling within-word and cross-word pronunciation variation  
This article describes how the performance of our CSR was improved by modeling 
within- and cross-word pronunciation variation. We propose a general procedure for 
modeling pronunciation variation (see section 3.2.2). In short, it consists of adding 
pronunciation variants to the lexicon, retraining the phone models and using variant-
specific (prior) probabilities. Within-word pronunciation variants were generated by 
applying the same five phonological rules as in article 1 to the words in the lexicon. 
These rules all concern frequent phonological processes. The type of cross-word 
processes we focused on were contraction, reduction and cliticization (Booij, 1995). It 
is not straightforward to model variation that occurs across word boundaries in our 
recognizer, as it uses a single pass search algorithm. Therefore, we employed two 
methods to model cross-word variation suitable for our single-pass decoder. In the first 
method a limited number of cross-word processes were modeled by directly adding the 
cross-word variants to the lexicon. The second method models cross-word variation by 
using multi-words. We tested the within-word and cross-word methods in isolation, as 
well as the combinations of the within-word method with each of the cross-word 
methods. 

The recognition experiments that we conducted yielded the following results. 
We measured a WER of 12.75% for the baseline system in which no pronunciation 
variants were used. Adding pronunciation variants to the lexicon (without changes 
elsewhere in the system) did not always result in an improvement of recognition 
performance. When, on top of adding variants to the lexicon, retrained phone models 
are used, the WERs for almost all approaches (and combinations of approaches) are 
improved compared to using the baseline phone models. However, retraining the 
phone models does not alleviate all the deterioration that is caused by the expansion of 
the lexicon: Compared to the baseline system, there are still deteriorations. When, in 
addition to retraining the phone models, variant-specific prior probabilities are 
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employed, the WERs for all methods improve. Moreover, all WERs are lower than in 
the baseline system, and the absolute improvements are generally larger than the 
improvements obtained through using multiple variants in the lexicon or retraining the 
phone models. These results indicate that employing prior probabilities for the variants 
is essential when pronunciation variants are added to the lexicon. Comparison of the 
two cross-word methods revealed that cross-word method 2 performs better than 
cross-word method 1. The better recognition performance of cross-word method 2 can 
mainly be attributed to the use of multi-words in the language model, as multi-words 
increase the span of the language model for the word sequences in the training and test 
material that occur most frequently. Finally, our results showed that the combination 
of the within-word method and the cross-word method 2 led to the best results: A total 
improvement in WER of 1.1% absolute, or 8.8% relative was obtained. 
 
Combination versus isolation  
In this article, we also compared the recognition results of the cross-word methods 
tested in isolation and tested in combination with the within-word method. 
Furthermore, we tested the five within-word rules in isolation, and we compared the 
results of these tests to the recognition result of the experiment in which the 
combination of all five rules is tested. This investigation revealed that the results 
obtained for testing various sets of pronunciation variants in isolation did not add up to 
the result of testing the combination of the sets of variants. This is due to a number of 
factors. First of all, different rules can apply to the same word. Consequently, when 
the five rules are used in combination, pronunciation variants are generated which are 
not generated for any of the rules in isolation. Furthermore, the words in the utterances 
are not recognized independently of each other; thus, interaction between 
pronunciation variants can occur. The implication of these findings is that it will not 
suffice to study the effect of modeling pronunciation variants in isolation. Instead, 
combinations of pronunciation variants have to be studied. However, this poses a 
practical problem, as there are many possible combinations. 
 
Error analysis  
In many studies about modeling pronunciation variation, WER is used as the only 
measure for performance evaluation. Although this measure gives a global idea of the 
merits of a method, it certainly does not reveal all details of the effect a method has. 
This became clear through the error analysis that we conducted, since it revealed that 
14.7% of the recognized utterances changed, whereas a net improvement of only 1.3% 
in the sentence error rate was found. Therefore, it is clear that a more detailed error 
analysis is necessary to gain real insight into the effects of a certain approach. 
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4.4 Summary 4 

“A data-driven method for modeling pronunciation variation”, submitted, reviewed 
and resubmitted to Speech Communication. 
 
In this article, we describe a data-driven method for modeling pronunciation variation. 
For two reasons, the kind of pronunciation variation that we modeled was limited to 
deletion processes. First, we expected deletions (and insertions) to be more important 
than substitutions, since substitutions can implicitly be modelled in the phone models. 
Second, deletion processes occur frequently in our speech material (see Wester et al., 
1998c). The deletion processes were described by rules that were derived in a data-
driven manner. In the first step of the rule-extraction procedure, we generated all 
possible deletion variants by allowing each phone in the canonical transcription to be 
deleted. The variants generated in this way are used during forced recognition which 
was carried out in order to determine which of the possible variants best matches the 
acoustic signal (see section 3.2.1). The second step was an alignment of the automatic 
phone transcriptions with a concatenation of canonical phone transcriptions of the 
words in the utterance. The alignments were used to formulate candidate rules which 
describe the contexts in which the phones are deleted. Finally, 91 rules were selected 
by excluding the rules that have a low absolute frequency of rule application (Fabs). 
The main reason for selecting the frequent rules is to filter out rules that might be 
based on transcription errors. Since it can be expected that transcription errors occur 
randomly, the rules that are the result of transcription errors are probably not as 
frequent as the rules that are based on genuine deletion processes.  
 
Reduction in WER through data-driven modeling of pronunciation variation 
The first goal of this study is to find out whether the data-driven method used for 
modeling pronunciation variation leads to improved recognition performance. We 
tested different subsets of the 91 rules by selecting them based on the relative 
frequency of rule application (Frel), which is defined as the number of times a rule was 
applied (Fabs) divided by the number of times the rule could have been applied. We 
started off by testing the rules with the highest Frel and gradually increased the number 
of rules by lowering the threshold for Frel. We employed the same general method of 
modeling pronunciation variation as in article 1 (see section 3.2.2). The pronunciation 
variants were generated by applying the selected set of rules to the words in the 
lexicon. For the baseline system, in which no pronunciation variants are used, the 
WER is 16.94%. This WER is higher than the WER for the baseline system in article 
3. Two explanations can be given for this difference. First, the test set contains out-of-
vocabulary words in this study, whereas this is not the case in article 3. Second, the 
test set is mainly taken from the second set of VIOS data, in which the variability in 
the speakers is much larger than in the first set, from which the test set in article 3 is 
taken (see section 1.3). The recognition experiments revealed results comparable to 
those presented in article 3. As in article 3 we found that only adding pronunciation 
variants to the lexicon can deteriorate recognition performance. If the number of added 
variants is small, the WERs improve compared to the baseline. However, with an 
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increasing number of added variants, the improvements become smaller until a 
deterioration in WER is found. This deterioration rapidly increases as a function of the 
number of added variants. Furthermore, as in article 1, we found that retraining the 
phone models is only of little benefit. The WERs slightly improve when, in addition to 
expanding the lexicon, the phone models are retrained. When variant-specific prior 
probabilities are also used, the WERs improve. For all sets of variants, improvements 
are found compared to the baseline system using variant-specific prior probabilities. 
For the best testing condition, a total improvement in WER of 1.2% absolute or 7.3% 
relative was found. To conclude, our data-driven method of modeling pronunciation 
variation indeed leads to improvements in recognition performance, provided that 
prior probabilities for the variants are used.  
 
Error analysis 
The second goal of this research is to find out how the changes in WER came about, 
by performing an error analysis procedure. In this investigation, error analysis was 
performed at word level, whereas in article 3 error analysis was performed at sentence 
level. A commonality is that we found that besides improvements, also deteriorations 
were introduced through the modeling of pronunciation variation. These deteriorations 
are almost as large as the improvements, so that the total net improvement in 
SER/WER is small. The current error analysis also gave some new results. Two-thirds 
of the words that were recognized differently were not recognized as one of the added 
pronunciation variants. For the other one third of differently recognized words, we 
could determine which rules caused the change in recognition result. On the basis of 
this analysis, we determined the number of improvements and deteriorations per rule. 
A strong correlation between the number of improvements and deteriorations per rule 
was found, indicating that it is not possible to improve performance by excluding the 
rules that cause many deteriorations, because these rules also produce a considerable 
number of improvements. Finally, we found that the contribution to the changes in 
WER differs per rule. The total improvement in WER could be ascribed to one quarter 
of the rules. The most important rule was the deletion of word final /n/ preceded by a 
/@/7. To conclude, our error analysis reveals that the gain in recognition performance 
could be improved by making the balance between introducing and solving errors 
more positive. However, this cannot be achieved by excluding rules that introduce 
many errors. 
 
Three criteria for rule selection 
The third goal of this study was to examine the adequacy of three criteria for rule 
selection. In this way, it would be possible to make more sound choices about which 
rules (or which pronunciation variants) to select. To this end, the following three 
measures were calculated:  

                                                 
7 This rule parallels the /n/-deletion rule used in the knowledge-based approach (article 3) 
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1) Fabs,  
2) Frel, and  
3) ‘net result of variants’. 

The ‘net result of variants’ was obtained as follows. For the differently recognized 
words that were recognized as a variant, we determined which rule(s) generated the 
variant. In this way, it is possible to determine the total number of improvements and 
deteriorations per rule. The ‘net result of variants’ is defined as the difference between 
the number of improvements and the number of deteriorations. The ‘net result of 
variants’ is more difficult to obtain, since an error-analysis is necessary to calculate 
this measure. Fabs and Frel are relatively easy to obtain, since they can be calculated 
from the automatically obtained phone transcriptions of the training material. In order 
to test the adequacy of the three measures, we selected sets of rules on the basis of the 
three criteria and measured WER on an independent test set. Next, we calculated the 
correlation between each of the criteria and the measured WERs. This correlation was 
highest for Fabs (0.92) and ‘net result of variants’ (0.85). Since Fabs is easier to obtain, 
this measure is to be preferred as a criterion for rule selection. To conclude, our results 
indicate that rules can best be selected based on the absolute frequency of application 
(Fabs). By selecting the rules on the basis of Fabs, in the best testing condition, a total 
improvement in WER of 1.4% absolute, or 8.2% relative was obtained. 
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5 Discussion  

5.1 Automatic phonetic transcription 

The first two articles in this thesis concern automatic phonetic transcription of speech. 
The differences between automatic versus manually obtained transcriptions will be 
discussed in section 5.1.1. Next, in section 5.1.2, I will discuss the differences between 
making automatic transcriptions and performing a normal recognition task. Finally, the 
last section explains some application areas for automatic transcription. 

5.1.1 Automatic versus manual phonetic transcription 

The results of the research described in this thesis show that there are differences 
between the transcriptions made by human transcribers and the transcriptions made the 
CSR: The average κ-value for the listener-listener pairs was 0.63, whereas the average 
κ-value for the CSR-listener pairs was 0.55 (article 1). Furthermore, we showed that 
changing the properties of the CSR can make the CSR’s transcriptions more similar to 
the human transcriptions: The κ-values could be improved by 0.08 for the consensus 
transcriptions, and by 0.125 for the majority vote transcriptions (article 2). Although 
we showed that the degree of agreement between phonetic transcriptions made by 
humans and automatic transcriptions can be diminished, I think it is not possible to 
eliminate all differences completely.  

A reason for believing that there will always be differences between manual 
and automatic transcriptions is that humans do not even agree on which transcription is 
‘the correct one’. In the first experiment of article 1, for instance, inter-listener 
agreement varied between 75% and 82% (Wester et al., 1998b). Kipp et al. (1997) 
found an inter-labeler agreement ranging from 79% to 83% (Verbmobil corpus). For 
the Switchboard corpus, inter-labeler agreement (at the phonetic segment level) 
between highly experienced transcribers varied between 72% and 80% (Greenberg, 
1999). If humans do not agree, it cannot be expected that the CSR is able to produce a 
transcription that can be expected to be the ‘correct one’.  

One of the reasons why making phonetic transcriptions of speech is so difficult 
(for both humans and the CSR), is that the continuously changing signal has to be 
divided into discrete non-overlapping segments. In non-linear, auto-segmental 
phonology, a representation has been proposed in which speech is represented by 
many parallel tiers, representing the parallel activities of the articulators in speech that 
do not necessarily begin and end simultaneously (Goldsmith, 1990). Some other 
authors state that speech cannot be described fully in terms of sequential units (see e.g. 
Greenberg, 1997).  

Besides the non-sequential and continuous character of speech that poses 
problems for both humans and the CSR in making phonetic transcriptions, there are 
also differences in the way transcriptions are made by human listeners and CSRs. First 
of all, humans and CSRs analyze the speech signal differently. For example, Strik 
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(2001) states that several important assumptions for signal analysis are made in 
standard CSRs, which do not correspond to the way humans perceive speech. For 
instance, the analysis window for which feature values are calculated is usually very 
short. Although some dynamic information can be obtained from the derivatives of 
these features, humans may very well rely on information from a wider time span for 
speech recognition. A second factor that causes differences between automatic and 
manual phonetic transcriptions is that human listeners are influenced by various 
factors, for instance, spelling, phonotactics, semantics, fatigue and level of experience 
(for an overview see Cucchiarini, 1993). These factors do not influence the 
transcriptions made by the CSR, or when they do (as is usually the case for 
phonotactics) they are likely to have different effects.  

5.1.2 Automatic transcription quality versus recognition performance 

One of the main conclusions of article 2 is that there is no clear relation between the 
WER obtained with a certain CSR and its transcription quality. Saraçlar (2000) 
reported similar results showing that better quality transcriptions do not always lead to 
improved WERs. In my view, these results are not surprising, since automatic 
transcription and automatic recognition are completely different tasks. For automatic 
transcription, we performed forced recognition. The phone-level constraints applied 
during forced recognition are different than the word-level constraints applied during a 
normal recognition task. The sequences of words that can be recognized during a 
normal recognition task are constrained by the lexicon and the language model. During 
forced recognition, the phone sequences for each word are restricted to the 
pronunciation variants contained in the lexicon. Consequently, other causes of errors 
play a role during a normal recognition task than during forced recognition: For 
instance, lexical confusability is a great source of errors in a normal recognition task 
(words are recognized incorrectly), whereas lexical confusability cannot cause errors 
during forced recognition. However, I do not think automatic transcription quality and 
recognition performance are completely uncorrelated. In order to make good quality 
transcriptions a certain level of recognition performance is necessary, and the other 
way around, a CSR that performs very badly is useless for making high quality 
transcriptions.  

5.1.3 Application areas of automatic phonetic transcription 

Although there are significant differences between the CSR and the listeners, the 
difference in performance may be acceptable, depending on what the transcriptions are 
needed for. The question that arises then is for what applications our automatic 
transcription tool can be used. It is obvious that it cannot be used to obtain phonetic 
transcriptions from scratch, but it is clearly limited to hypothesis verification. A first 
application of our automatic transcription tool, of course, is our research on modeling 
pronunciation variation (articles 3+4). Second, it could be used in various fields of 
linguistics, like phonetics, phonology, sociolinguistics, and dialectology. In practice, 
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this tool could be a useful aid in all research situations in which phonetic transcriptions 
have to be made by one person, since this tool could resolve possible doubts about 
what was actually realized. Given that a CSR does not suffer from fatigue and loss of 
concentration, it could assist the transcriber who is likely to make mistakes owing to 
concentration loss. By comparing his/her own transcriptions with those produced by 
the CSR a transcriber could spot possible errors that are due to absent-mindedness. 
Furthermore, a transcriber may be biased by his/her own hypotheses and expectations 
with obvious consequences for the transcriptions, while the biases for the automatic 
tool may be controlled. Checking the automatic transcriptions may help discover 
possible biases in the listener’s data. Finally, an important contribution of automatic 
transcription to linguistics would be that it makes it easier to use existing (very large) 
speech databases for the purpose of linguistic research. With this tool, large amounts 
of material can be analyzed in a relatively short time (about 2x real time), and at 
relatively low costs. Although the CSR is not infallible, the advantages of a very large 
dataset might very well outweigh the errors introduced by the occasional mistakes of 
the CSR. 
 

5.2 Modeling pronunciation variation  

The last two articles in this thesis concern pronunciation variation modeling. In section 
5.2.1, the general method that we employed for modeling of pronunciation variation 
will be discussed. Next, in section 5.2.2, it will be discussed why the improvements 
that we found were small. Finally, alternatives to phone level modeling of 
pronunciation variation will be discussed in section 5.2.3. 
 
5.2.1 General method of modeling pronunciation variation 
 
The general method of modeling pronunciation variation consisted of incorporating 
pronunciation variation at all three levels of the CSR (i.e. the lexicon, the phone 
models and the language model). In this section, the results of modeling pronunciation 
variation at each of the levels will be discussed. An essential part of our general 
method is to make automatic transcriptions of the training material. The new 
transcriptions are used to re-estimate the phone models and the language model. This 
process can be repeated iteratively. To this end, the retrained phone models are used to 
make new transcriptions. The new transcriptions are used in turn to train new phone 
models and to re-estimate the prior probabilities of the variants. The results of iteration 
will be discussed in the last paragraph of this section. 
 
Adding variants to the lexicon 
Adding pronunciation variants to the recognition lexicon without changes elsewhere in 
the system was not always beneficial to recognition performance (articles 3+4). In 
article 4 we found that, if a small number of variants are added to the lexicon, 
recognition performance improves, but with an increasing number of added variants 
the gain in recognition performance becomes smaller. Above a certain number of 
added variants (an average of 2.5 variants per word), a deterioration in recognition 
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performance is found. This deterioration rapidly increases as a function of the number 
of added variants. These results are comparable with the results of Yang and Martens 
(2000) and Fukada (1999).  
 
Retraining the phone models  
In the studies reported in this thesis, recognition performance generally improved if in 
addition to expanding the lexicon, the phone models were retrained. Several other 
authors also found improvements in recognition performance by retraining the phone 
models (e.g. Aubert and Dugast, 1995; Lamel and Adda, 1996; Riley et al., 1999). 
However, the improvements in recognition performance are generally not very large. 
Other authors even found deteriorations in recognition performance when retrained 
phone models were used (Beulen et al., 1998; Wester, 2001).  

Our research (Kessens et al., 1997; Wester et al., 1998a) and other research (e.g. 
Lamel and Adda, 1996; Schiel et al., 1998) revealed that retraining the phone models 
is only beneficial if the pronunciation variants which are used during training are also 
used during recognition (by including variants in the lexicon). This result can be 
explained as follows. By retraining the phone models, part of the contamination within 
the phone models disappears. Consequently, the phone models can better discriminate 
between various pronunciation variants. However, during recognition this greater 
discriminative ability cannot be used, since no alternative pronunciation variants are 
present in the lexicon. Moreover, if a word is not pronounced canonically, the acoustic 
likelihood scores for the mismatching parts of the speech are probably lower than the 
acoustic likelihood scores obtained with the ‘contaminated’ baseline phone models. 
Therefore, the risk of the recognition of an incorrect word is increased. 

 
Incorporating pronunciation variants in the language model 
The difference between incorporating pronunciation variants in the language model or 
not is that in the first case the variants are assigned their own specific prior 
probabilities, whereas in the second case each variant is assumed to be equally likely. 
The level of the CSR in which prior probabilities are used is system dependent. For 
instance, in our system the prior probabilities are defined in the language model, 
whereas prior probabilities can also be defined in the lexicon (see e.g. Fosler-Lussier, 
1999; Wester and Fosler-Lussier, 2000). The results reported in this thesis show that 
using prior probabilities for pronunciation variants is crucial when modeling 
pronunciation variation. We found that the positive effect of adding variants to the 
lexicon is much larger when prior probabilities are assigned to the variants. A possible 
explanation for the importance of employing variant-specific probabilities is as 
follows. By adding variants to the lexicon, a number of recognition errors are solved, 
as the variants match the actual pronunciation for some of the words better. On the 
other hand, new errors are introduced because lexical confusability increases. By 
treating each pronunciation variant as being equally likely, the damage done by the 
increase in lexical confusability is probably large, since the probabilistic framework of 
the speech recognizer is violated: Pronunciation variants of frequently occurring words 
are assigned high prior probabilities, despite the fact that they may be highly unlikely. 
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Consequently, these variants might introduce more errors than they correct. Many 
other authors have reported on the importance of prior probabilities for pronunciation 
variants (e.g. Fukada et al., 1999; Peskin et al., 2000; Saraçlar, 2000, pp. 118; Yang 
and Martens, 2000; Jurafsky et al., 2001).  
 
Iteration 
The results of our research (Kessens and Wester, 1997; Kessens et al., 1999) show that 
iteration only has small effects on recognition performance: Most of the changes in the 
transcriptions and WERs occur the first time an improved transcription is made. After 
the first iteration, the transcriptions and WERs do not change very much. Beringer and 
Schiel (1999) calculated phone error rates of automatic transcriptions (compared to 
manual transcriptions). As no further improvements in phone error rates were 
observed in later iterations, Beringer and Schiel conclude that the process of iterative 
transcription converges after the second iteration. To conclude, the process of iterative 
transcription seems to converge very fast (after one or two iterations). 

5.2.2 Why are the improvements so small? 

In this thesis we have shown that recognition performance can be improved by 
modeling pronunciation variation at the level of the phones. However, the 
improvements obtained were, in general, not very large (relative reductions of 8-9% in 
WER). This observation is not restricted to the research reported in this thesis, but 
seems to be a general finding among the researchers in the field of pronunciation 
variation modeling. In 1998, an ESCA workshop “Modeling Pronunciation Variation 
for ASR” was held at Rolduc, Kerkrade, in the Netherlands. As a result of this 
workshop a special issue of Speech Communication was published. The relative 
reductions in WER reported in that journal issue ranged between 0 and 20% (Strik and 
Cucchiarini, 1999). Since then,only Yang and Martens (2000) reported larger 
improvements (30-45% relative WER reduction). However, the results of Yang and 
Martens are found for read speech material (TIMIT); such large reductions in WER 
have not yet been obtained for spontaneous speech. There are a number of factors that 
could explain why the improvements due to modeling pronunciation variation are 
generally not very large. These factors will be discussed below.  

One of the factors that play a role is that not all variants that occur in the test set 
are included in the lexicon (undercoverage), and the other way around: variants that 
do not occur in the test set are included in the lexicon (overcoverage). Saraçlar (2000) 
performed ‘cheating’ experiments that revealed that if one were able to construct a 
lexicon that has no undercoverage and overcoverage, a relative reduction in WER of 
19% can be obtained. Similar results have been reported by McAllaster et al. (1998). 
These authors performed recognition experiments on simulated speech data fabricated 
from the acoustic models. Using the simulated data, a relative reduction of 24-42% in 
WER can be obtained if a lexicon is used that contains all and only the variants in the 
test set.  

In the two approaches for modeling pronunciation variation used in this thesis, 
the degree of mismatch between the lexicon and the test sets is different. One of the 
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drawbacks of knowledge-based modeling of pronunciation variation is that the 
knowledge on pronunciation variation that can be found in the literature is incomplete 
(see e.g. Strik and Cucchiarini, 1999). In our data-driven method, the information on 
the pronunciation variation is derived from exactly the same kind of speech as the 
material that is used for the recognition experiments. Consequently, the coverage is 
expected to be better. However, since we only concentrated on deletion processes, not 
all variation in the data is covered. Moreover, both in the knowledge-based and the 
data-driven approach we used rules to generate possible variants. One of the 
advantages of using rules is that they generalize to unseen contexts and that they are 
not corpus/task dependent. A disadvantage of employing rules is possible 
undergeneration and overgeneration of variants due to incorrect specifications of the 
rules applied (Cohen, 1989; Strik and Cucchiarini, 1999). To conclude, I hypothesize 
that the coverage for both approaches could be improved; for the knowledge-based 
method by modeling more pronunciation variation, and for the data-driven method by 
extending the method to substitutions and insertions of phones and by refining the way 
the rules are defined (e.g. by using more context information).  

Coverage is not the only (and maybe not even the most important) factor that 
plays a role. This is suggested by the results of the error analysis that we performed in 
this thesis (articles 3+4). Despite the fact that we used prior probabilities for the 
pronunciation variants (thus reducing the negative effects of overcoverage), new errors 
are also introduced due to the addition of pronunciation variants: These deteriorations 
counterbalance part of the improvements, so that only a small total net improvement in 
SER/WER is obtained. A possible explanation for the introduction of new errors is 
lexical confusability: (sequences of) pronunciation variants of incorrect words are 
confused with (sequences of) correct words. Some researches have tried to estimate 
the amount of lexical confusability of pronunciation variants (Sloboda, 1995; Torre et 
al., 1997; Wester and Fosler-Lussier, 2000). There are various reasons that could 
explain why attempts to reduce confusability do not always translate to large 
reductions in WER. First of all, lexical confusability will always exist, since 
homophony (and near homophony) is part of the language. By excluding confusable 
variants, the benefits that these variants could have for recognition performance also 
disappear. Second, it is difficult to find a measure that takes completely into account 
all factors that explain lexical confusability. For instance, the confusability measure of 
Wester and Fosler-Lussier (2000) only takes into account confusions between words 
that exactly match (parts of) other words, whereas most of the recognition errors 
concerns confusions of words that do not exactly match.  

In addition to coverage and lexical confusability, there is a third factor that 
partly explains why the improvements in recognition performance are not very large 
for our method of pronunciation variation modeling. An implicit assumption in our 
method is that pronunciation variation can be modeled at the level of the phones. This 
means that a phone can be deleted, substituted or inserted; no intermediate models are 
used. This way of modeling pronunciation is obviously a simplification of what 
actually happens, since changes in pronunciation are not discrete, but rather gradual in 
nature (see e.g. Saraçlar, 2000).  
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5.2.3 Alternatives to phone level modeling of pronunciation variation  

A way of partially circumventing the problems connected with phone level modeling 
of pronunciation variation is by modeling the variation implicitly in the acoustic 
models. In this way, the level of modeling the pronunciation variation has shifted from 
the phone level to the level of states or densities. One way of implicitly modeling 
pronunciation variation in the phone models is by using context-dependent (CD) 
phone models. The recognition results presented in article 2 of this thesis (Figure 16) 
show that the amount of improvement obtained by using context-dependent phone 
models is about equal to the improvement in recognition result obtained with a 
combination of context-independent phone modeling and pronunciation variation 
modeling. Furthermore, in article 2, it was also shown that pronunciation variation in 
combination with context-dependent phone models does not improve recognition 
performance. These results are in line with the results of Ma (1998), since Ma showed 
that the gain in recognition performance from pronunciation variation modeling 
reduces if CD models are used and if the complexity of the models is increased. 
However, not all pronunciation variation is well captured by CD models: Jurafsky et 
al. (2001) showed that phone substitutions and vowel reduction can be adequately 
captured in CD models, but syllable deletions are poorly modeled.  

Another way of modeling pronunciation variation implicitly in the phone 
models is to use a State-Level Pronunciation Model (SLPM) (Saraçlar, 2000). Saraçlar 
showed that the improvements in recognition performance are larger for state-level 
modeling of pronunciation variation than for phone-level modeling, but the differences 
were not very large. Lee and Wellekens (2001b) also used a SLPM, but the 
improvements were not very large.  

 Pronunciation variation can also be modeled implicitly in the acoustic models 
by using larger basic units than phones, like (demi-)syllables (see e.g. Heine et al., 
1998; Wu, 1998; Greenberg, 1999; Ganapathiraju et al., 2001) or even whole word 
models. In this way, the pronunciation variation contained in the syllable/word is 
captured within the acoustic model. However, a problem with using larger basic units 
is that for large vocabulary tasks, the number of syllables/words is much larger than 
the number of phones. As a consequence, the number of model parameters is also 
larger, and the danger of under-training increases. Furthermore, these larger basic units 
do not provide a solution for cross-word or cross-syllable pronunciation variation. 
These two limitations are probably the reasons why using larger basic units does not 
often result in large improvements in recognition performance.  

 An approach that can perhaps be used to describe pronunciation variation in a 
more appropriate manner is to use articulatory features. Compared to phones, 
articulatory features provide a more adequate description of pronunciation variation, as 
the variation can be described in terms of feature spreading and assimilation, instead 
of categorical phone substitutions, deletions and insertions. Articulatory features are 
often used as sub-phonemic units, as an intermediate level between the level of the 
acoustically-based features and the phone level, which makes it necessary to transform 
the articulatory-based features into phonetic segments. Although high frame-level 
feature classification accuracies are found, it appears to be difficult to transform the 
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frame-level transcriptions into phone/word-level transcriptions with higher word 
accuracy (King et al. 1998; Kirchhoff 1999; Koreman et al. 1999). However, 
Kirchhoff (1999) has shown that articulatory features provide complementary 
information to acoustically-based features. This suggests that combining articulatory 
features with other acoustic input could possibly improve pronunciation variation 
modeling.  
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6 Conclusions and future work 
 

6.1 Conclusions 

Several conclusions can be drawn from the results presented in this thesis. One of the 
goals of this thesis was to assess the quality of our automatic transcription procedure. 
The first conclusion is that it is possible to use the CSR for automatic transcription. 
Whether the differences in performance between the machine and the human 
transcribers are acceptable, depends on the purpose for which the transcriptions are 
needed. Furthermore, we conclude that using the CSR with the lowest WER measured 
on an independent test set does not guarantee that optimal automatic transcriptions are 
obtained. In order to obtain optimal automatic transcriptions, one should rather 
concentrate on those properties of the CSR that are important for automatic 
transcription. The quality of the automatic transcriptions can be improved by using 
‘short’ HMMs and by reducing the amount of contamination in the HMMs. 
Furthermore, it appeared that CD-HMMs should not be trained on canonical 
transcriptions, since the transcriptions obtained with these HMMs are too much biased 
towards the canonical transcriptions. We also found that by combining these changes 
in properties of the CSR the quality of automatic transcription can be further 
improved.  

Another goal of this thesis was to investigate whether the recognition 
performance of our CSR could be improved by modeling pronunciation variation at 
the level of the phones. We conclude that with our general approach to model 
pronunciation variation it is indeed possible to improve recognition performance. 
Knowledge-based and data-driven modeling of pronunciation variation led to the same 
degree of improvement in recognition performance. However, the degree of 
improvement was generally not very large.  

Our general method of modeling pronunciation variation involves all three 
levels of the CSR. More specific conclusions can be drawn concerning the results of 
modeling pronunciation variation at each level. First of all, expanding the lexicon by 
adding pronunciation variants is no guarantee for improved recognition performance. 
Second, retraining the phone models on (iterative) automatic transcription of the 
training material has only very small effects on recognition performance. A third 
important conclusion is that it is crucial to use prior probabilities for the pronunciation 
variants in order to ensure improvements in recognition performance. 

   
6.2 Future work  

6.2.1 Automatic phonetic transcription 

In the literature, only few examples of optimising automatic phonetic transcriptions 
can be found. In my view, more work should be done in that direction. The goal of this 
kind of research should not be to minimize the differences between automatic and 
manual phonetic transcriptions, but rather to find out in what respect manual and 
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automatic transcriptions are different. A question that is worth investigating is whether 
the differences that we found between the manual and automatic transcriptions are 
caused by the CSR, the human transcribers, or both, or whether it is not possible to say 
what caused the difference. In articles 1 and 2, for instance, we showed that part of the 
difference between the transcriptions made by the CSR and the human transcribers is 
due to a bias of the CSR towards the deletion of segments. Furthermore, we found 
indications that part of this bias of the CSR is of durational nature. Another example of 
research that provided more insight into what respect manual and automatic 
transcriptions are different is the work of Saraçlar (2000). His work shows that the 
phone error rate between human and automatic transcriptions dramatically increases 
(>60%) for the proportion of transcriptions where the human transcribers disagree.   

Furthermore, I think it is worthwhile to investigate whether measures can be 
developed to assess the quality of automatic transcriptions beforehand, i.e. without 
comparing them to manual transcriptions. In ASR, confidence measures are often used 
in order to estimate the reliability of correctness of the recognition output. Confidence 
measures might also appear to be useful in order to estimate the reliability of 
automatic transcriptions. Using such a kind of measure makes it easier to quantify the 
differences between automatic transcriptions and manual transcriptions. As a 
consequence, it will be less difficult to decide in what research situations automatic 
transcriptions can be used. 

6.2.2 Improving pronunciation variation modeling 

There are many differences in the way that people and machines perceive and process 
speech. One of the main differences between human and machine speech decoding is 
that humans use multiple sources of information in parallel. Linguistic theory assumes 
that language is represented on many organizational tiers. If information from one of 
the tiers is damaged or completely missing, human beings tend to use cues from other 
tiers. In contrast, current ASR-systems focus on just a few of the linguistically relevant 
tiers. For this reason, many authors have suggested that speech recognition could be 
improved by performing many parallel analyses at the various linguistic levels, for 
instance analyses at the articulatory-acoustic, phonological, grammatical, and semantic 
levels (e.g. Greenberg, 1997; Pols, 1999). Some researchers have already investigated 
whether using information from other linguistic tiers can help to rule out some of the 
errors that are introduced by modeling pronunciation variation. For instance, Fosler-
Lussier (1999) investigated the dependence of pronunciation variation on word-
predictability and speaking rate. Jurafsky et al. (1998) investigated how filled pauses, 
disfluencies, segmental context, speaking rate and word predictability relate to the 
realization of the ten most common function words in the Switchboard corpus. Finke 
and Waibel (1997) have introduced speaking mode as means to reduce confusability 
by probabilistically weighting alternative variants depending on the speaking style. 
These studies found correlations between each of the investigated factors and 
pronunciation variability, but the interactions seem to be interdependent. For instance, 
Fosler-Lussier (1999) found that a combination of word predictability and speaking 
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rate can best explain pronunciation phenomena. For this reason, I think it is important 
to investigate how the various factors that can predict pronunciation variability 
interact. 

Another important difference between human speech perception and the way 
speech recognizers process speech, is that human speech recognition is much more 
flexible. Humans continually adapt the prior probabilities in their lexicon depending 
on various factors like the person(s) they are talking to, the situations they are in, and 
the state of the conversation. In many speech recognition systems, however, the words 
that can be recognized (and their corresponding prior probabilities) are fixed. By 
dynamically adapting the language model (and/or the lexicon), recognition 
performance can be improved. For instance, in applications like spoken dialogue 
systems, the language model can be adapted depending on the dialogue state, which 
results in a decrease in task perplexity and error rates (Popovici and Baggia, 1997; 
Baggia et al., 1999; Wessel and Baader, 1999).  

Besides the positive effects that dynamic modeling has on speech recognition in 
general, I think it can be especially beneficial to pronunciation variation modeling. A 
major problem connected with adding pronunciation variants to the lexicon is that 
lexical confusability is increased. In my view, the best way to combat this lexical 
confusability is by dynamic modeling of pronunciation variation. An approach to 
dynamic modeling of pronunciation variation is to perform two-pass decoding. In the 
second pass, the lattice (or list) of N-best hypotheses from the first pass is expanded 
with pronunciation variants. Next, the expanded lattice is re-scored and the best 
hypothesis is selected. Saraçlar (2000) showed that if the lattice is only expanded with 
pronunciation variants that actually occur in the utterance, recognition performance is 
considerably improved compared to using a static lexicon; the WER reduced from 
38% to 27%. This result shows that a large gain can be expected by dynamic 
pronunciation variation modeling. Some authors reported small improvements for 
dynamic modeling of pronunciation variation compared to static modeling (see e.g. 
Weintraub et al., 1996; Fosler-Lussier, 1999; Lee and Wellekens, 2001b), but recently 
Lee and Wellekens (2001a) found a much larger relative improvement of 16.7% WER 
for dynamic versus static modeling of pronunciation variation. In my view, dynamic 
modeling of pronunciation variation is a promising research direction, especially if it is 
combined with information from other linguistic tiers (e.g. phone context, speaking 
rate, word predictability, stress and the presence of disfluencies). 

6.2.3 Comparison of methods 

In the literature almost no research can be found in which various techniques for 
modeling pronunciation variation are compared. Strik and Cucchiarini (1999) mention 
in their overview article that several factors make it difficult to compare methods, 
namely differences between corpora and ASR systems, differences in the measures 
used for evaluation, and differences in the baseline system. I agree with Strik and 
Cucchiarini (1999) that it is advisable to strive towards an objective evaluation of 
methods. In my opinion, just reporting WERs is not sufficient, as WERs only reveal 
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the net changes. In order to make it easier to compare the effects of different methods, 
it is important to separate the effects of the different factors that can influence the 
amount of improvement that can be obtained with a certain method of modeling 
pronunciation variation. Questions that could help to compare various methods are the 
following: 

• What is the amount of undercoverage and overcoverage? 
• How many changes occur due to pronunciation variation modeling? How many 

improvements and how many deteriorations? Which part of the errors in the 
baseline system is affected by pronunciation variation modeling?  

• How dependent are the results on the average number of variants per word in the 
lexicon? Is there an optimum?  

• How system and language dependent are the results? 
• How corpus dependent are the results? Does the type of speech play a role? 

Error analysis as done in this thesis and by others (e.g. Weintraub et al., 1996; Fosler-
Lussier, 1999) and ‘cheating’ experiments like McAllaster et al. (1998) and Saraçlar, 
(2000) may shed more light on the possibilities of different methods of modeling 
pronunciation variation. 
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Appendix A 
 
Set of Dutch phones and other speech sounds for which HMMs are trained  
 

Dutch phones Dutch phones 
 # SAMPA1 Example  # SAMPA1 Example 

Vowels Fricatives 
1 I pit 22 f fel 
2 E pet 23 v vel 
3 A pat 24 s sein 
4 O pot 25 z zijn 
5 Y put 26 x toch 
6 @ gemak 27 h hand 
7 i vier 28 S show 
8 y vuur Nasals, liquids, glides 
9 u voer 29 m met 
10 a: naam 30 n net 
11 e: veer 31 N bang 
12 2: deur 322 l land 
13 o: voor 332 L hal 
14 Ei fijn 342 r rand 
15 9y huis 352 R tor 
16 Au goud 36 w wit 

Plosives 37 j ja 
17 p pak Other speech sounds 
18 b bak # symbol description 
19 t tak 38 <n> noise 
20 d dak 39 <sil> silence 
21 k kap 403 @= filled pause 

 
1 See http://www.phon.ucl.ac.uk/home/sampa/dutch.htm 
2  In article 2, no distinction is made between post- and prevocalic /l/ and /r/ 
3 Only used in article 2 
 
 
 
 
 
 
 



The articles 49 

 

 
 
 
 
 
 
The articles 
               



50  

 
 
 



Article 1 51 

 

 
 
 
 
 
 
Article 1 
         

 
M. Wester, J. M. Kessens and H. Strik Obtaining phonetic transcriptions: A 
comparison between expert listeners and a continuous speech recognizer (Language 
& Speech 44 (3), 377-403)  



52 Article 1 

 



Article 1 53 

Obtaining Phonetic Transcriptions:
A Comparison between Expert
Listeners and a Continuous Speech
Recognizer*

Mirjam Wester, Judith M. Kessens,
Catia Cucchiarini, and Helmer Strik
University of Nijmegen

* Acknowledgments: We kindly thank Prof. Dr. W.H. Vieregge for integrating our transcription
material in his course curriculum. We are grateful to the various members of A2RT who gave
their comments on previous versions of this article. We would like to thank Stephen Isard, Julia
McGory, and Ann Syrdal for their useful comments on an earlier version of this article. The research
by J.M. Kessens was carried out within the framework of the Priority Program Language and
Speech Technology, sponsored by NWO (Dutch Organization for Scientific Research). The
research by Dr. H. Strik has been made possible by a fellowship of the Royal Netherlands
Academy of Arts and Sciences.

Address for correspondence: Mirjam Wester, A2RT, Department of Language and Speech,
University of Nijmegen, P.O. Box 9103, 6500 HD Nijmegen, The Netherlands; 
e-mail: < M.Wester@let.kun.nl >

Abstract

In this article, we address the issue of using a continuous speech recognition
tool to obtain phonetic or phonological representations of speech. Two exper-
iments were carried out in which the performance of a continuous speech
recognizer (CSR) was compared to the performance of expert listeners in a task
of judging whether a number of prespecified phones had been realized in an
utterance. In the first experiment, nine expert listeners and the CSR carried out
exactly the same task: deciding whether a segment was present or not in 467
cases. In the second experiment, we expanded on the first experiment by
focusing on two phonological processes: schwa-deletion and schwa-insertion.
The results of these experiments show that significant differences in perform-

ance were found between the CSR and the listeners, but also between individual listeners. Although
some of these differences appeared to be statistically significant, their magnitude is such that they
may very well be acceptable depending on what the transcriptions are needed for. In other words, although
the CSR is not infallible, it makes it possible to explore large datasets, which might outweigh the errors
introduced by the mistakes the CSR makes. For these reasons, we can conclude that the CSR can be
used instead of a listener to carry out this type of task: deciding whether a phone is present or not.
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1Introduction

In the last decade, an increasing number of databases have been recorded for the purpose
of speech technology research (see for instance: < http://www.ldc.upenn.edu > and
<http://www.icp.inpg.fr/ELRA/ >). What started out as recordings of isolated words in
restricted domains has now evolved to recordings of spontaneous speech in numerous
domains. Since these databases contain a wealth of information concerning human language
and speech, it seems that they should somehow be made available for linguistic research
in addition to the speech technology research for which they were originally constructed
and are currently being employed.

The use of such databases for linguistic research has at least two important advan-
tages. First, many of them contain spontaneous speech. Most of the knowledge on speech
production and perception is based on so-called “laboratory speech,” while spontaneous
speech is still under-researched (Cutler, 1998; Duez, 1998; Mehta & Cutler, 1988; Rischel,
1992; Swerts & Collier, 1992). Since it is questionable whether the findings concerning
laboratory speech generalize to spontaneous speech, it seems that more emphasis should
be placed on studying spontaneous speech. Second, these databases contain large amounts
of speech material, which bodes well for the generalizability of the results of research that
uses these databases as input.

Recent studies that have made use of such large databases of spontaneous speech reveal
that this line of research is worth pursuing (Greenberg, 1999; Keating, 1997). On the basis
of these observations one could get the impression that analysis of the speech data contained
in such databases is within the reach of any linguist. Unfortunately, this is not true. The
information stored in these databases is not always represented in a way that is most suit-
able for linguistic research. In general, before the speech material contained in the databases
can be used for linguistic research it has to be phonetically transcribed (see, for instance,
Greenberg, 1999). Phonetic transcriptions are obtained by analyzing an utterance audito-
rily into a sequence of speech units represented by phonetic symbols and making them is
therefore extremely time-consuming. For this reason, linguists often decide not to have
whole utterances transcribed, but only those parts of the utterance where the phenomenon
under study is expected to take place (e.g., Kuijpers & van Donselaar, 1997). In this way,
the amount of material to be transcribed can be limited in a way that is least detrimental
for the investigation being carried out. Nevertheless, even with this restriction, making
phonetic transcriptions remains a time-consuming, costly and often tedious task.

Another problem with manual phonetic transcriptions is that they tend to contain an
element of subjectivity (Amorosa, von Benda, Wagner, & Keck, 1985; Laver, 1965; Oller
& Eilers, 1975; Pye, Wilcox, & Siren, 1988; Shriberg & Lof, 1991; Ting, 1970; Witting,
1962). These studies reveal that transcriptions of the same utterance may show consider-
able differences, either when they are made by different transcribers (between-subjects
variation) or when they are made by the same transcriber, but at different times or under
different conditions (within-subjects variation). Since the presence of such discrepancies
throws doubt on the reliability of phonetic transcription, it has become customary among
researchers who use transcription data for their studies to have more than one person tran-
scribe the speech material (e.g., Kuijpers & van Donselaar, 1997). This of course makes
the task of transcribing speech even more time-consuming and costly.
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To summarize, the problems connected with obtaining good manual phonetic tran-
scriptions impose limitations on the amount of material that can be analyzed in linguistic
research, with obvious consequences for the generalizability of the results. This suggests
that if it were possible to obtain good phonetic transcriptions automatically, linguistic
research would be made easier. Furthermore, in this way linguistic research could make
profitable use of the large speech databases.

In speech technology, various tools have been developed that go some way toward
obtaining phonetic representations of speech in an automatic manner. It is possible to
obtain complete unrestricted phone-level transcriptions from scratch. However, phone
accuracy turns out to vary between approximately 50% and 70%. For our continuous
speech recognizer, we measured a phone accuracy level of 63% (Wester, Kessens, & Strik,
1998). In general, such levels of phone accuracy are too low for many applications. Therefore,
to achieve acceptable recognition results, top-down constraints are usually applied.

The top-down constraints generally used in standard CSRs are a lexicon and a language
model. With these constraints, word accuracy levels are obtained which are higher than the
phone accuracy levels just mentioned. However, the transcriptions obtained with standard
CSRs are not suitable for linguistic research because complete words are recognized,
leading to transcriptions that are not detailed enough. The transcriptions thus obtained are
simply the canonical transcriptions that are present in the lexicon. More often than not, the
lexicon contains only one entry for each word thus always leading to the same transcrip-
tion for a word regardless of pronunciation variation, whereas for linguistic research it is
precisely this detail, a phone-level transcription, which is needed.

A way of obtaining a representation that approaches phonetic transcription is by
using forced recognition, also known as forced (Viterbi) alignment. In forced recognition,
the CSR is constrained by only allowing it to recognize the words present in the utterance
being recognized. Therefore, in order to perform forced recognition, the orthographic tran-
scription of the utterance is needed. The forced choice entails choosing between several
pronunciation variants for each of the words present in the utterance. In this way, the vari-
ants that most closely resemble what was said in an utterance can be chosen. In other
words, by choosing alternative variants that differ from each other in the representation of
one specific segment, the CSR can be forced, as it were, to choose between different tran-
scriptions of that specific segment thus leading to a transcription which is more detailed
than a simple word-level transcription.

A problem of automatic transcription is the evaluation of the results. Given that there
is no absolute truth of the matter as to what phones a person has produced, there is also
no reference transcription that can be considered correct and with which the automatic tran-
scription can be compared (Cucchiarini, 1993, pp. 11– 13). To try and circumvent this
problem as much as possible, different procedures have been devised to obtain reference
transcriptions. One possibility consists in using a consensus transcription, which is a tran-
scription made by several transcribers after they have agreed on each individual symbol
(Shriberg, Kwiatkowski, & Hoffman, 1984). Another option is to have more than one tran-
scriber transcribe the material and to use only that part of the material for which all
transcribers agree or at least the majority of them (Kuijpers & van Donselaar, 1997).

The issues of automatic transcription and its evaluation have been addressed for
example, by Kipp, Wesenick, and Schiel (1997) within the framework of the Munich

379M. Wester, J. M. Kessens, C. Cucchiarini, and H. Strik



56 Language and Speech, 2001, 44 (3), 377-403 
 380

Automatic Segmentation System. The performance of MAUS has been evaluated by
comparing the automatically obtained transcriptions with transcriptions made by three
experts. The three manual transcriptions were not used to compose a reference transcrip-
tion, but were compared pairwise with each other and with the automatic transcriptions to
determine the degree of agreement. The results showed that the percentage agreement
ranged from 78.8% to 82.6% for the three human transcribers, while agreement between
MAUS and any of the human transcriptions ranged from 74.9% to 80.3% using data-driven
rules, and from 72.5% to 77.2% using rules compiled by an experienced phonetician.
These results indicate how the degree of agreement differs between expert transcribers
and an automatic system, and, in a sense, this is a way of showing that the machine is just
one of the transcribers. However, this is not sufficient because it does not say much about
the quality of the transcriptions of the individual transcribers. Therefore, we propose the
use of a reference transcription.

The aim of our research is to determine whether the automatic techniques that have
been developed to obtain some sort of phonetic transcriptions for CSR can also be used
meaningfully, in spite of their limitations, to obtain phonetic transcriptions for linguistic
research. To answer this question, we started from an analysis of the common practice in
many (socio/psycho) linguistic studies in which, as mentioned above, only specific parts
of the speech material have to be transcribed. In addition, we further restricted the scope
of our study by limiting it to insertion and deletion phenomena, which is to say that we did
not investigate substitutions. The rationale behind this choice is that it should be easier for
a CSR to determine whether a segment is present or not than to determine which one of
several variants of a given segment has been realized. If the technique presented here turns
out to work for deletions and insertions it could then be extended to other processes. In
other words, our starting point was a clear awareness of the limitations of current CSR
systems, and an appreciation of the potentials that CSR techniques, despite their present
limitations, could have for linguistic research.

In this study, we describe two experiments in which different comparisons are carried
out between the automatically obtained transcriptions and the transcriptions made by
human transcribers. In these experiments the two most common approaches to obtaining
a reference transcription are used: the majority vote procedure and the consensus tran-
scription.

In the first experiment, four kinds of comparisons are carried out to study how the
machine’s performance relates to that of nine listeners. First of all the degree of agreement
in machine-listener pairs is compared to the degree of agreement in listener-listener pairs,
as in the Kipp et al. (1997) study. Second, in order to be able to say more about the quality
of the machine’s transcriptions and the transcriptions by the nine listeners, they are all
compared to a reference transcription (majority vote procedure). Third, because it can be
expected that not all processes give the same results, the comparisons with the reference
transcription are carried out for each individual process of deletion and insertion. Fourth,
a more detailed comparison of the choices made by the machine and by the listeners is carried
out to get a better understanding of the differences between the machine’s performance and
that of the listeners.

The results of this last comparison show that the CSR systematically tends to choose
for deletion (non-insertion) of phones more often than listeners do. To analyze this to a further
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extent, we carried out a second experiment in order to find out why and in what way the
detection of a phone is different for the CSR and for the listeners. In order to study this, a
more detailed reference transcription was needed. Therefore, we used a consensus transcription
instead of a majority vote procedure to obtain a reference transcription.

The organization of this article is as follows: First, the methodology of the first experi-
ment is explained followed by the presentation of the results. Before going on to the second
experiment a discussion of the results of Experiment 1 is given. Following on from this,
the methodology of the second experiment is explained, subsequently the results are shown
and also discussed. Finally, conclusions are drawn as to the merits and usability of our
automatic transcription tool.

2Experiment 1

2.1
Method and Material

2.1.1
Phonological variation

The processes we chose to study concern insertions and deletions of phones within words
(i.e., alterations in the number of segments). Five phonological processes were selected for
investigation: /n/-deletion, /r/-deletion, /t/-deletion, schwa-deletion and schwa-insertion.
The main reasons for selecting these five phonological processes are that they occur
frequently in Dutch and are well described in the linguistic literature. Furthermore, these
phonological processes typically occur in fast or extemporaneous speech, but to a lesser
extent in careful speech; therefore it is to be expected that they will occur in our speech
material (for more details on the speech material, see the following section).

The following description of the four processes: /n/-deletion, /t/-deletion, schwa-dele-
tion and schwa-insertion is according to Booij (1995), and the description of the /r/-deletion
process is according to Cucchiarini and van den Heuvel (1999). The descriptions given here
are not exhaustive, but describe the conditions of rule application which we formulated to
generate the variants of the phonological processes.

1. /n/-deletion:

In standard Dutch, syllable-final /n/ can be dropped after a schwa, except if that syllable
is a verbal stem or if it is the indefinite article een [ən] ‘a’. For many speakers, in partic-
ular in the western part of the Netherlands, the deletion of /n/ is obligatory.

Example: reizen [rεizən] → [rεizə] ‘to travel’

2. /r/-deletion:

According to Cucchiarini and van den Heuvel (1999), /r/-deletion can take place in Dutch
when /r/ is preceded by a vowel and followed by a consonant in a word. Although this phenom-
enon is attested in various contexts, it appears to be significantly more frequent when the
vowel preceding the /r/ is a schwa.

Example: Amsterdam [ɑmstərdɑm] → [ɑmstədɑm] ‘Amsterdam’
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3. /t/-deletion:

If a /t/ in a coda is preceded by an obstruent, and followed by another consonant, the /t/
may be deleted.

Example: rechtstreeks [rεxtstreks] → [rεxstreks] ‘directly’

If the preceding consonant is a sonorant, /t/-deletion is possible, but then the following
consonant must be an obstruent (unless the obstruent is a /k/).

Example: ‘s avonds [savɔnts] → [savɔns] ‘in the evening’

Finally, we also included /t/-deletion in word-final position following an obstruent.

Example: Utrecht [ytrεxt] → [ytrεx] ‘Utrecht’

4. schwa-deletion:

When a Dutch word has two consecutive syllables headed by a schwa, the first schwa may
be deleted, provided that the resulting onset consonant cluster consists of an obstruent
followed by a liquid.

Example: latere [latərə] → [latrə] ‘later’

5. schwa-insertion:

In nonhomorganic consonant clusters in coda position schwa may be inserted. Schwa-
insertion is not possible if the second of the two consonants involved is an /s/ or a /t/, or
if the cluster is a nasal followed by a homorganic consonant.

Example: Delft [dεlft] → [dεləft] ‘Delft’

2.1.2
Selection of speech material

The speech material used in the experiments was selected from a Dutch database called
VIOS, which contains a large number of telephone calls recorded with the on-line version
of a spoken dialog system called OVIS (Strik, Russel, Van Den Heuvel, Cucchiarini, &
Boves, 1997). OVIS is employed to automate part of an existing Dutch public transport
information service. The speech material consists of interactions between man and machine,
and can be described as extemporaneous speech.

The phonological rules described in the previous section were used to automatically
generate pronunciation variants for the words being studied. In some cases, it was possible
to apply more than one rule to the same word. However, in order to keep the task relatively
easy for the listeners we decided to limit to two the number of rules which could apply to
a single word.

From the VIOS corpus, 186 utterances were selected. These utterances contain 379
words with relevant contexts for one or two rules to apply. For 88 words, the conditions
for rule application were met for two rules simultaneously and thus four pronunciation vari-
ants were generated. For the other 291 words, only one condition of rule application was
relevant and two variants were generated. Consequently, the total number of instances in
which a rule could be applied is 467. Table 1 shows the number of items for each of the
different rules and the percentages of the total number of items. This distribution (columns 2
and 3) is not uniform, because the distribution in the VIOS corpus (columns 4 and 5) is

Phonetic transcriptions: Expert listeners vs. continuous speech recognizer



Article 1 59 

not uniform. However, we tried to ensure a more even distribution by having at least a 10%
representation for each phonological process in the material which was selected for
Experiment 1.

2.1.3
Experimental procedure

Nine expert listeners and the continuous speech recognizer (CSR) carried out the same task,
that is, deciding for the 379 words which pronunciation variant best matched the word
that had been realized in the spoken utterances (forced choice). 

Listeners. The nine expert listeners are all linguists who were selected to participate in this
experiment because they have all carried out similar tasks for their own investigations.
For this reason, they are representative of the kind of people that make phonetic tran-
scriptions and who may benefit from automatic ways of obtaining such transcriptions.
The 186 utterances were presented to them over headphones, in three sessions, with the possi-
bility of a short break between successive sessions. The orthographic representation of the
whole utterance was shown on screen, see Figure 1. The words which had to be judged were
indicated by an asterisk. Beneath the utterance, the phonemic transcriptions of the pronun-
ciation variants were shown. The listeners’ task was to indicate for each word which of the
phonemic transcriptions presented best corresponded to the spoken word. The listener
could listen to an utterance as often as he/she felt was necessary in order to judge which
pronunciation variant had been realized.

CSR. The utterances presented to the listeners were also used as input to the CSR which
is part of the spoken dialog system OVIS (Strik et al., 1997). The orthography of the utter-
ances was available to the CSR. The main components of the CSR are a lexicon, a language
model, and acoustic models.

For the automatic transcription task, the CSR was used in forced recognition mode.
In this type of recognition, the CSR is “forced” to choose between different pronunciations
of a word instead of between different words. Hence, a lexicon with more than one possible
pronunciation per word was needed. This lexicon was made by generating pronunciation
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TABLE 1
Number of items selected per process for Experiment 1, and the percentage of the total number
of items in Experiment 1. Number of items and their corresponding percentages in the VIOS
corpus, for each process

phonological  
process # Exp. 1 % Exp. 1 # VIOS corpus % VIOS corpus  

/n/-deletion 155 33.2 10,694 45.2 

/r/-deletion 127 27.2 7,145 30.2 

/t/-deletion 84 18.0 3,665 15.5 

schwa-deletion 53 11.3 275 1.2 

schwa-insertion 48 10.3 1,871 7.9
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variants for the words in the lexicon using the five phonological rules described earlier.
Pronunciation variants were only generated for the 379 words under investigation, for the
other words present in the 186 utterances the canonical transcription was sufficient. The
canonical phone transcription is the phone transcription generated with the Text-to-Speech
system developed at the University of Nijmegen (Kerkhoff & Rietveld, 1994). The language
model (unigram and bigram) was restricted in that it only contained the words present in
the utterance which was being recognized.

Feature extraction was done every 10 ms for frames with a width of 16 ms. The first
step in feature analysis was an FFT analysis to calculate the spectrum. Next, the energy
in 14 mel-scaled filter bands between 350 and 3400 Hz was calculated. The next processing
stage was the application of a discrete cosine transformation on the log filterband coeffi-
cients. Besides 14 cepstral coefficients (c0– c13), 14 delta coefficients were also used.
Thus, a total of 28 feature coefficients were used.

The acoustic models which we used are monophone hidden Markov models (HMM).
The topology of the HMMs is as follows: Each HMM is made up of six states, and consists
of three parts. Each of the parts has two identical states, one of which can be skipped
(Steinbiss et al., 1993). In total, 40 HMMs were trained. For 33 of the phonemes, one
context-independent HMM was used. For the /l/ and the /r/, separate models were trained
depending on their position in the syllable, that is, different models were trained for prevo-
calic and postvocalic position. In addition to these 37 acoustic models, three other models
were trained: an HMM for filled pauses, one for nonspeech sounds and a one-state HMM
to model silence. Furthermore, the acoustic models which were used for the automatic
transcription task were “retrained” models. Retrained acoustic models, in our case, are
HMMs which are trained on a training corpus in which pronunciation variation has been
transcribed. This is accomplished by performing forced recognition of the training corpus
using a lexicon which contains pronunciation variants, thus adding variants to the training
corpus at the appropriate places. Subsequently, the resulting corpus is then used to retrain
the HMMs. The main reason for using retrained acoustic models is that we expect these
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Ik wil om *negen uur *vertrekken ‘I want to leave at nine o’clock’

nege ‘nine’
negen

vertrekken ‘leave’
vertrekke
vetrekken
vetrekke

Figure 1 
Pronunciation variant selection by the nine expert listeners. The left-hand panel shows an
example of the manner in which the utterances were visually presented to the listeners. The
right-hand panel shows the translation
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models to be more precise and therefore better suited to the task. For more details on this
procedure see Kessens, Wester, and Strik (1999).

Note that we use monophone models rather than diphone or triphone models although
in state-of-the-art recognition systems diphone and triphone models have proven to out-
perform monophone models. This is the case in a recognition task, but not necessarily in
forced recognition.

2.1.4
Evaluation

Binary scores. On the basis of the judgments made by the listeners and the CSR, scores
were assigned to each item. For each of the rules two categories were defined: (1) “rule
applied” and (0) “rule not applied.” For 88 words four variants were present, as mentioned
earlier. For each of these words two binary scores were obtained, that is, for each of the
two underlying rules it was determined whether the rule was applied (1) or not (0). For each
of the remaining 291 words one binary score was obtained. Thus, 467 binary scores were
obtained for each of the listeners and for the CSR.

Agreement. We used Cohen’s kappa (Cohen, 1968) to calculate the degree of agreement
between listeners and the CSR. The reason we chose to use Cohen’s κ instead of for instance
percentage agreement is that the distributions of the binary scores may differ for the various
phonological processes, and in that case, it is necessary to correct for chance agreement
in order to be able to compare the processes to each other. Cohen’s κ is a measure which
corrects for chance:

κ = 
(Po – Pc)
——— –1 ≤ κ ≤ 1 where:

Po = observed proportion of agreement

(1– Pc) Pc =proportion of agreement on the basis
of chance

Table 2 shows the qualifications for κ-values greater than zero, to indicate how the
κ-values should be interpreted (taken from Landis & Koch, 1977).

TABLE 2
Qualifications for κ-values >0

k-value qualification

0.00 – 0.20 slight

0.21 – 0.40 fair

0.41 – 0.60 moderate

0.61 – 0.80 substantial

0.81 – 1.00 almost perfect

Reference transcriptions. In the introduction, we mentioned various strategies that can be
used to obtain a reference transcription. In this first experiment, we used the majority vote
procedure. Two types of reference transcriptions were composed using the majority vote
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procedure: 1) reference transcriptions based on eight listeners, and 2) a reference tran-
scription based on all nine listeners.

The reference transcriptions based on eight listeners were used to compare the
performance of each individual listener to the performance of the CSR. For each listener,
the reference transcription was based on the other eight listeners. By using a reference
transcription based on eight listeners, it is possible to compare the CSR and an individual
listener to exactly the same reference transcription, thus ensuring a fair and correct
comparison. If, instead, one were to use a reference transcription based on all nine listeners,
the comparison would not be as fair because, in effect, the listener would be compared to
herself/himself due to the fact that the results of that individual listener would be included
in the reference transcription.

Consequently, nine sets of reference transcriptions were compiled each with four
different degrees of strictness. The different degrees of strictness which we used were A: a
majority of at least five out of eight listeners agreeing, B: six out of eight, C: seven out of
eight, and finally D: only those cases in which all eight listeners agree. Subsequently, the
degree of agreement for an individual listener with the reference transcription was calcu-
lated and the same was done for the CSR with the various sets of reference transcriptions.

The reference transcription based on nine listeners was used to analyze the differences
between the listeners and the CSR. In this case, it is also possible to use different degrees
of strictness. However, for the sake of brevity, we only show the results for a majority of
five out of nine listeners agreeing. The reason for choosing five out of nine is that as the
reference becomes stricter, the number of items in it reduces, whereas, for this degree of
strictness all items (467) are present.

2.2
Results

Analysis of the results was done by carrying out four comparisons. First, pairwise agree-
ment was calculated for the various listeners and for the listeners and the CSR. Pairwise
agreement gives an indication of how well the results of the listeners compare to each
other and to the results of the CSR. However, as we explained in the introduction, pairwise
agreement is not the most optimal type of comparison, as the transcriptions of individual
transcribers may be incorrect. To circumvent this problem as much as possible, we used
the majority vote procedure to obtain reference transcriptions. Thus, we also calculated the
degree of agreement between the individual listeners and a reference transcription based
on the other eight listeners and between the CSR and the same sets of reference tran-
scriptions. These results give a further indication of how well the listeners and the CSR compare
to each other, but we were also curious whether the same pattern exists for the various
phonological processes. Therefore, for the third comparison, the data were split up for the
separate processes and the degree of agreement between the CSR and the reference tran-
scriptions was calculated for each of the phonological processes. These data showed that
there are indeed differences between the various phonological processes. In an attempt to
understand the differences, we analyzed the discrepancies between the CSR and the listeners.
In this final analysis, the reference transcription based on a majority of five out of nine listeners
agreeing was employed.

Phonetic transcriptions: Expert listeners vs. continuous speech recognizer
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2.2.1
Pairwise agreement between CSR and listeners

For each listener, pairwise agreement was calculated for each pair of listeners and for each
CSR-listener pair. In this analysis, no reference transcription was used. Figure 2 shows
the results of the pairwise comparisons. For instance, in the first “column” in Figure 2, the
crosses (×) indicate the comparison between listener 1 and each of the other listeners, the
square (■) shows the median for all listener pairs, and the circle (●) indicates the degree
of agreement between the CSR and listener 1.

The results for pairwise agreement in Figure 2 show that there is quite some variation
among the different listener pairs. The κ-values vary between 0.49 and 0.73, and the median
for all listener pairs is 0.63. The median κ-value for all nine listener-CSR pairs is 0.55. In
Figure 2, it can also be seen that the degree of agreement between each of the listeners and
the CSR is lower than the median κ-value for the listeners. Statistical tests (Mann-Whitney
test, p < .05) show that the CSR and listeners 1, 3, and 6 behave significantly different from
the other listeners. For both the CSR and listener 1, agreement is significantly lower than
for the rest of the listeners whereas for listeners 3 and 6 agreement is significantly higher.

2.2.2
Agreement with reference transcriptions with varying degrees of strictness

In order to further compare the CSR’s performance to the listeners’, nine sets of reference
transcriptions were compiled, each based on eight listeners and with four different degrees
of strictness. With an increasingly stricter reference transcription, the differences between
listeners are gradually eliminated from the set of judgments under investigation. It is to be
expected that if we compare the performance of the CSR with the reference transcriptions
of type A, B, C, and D, the degree of agreement between the CSR and the reference
transcription will increase when going from A to D. The rationale behind this is that those
cases for which a greater number of listeners agree should be easier to judge for the listeners.
Therefore, it can be expected that those cases should be easier for the CSR too. In going
from A to D the number of cases involved is reduced (see Appendix 1 for details on numbers).
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Figure 2
Cohen’s κ for the
agreement between the
CSR and each listener
(●), for listener pairs
(×) and the median of
the listeners (■)
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Figure 3 shows the κ-values obtained by comparing each of the listener’s transcrip-
tions to the relevant set of reference transcriptions (×) and the median for all listeners (■).
In addition, the κ-values obtained by comparing the CSR’s transcriptions to each of the sets
of reference transcriptions (�), and the median for all the CSR’s κ-values (◆) are shown.
It can be seen that in most cases the degree of agreement between the different sets of
reference transcriptions and the listeners is higher than the degree of agreement between
the reference transcriptions and the CSR. These differences between the CSR and the
listeners are significant. (Wilcoxon signed ranks test, p < .05.) However, as we expected,
the degree of agreement between the reference transcription and both the listeners and the
CSR gradually increases, as the reference transcription becomes stricter.

2.2.3
Agreement with reference transcription for the separate phonological processes

In the previous section, we compared results in which items of the various phonological
processes were pooled. However, it is possible that the CSR and the nine listeners perform
differently on different phonological processes. Therefore, we also calculated the results
for the five phonological processes separately, once again using a majority vote based on
eight listeners (see Appendix 2 for the number of items in each set of reference transcrip-
tions). The results are shown in Figure 4. For each process, the degree of agreement between
each of the sets of reference transcriptions and the nine listeners (×) and the CSR (�) is
shown, first for all of the processes together and then for the individual processes. The
median for the nine listeners (■) and the median for the results of the CSR (◆) are also
shown. Furthermore, for three of the listeners, the data points have been joined to give an
indication of how an individual listener performs on the different processes in relation to
the other listeners.

For instance, if we look at the data points for listener A (dotted line) we see that this
listener reaches the highest κ-values for all processes except for /n/-deletion in which case
the listener is bottom of the group of listeners. The data points for listener B (solid line)
fall in the middle of the group of listeners, except for the processes of /r/-deletion and /t/-
deletion, where this listener is bottom of the group. The data points for listener C (dashed
line) show a poor performance on schwa-insertion and schwa-deletion compared to the
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Figure 3
Cohen’s κ for CSR (�)
and listeners (×)
compared to various set
of reference transcriptio
based on responses of
eight listeners, and
median κ for the sets of
reference transcriptions
for the CSR (◆) and the
listeners (■)
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rest of the listeners, but a more or less average performance on the other processes. These
three examples indicate that none of the listeners is consistently better or worse than the
others in judging the various phonological processes. Furthermore, on the basis of the
medians for the listeners, we can conclude that /n/-deletion and schwa-insertion are the
easiest processes to judge, whereas the processes of /r/-deletion, /t/-deletion and schwa-
deletion are more difficult processes for listeners to judge. This is also the case for the
CSR.

As far as the difference between the CSR and the listeners is concerned, statistical
analysis (Wilcoxon signed ranks test, p < .05) shows that for the phonological processes of
/r/-deletion and schwa-insertion there is no significant difference between the CSR and
the listeners. For the other three processes the difference is significant, and this is also the
case for all of the phonological processes grouped together. This is also reflected in Figure 4,
as there is almost no difference in the median for the CSR and the listeners for /r/-deletion
(0.01) and for schwa-insertion (0.08). For /n/-deletion (0.15) and /t/-deletion (0.11), the
difference is larger, and comparable to the results found for all rules pooled together (0.12),
leaving the main difference in the performance of the listeners and the CSR to be found
for schwa-deletion (0.34).

2.2.4
Differences between CSR and listeners

The results in the previous section give rise to the question of why the results are different
for various phonological processes and what causes the differences in results between the
listeners and the CSR. In this section, we try to answer the question of what causes the discrep-
ancy, by looking more carefully at the differences in transcriptions found for the listeners
and the CSR. In these analyses, we used the reference transcription based on a majority of
five out of nine listeners agreeing. The reason we use five of nine instead of five of eight
is because we wanted to include all of the material used in the experiment in this analysis.
Furthermore, instead of using the categorization “rule applied” and “rule not applied” the
categories “phone present” and “phone not present” are used to facilitate presentation and
interpretation of the data. Each item was categorized according to whether agreement was
found between the CSR and the reference transcription or not.
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Figure 4
Cohen’s κ for the
listeners and the CSR
compared to the sets of
reference transcriptions
(5 of 8) for the various
phonological processes
(� = CSR, × = listener,
■= median listeners,
◆ = median CSR, dotted
line = listener A, solid
line = listener B, and
dashed line = listener C)
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Figure 5 shows the percentages of phone present according to the reference tran-
scription (RT, dark gray bar) and the CSR (gray bar). It also shows the percentages of
phone present for which the RT and CSR agree (white bar). For exact counts and further
details, see Appendix 3. It can be seen in Figure 5 that, for all phonological processes
pooled, the phones in question are realized in 65% of all cases according to the reference
transcription and in 55% of the cases according to the CSR. In fact for every process the
same trend can be seen: The RT bar is always higher than the CSR bar. Furthermore, the
CSR bar is never much higher than the RT-CSR bar, which indicates that the CSR rarely
chooses phone present when the RT chooses phone not present. The differences between
the CSR and the listeners are significant for /r/-deletion, for schwa-deletion and for all
rules pooled (Wilcoxon signed ranks test, p < .05).

An explanation for the differences between the CSR and the listeners may be that they
have different durational thresholds for detecting a phone, in the sense that phones with a
duration that falls under a certain threshold are less likely to be detected. This sounds
plausible if we consider the topology of the HMMs. The HMMs we use have at least three
states, thus phones which last less than 30 ms are less likely to be detected. (Feature extrac-
tion is done every 10 ms.)

To investigate whether this explanation is correct, we analyzed the data for schwa-
deletion and /r/-deletion in terms of the duration of the phones. The speech material was
automatically segmented to obtain the durations of the phones. The segmentation was
carried out using a transcription that did not contain deletions to ensure that durations
could be measured for each phone. Due to the typology of the HMMs durations shorter
than 30 ms are also classified as 30 ms As a result, the 30 ms category may contain phones
that are shorter in length.

Figures 6 and 7 show the results for schwa-deletion and /r/-deletion, respectively. These
figures show that the longer the phone is the less likely that the CSR and the listeners
consider it deleted, and the higher the degree of agreement between the CSR and the
listeners is. Furthermore, the results for schwa-deletion seem to indicate that the listeners
and the CSR do indeed have a different threshold for detecting a phone. Figure 6 shows
that the listeners perceive more than 50% of the schwas that are 30 ms or less long, whereas
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Figure 5
Percentages of phone
present for the refer-
ence transcription (RT),
the CSR, and the CSR
and RT together, for the
various phonological
processes
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the CSR does not detect any of them. However, for /r/-deletion this is not quite the case
as neither the CSR nor the listeners detect most of the /r/s with a duration of 30 ms or less.

2.3
Discussion

The results concerning pairwise agreement between the listeners and the CSR show that
the agreement values obtained for the machine differ significantly from the agreement
values obtained for the listeners. However, the results of three of the listeners also differ
significantly from the rest. Thus, leaving a middle group of six listeners that do not signif-
icantly differ from each other. On the basis of these pairwise agreement results, we must
conclude that the CSR does not perform the same as the listeners, and what is more that
not all of the listeners perform the same either.

A significant difference between the machine’s performance and the listeners’ perform-
ance also appeared when both the CSR transcription and those of the nine listeners were
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Figure 6
Percentage schwas
present, as a function
of the duration of the
phones, according to
the reference tran-
scription (RT), the
CSR, and the CSR
and RT together

Figure 7
Percentage/r/s
present, as a function
of the duration of the
phones, according to
the reference tran-
scription (RT), the
CSR, and the CSR
and RT together
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compared with reference transcriptions of various degrees of strictness. However, the cases
that were apparently easier to judge for the listeners, that is, a greater number of them
agreed, also presented fewer difficulties for the CSR.

The degrees of agreement observed in this experiment, both between listeners and
between listeners and machine, are relatively high. This is all the more so if we consider
that the degree of agreement was not calculated over all speech material, as in the Kipp et
al. (1997) study, but only for specific cases which are considered to be among the most diffi-
cult ones. As a matter of fact, all processes investigated in these experiments are typical
connected speech processes that in general have a gradual nature and are therefore diffi-
cult to describe in categorical terms (Booij, 1995; Kerswill & Wright, 1990).

In addition, more detailed analyses of the degree of agreement between humans and
machine for the various processes revealed that among the phenomena investigated in
these experiments there are differences in degree of difficulty. Also in this case the machine’s
performance turned out to be similar to the listeners’, in the sense that the processes that
presented more difficulties for the listeners also appeared to be more difficult for the
machine. Statistical analyses were carried out for the various phonological processes. The
results of these tests are shown in Table 3.

TABLE 3
Results of the statistical analyses for the individual phonological processes from Figure 4 and
Figure 5. S = significant; N = not significant difference 

Figure /n/-deletion /r/-deletion /t /-deletion schwa-deletion schwa-insertion

4 S N S S N
5 N S N S N

Table 3 shows that the comparisons carried out for the individual processes do not
present a very clear picture. For schwa-deletion the differences are always significant and
for schwa-insertion they are always not significant. For the remaining three processes, the
results of the statistical analyses seem to contradict each other. This is maybe less puzzling
than it seems if we consider that the comparisons that were made are of a totally different
nature. In Figure 4, nine pairs of kappas were compared to each other and in Figure 5, many
pairs of “rule applied” and “rule not applied” were compared (the number varies per rule).
Still the question remains how we are to interpret these results. The objective was to find
out whether the CSR differs significantly from the listeners or not. If we look at the global
picture of all rules pooled together then we must conclude that this is indeed the case; the
CSR differs significantly from the listeners. However, if we consider the individual processes,
we find that the differences for schwa-deletion are significant, for schwa-insertion they are
not and that for the other three processes no definite conclusion can be drawn, as it depends
on the type of analysis. In other words, only in the case of schwa-deletion are the results
of the CSR significantly different from the results of the listeners.

The fact that the degree of agreement between the various listeners and the reference
transcriptions turned out to be so variable depending on the process investigated deserves
attention, because, in general, the capabilities of transcribers are evaluated in terms of
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global measures of performance calculated across all kinds of speech processes, and not
as a function of the process under investigation (Shriberg, Kwiatowski, & Hoffman, 1984).
However, this experiment has shown that the differences in degree of agreement between
the various processes can be substantial.

These results could be related to those presented by Eisen, Tillman, and Draxler (1992)
about the variability of interrater and intrarater agreement as a function of the sounds tran-
scribed, although there are some differences in methodology between our experiment 
and theirs. First, Eisen et al. (1992) did not analyze whether a given segment had been
deleted/inserted or not, but whether the same phonetic symbol had been used by different
subjects or by the same subject at different times. The degree of agreement in this latter
case is directly influenced by the number of possible alternatives, which may be different
for the various sounds. In our experiment, on the other hand, this number is constant over
all cases. Furthermore, the relative difficulty in determining which particular type of nasal
consonant has been realized may be different from the difficulty in determining whether
a given nasal consonant is present or not. Second, these authors expressed the degree of
agreement using percentage agreement, which, as explained above, does not take chance
agreement into account, and therefore makes comparisons rather spurious. In general,
however, Eisen et al. (1992) found that consonants were more consistently transcribed than
vowels. In our experiment, there is no clear indication that this is the case. Within the class
of consonants, Eisen et al. (1992) found that laterals and nasals were more consistently tran-
scribed than fricatives and plosives, which is in line with our findings that higher degrees
of agreement were found for /n/-deletion than for /t/-deletion. For liquids no comparison
can be made because these were not included in the Eisen et al. (1992) study. As to the vowels,
Eisen et al. (1992) found that central vowels were more difficult to transcribe. In our study
we cannot make comparisons between different vowel types because only central vowels
were involved. In any case, this provides further evidence for the fact that the processes
studied in our experiments are among those considered to be more difficult to analyze.

Another important observation to be made on the basis of the results of this experi-
ment is that apparently it is not only the sound in question that counts, be it an /n/ or a
schwa, but rather the process being investigated. This is borne out by the fact that the
results are so different for schwa-deletion as opposed to schwa-insertion. This point deserves
further investigation.

The fourth comparison carried out in Experiment 1 was aimed at obtaining more
insight into the differences between the machine’s choices and the listeners’ choices. These
analyses revealed that these differences were systematic and not randomly distributed over
presence or absence of the phone in question. Across-the-board the listeners registered
more instances of insertion and fewer instances of deletion than the machine did, thus
showing a stronger tendency to perceive the presence of a phone than the machine. Although
this finding was consistent over the various processes, it was most pronounced for schwa-
deletion.

In view of these results, we investigated whether the CSR and the listeners possibly
have different durational thresholds in detecting the presence of a phone. This analysis
showed that it is clear that duration does certainly play a role, but there is no unambiguous
threshold which holds for all phones.
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Another possible explanation for these results could be the very nature of the HMMs.
These models do not take much account of neighboring sounds. This is certainly true in
our case as we used context independent phones, but even when context dependent phone
models are used this is still the case. With respect to human perception, on the other hand,
we know that the way one sound is perceived very much depends on the identity of the adja-
cent sounds and the transitions between the sounds. If the presence of a given phone is signaled
by cues that are contained in adjacent sounds, the phone in question is perceived as being
present by human listeners, but would probably be absent for the machine that does not
make use of such cues. A third possible explanation for the discrepancies between the
machine response and the listeners’ responses lies in the fact that listeners can be influ-
enced by a variety of factors (Cucchiarini, 1993, p.55), among which spelling and phonotactics
are particularly relevant to our study. Since in our experiments the subjects listened to
whole utterances, they knew which words the speaker was uttering and this might have induced
them to actually “hear” an /r/, a /t/, an /n/ or a schwa when in fact they were not there.
In other words, the choice for a nondeletion could indeed be motivated by the fact that the
listener knew which phones were supposed to be present rather than by what was actually
realized by the speaker. This kind of influence is known to be present even in experienced
listeners like those in our experiments. A problem with this argument is that while it can
explain the lower percentages of deletion by the humans, it does not explain the higher percent-
ages of insertions. A further complicating factor in our case is that the listeners are linguists
and may therefore be influenced by their knowledge and expectations about the processes
under investigation. Finally, schwa-insertion happens to be a phenomenon that is more
common than schwa-deletion (Kuijpers & Van Donselaar, 1997) which could explain part
of the discrepancy found for the two processes.

3Experiment 2

In Experiment 1, analysis of the separate processes showed that both for listeners and the
CSR some processes are more easily agreed on than others. Closer inspection of the differ-
ences showed that the CSR systematically tends to choose for deletion (non-insertion) of
phones more often than listeners do. This finding was consistent over the various processes
and most pronounced for schwa-deletion. Furthermore, we found that the results were
quite different for schwa-deletion as opposed to schwa-insertion. To investigate the processes
concerning schwa to a further extent, a second experiment was carried out in which we focused
on schwa-deletion and schwa-insertion. The first question we would like to see answered
pertains to the detectability of schwa: is the difference between listeners and machine truly
of a durational nature? In order to try to answer this question, it was necessary to make
use of a more detailed transcription in which it was possible for transcribers to indicate
durational aspects and other characteristics of schwa more precisely. To achieve this, we
used the method of consensus transcriptions to obtain reference transcriptions of the speech
material.

The second question is why the processes of schwa-deletion and schwa-insertion
lead to such different results. In Experiment 1, the machine achieved almost perfect agree-
ment with listeners on judging the presence of schwa in the case of schwa-insertion, whereas
only fair agreement was achieved in the case of schwa-deletion. This difference is quite
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large and it is not clear why it exists. Looking at these two processes in more detail could
shed light on the matter.

3.1
Method and Material

3.1.1
Phonological variation and selection of speech material

As was mentioned above, in this second experiment, we concentrated on the phonological
processes of schwa-deletion and schwa-insertion. For both processes the material from
Experiment 1 was used and both sets were enlarged to include 75 items.

3.1.2
Experimental procedure

Listeners. The main difference in the experimental procedure, compared to the previous
experiment, is that the consensus transcription method was used instead of the majority vote
procedure to obtain a reference transcription. The listeners that participated in this exper-
iment were all Language and Speech Pathology students at the University of Nijmegen.
All had attended the same transcription course. The transcriptions used in this experiment
were made as a part of the course examination. Six groups of listeners (5 duos and 1 trio,
i.e., 13 listeners) were each asked to judge a portion of the 75 schwa-deletion cases and
the 75 schwa-insertion cases. The words were presented to the groups in the context of the
full utterance. They were instructed to judge each word by reaching consensus of tran-
scription for what was said at the indicated spot in the word (where the conditions for
application of the rule were met). The groups were free to transcribe what they heard using
a narrow phonetic transcription.

CSR. The CSR was employed in the same fashion as it was in the first experiment; the task
was to choose whether a phone was present or not. Because of this, the tasks for the listeners
and the machine were not exactly the same. The listeners were not restricted to choosing
whether a phone was present or not as the CSR was, but were free to transcribe whatever
they heard.

Evaluation. By allowing the listeners to use a narrow phonetic transcription instead of a
forced choice, the consensus transcriptions resulted in more categories than the binary
categories used previously: “rule applied” and “rule not applied.” This is what we antici-
pated and an advantage in the sense that the transcription is bound to be more precise. However,
in order to be compared with the CSR transcriptions, the multivalued transcriptions of the
transcribers have to be reduced to dichotomous variables of the kind “rule applied” and
“rule not applied.” In doing this different options can be taken which lead to different
mappings between the listeners’ transcriptions and the CSR’s and possibly to different
results. Below, two different mappings are presented. Furthermore, for the analysis of these
data, we once again chose to use the categories “phone present” and “phone not present”
to facilitate the comparison of the processes of deletion and insertion.
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The transcriptions pertaining to schwa-deletion obtained with the consensus method
were: deletion: ø, different realizations of schwa: ə, ə̆, ə , ə� , ə�, and other vowels: ɐ̆, �	. There
were fewer transcriptions pertaining to schwa-insertion, viz.: not present: ø, different real-
izations of schwa: ə, ə̆ and other vowels: ɐ, . The mappings chosen in this case were based
on the idea that duration may be the cause of the difference between man and machine.
Thus, for both processes, we used the following two mappings:

I. deletions (ø) are classified as “phone not present” and the rest is classified as “phone
present” [ ə, ə̆, ə, ə� , ə�, ɐ̆, �	, ɐ,  ]

II. deletions (ø) and short schwas (ə̆) are classified as “phone not present” and the rest is
classified as “phone present”: [ ə, ə, ə� , ə�, ɐ̆, �	, ɐ,  ]

3.2
Results

Tables 4 and 5 show the different transcriptions given by the transcribers for schwa-dele-
tion and schwa-insertion, respectively. The first row shows which transcriptions were used,
the second row shows the number of times they were used by the transcribers, the third row
indicates the number of times the CSR judged the item as phone present and the last row
shows the number of times the CSR judged the item as phone not present. These tables show
that deletion, schwa and short schwa were used most frequently, thus the choice of the
two mappings is justified as the number of times other transcriptions occurred is too small
to have any significant impact on further types of possible mappings.

TABLE 4
Reference transcriptions obtained for the process of schwa-deletion, and the classification of
these items by the CSR as present or not present

ø ə ə̆ ə ə� ə� ɐ̆ �	 total

RT 18 37 15 1 1 1 1 1 75 

phone present 1 21 5 – 1 1 – 1 30 

phone not present 17 16 10 1 – – 1 – 45

TABLE 5
Reference transcriptions obtained for the process of schwa-insertion and the classification of
these items by the CSR as present or not present

ø ə ə̆  ɐ total

RT 32 32 8 2 1 75 
phone present 6 28 3 2 – 39 

phone not present 26 4 5 – 1 36

Figure 8 shows the percentage of schwas present in the CSR’s transcriptions and in
the reference transcriptions for the processes of schwa-deletion and schwa-insertion, for
both mappings. Comparing the CSR’s transcriptions to the reference transcriptions once
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again shows that the CSR’s threshold for recognizing a schwa is different from the listeners’.
In the case of schwa-deletion, this difference becomes smaller when mapping I is replaced
by mapping II. For schwa-insertion, replacing mapping I with mapping II leads to a situ-
ation where the CSR goes from having a lower percentage of schwa present to having a
higher percentage of schwa present than the reference transcription. The difference between
the CSR and the reference transcription is significant for schwa-deletion and not signifi-
cant for schwa-insertion (Wilcoxon, p < .05).

Tables 6 and 7 illustrate more precisely what actually occurs. The difference in phone
detection between the CSR and the listeners becomes smaller for schwa-deletion (Table 6)
if mapping II is used. For this mapping, ə̆ is classified as “phone not present” which causes
the degree of agreement between the CSR and the reference transcription to increase.
However, it is not the case that all short schwas were classified as “phone not present” by
the CSR.

For schwa-insertion (Table 7), the differences in classification by the CSR and by the
listeners are not as large. In this case, when the ə̆ is classified as “phone not present” the
CSR shows fewer instances of schwa present than the listeners do.

3.3
Discussion

The results of this experiment underpin our earlier statement that the CSR and the listeners
have different durational thresholds for detecting a phone. A different mapping between
the machine and the listeners’ results can bring the degree of agreement between the two
sets of data closer to each other. It should be noted that the CSR used in this experiment
was not optimized for the task, we simply employed the CSR which performed best on a
task of pronunciation variation modeling (Kessens, Wester, & Strik, 1999). Although this
has not been tested in the present experiment, it seems that changing the machine in such
a way that it is able to detect shorter phones more easily should lead to automatic tran-
scriptions that are more similar to those of humans. In other words, in addition to showing
how machine and human transcriptions differ from each other, these results also indicate

397M. Wester, J. M. Kessens, C. Cucchiarini, and H. Strik

Figure 8
Percentage schwas
present for the reference
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mappings for the
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how the former could be brought closer to the latter. For instance, the topology of the
HMM could be changed by defining fewer states, or by allowing states to be skipped, thus
facilitating the recognition of shorter segments.

Although schwa is involved in both cases in this experiment, not much light is shed
on the issue of why the processes of insertion and deletion lead to such different results.
A possible explanation as far as the listeners are concerned could be the following: For 20
of the schwa-deletion cases, something other than deletion or schwa was transcribed by the
listeners compared to nine such cases for schwa-insertion. This indicates that schwa-dele-
tion may be a less straightforward and more variable process. Furthermore, as was mentioned
earlier, schwa-deletion is less common than schwa-insertion, which might also influence
the judgments of the listeners. So there are two issues playing a role here; the process of
deletion might be more gradual and variable than the process of insertion and the listeners
may have more difficulties because schwa-deletion is a less frequently occurring process.

Another explanation for the difference is that there is an extra cue for judging the process
of schwa-insertion. When schwa-insertion takes place, the /l/ and /r/, which are the left
context for schwa-insertion, change from postvocalic to prevocalic position (see Table 8).
This change in position within the syllable also entails a change in the phonetic properties
of these phones. In general postvocalic / l/s tend to be velarized while postvocalic /r /s tend
to be vocalized or to disappear. This is not the case for schwa-deletion, whether or not the
schwa is deleted does not influence the type of /l/ or /r/ concerned. These extra cues
regarding the specific properties of /l/ and /r/ can be utilized quite easily by listeners, and
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TABLE 6
Counts of agreement/disagreement CSR and reference transcription (RT) for different mappings
of RT categories, for schwa-deletion. Y(es) phone present, and N(o) phone not present

RT I RT II 

Mappings Y N SUM Y N SUM

Y 29 1 30 24 6 30
N 28 17 45 18 27 45

SUM 57 18 75 42 33 75

TABLE 7
Counts of agreement/disagreement CSR and reference transcription (RT) for different mappings
of RT categories, for schwa-insertion. Y(es) phone present, and N (o) phone not present

RT I RT II 

Y N SUM Y N SUM 

Y 33 6 39 30 9 39
N 10 26 36 5 31 36

SUM 43 32 75 35 40 75

C
S

R
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S
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most probably are. They can also be utilized by our CSR because different monophone models
were trained for /l/ and /r/ in pre- and post-vocalic position. Thus, whether a schwa is inserted
may be easier to judge than whether a schwa is deleted due to these extra cues.

4General discussion

In this paper, we explored the potential that a technique developed for CSR could have for
linguistic research. In particular, we investigated whether and to what extent a tool devel-
oped for selecting the pronunciation variant that best matches an input signal could be
employed to automatically obtain phonetic transcriptions for the purpose of linguistic
research.

To this end, two experiments were carried out in which the performance of a machine
in selecting pronunciation variants was compared to that of various listeners who carried
out the same task or a similar one. The results of these experiments show that overall the
machine’s performance is significantly different from the listeners’ performance. However,
when we consider the individual processes, not all the differences between the machine and
the listeners appear to be significant. Furthermore, although there are significant differ-
ences between the CSR and the listeners, the differences in performance may well be
acceptable depending on what the transcriptions are needed for. Once again it should be
kept in mind that the differences that we found between the CSR and the listeners were
also in part found between the listeners.

In order to try and understand the differences in degree of agreement between listeners
and machine, we carried out further analyses. The important outcome of these analyses is
that the differences between the listeners’ performance and the machine’s did not have a
random character, but were of a systematic nature. In particular, the machine was found
to have a stronger tendency to choose for absence of a phone than the listeners: the machine
signaled more instances of deletion and fewer instances of insertion. Furthermore, in the
second experiment, we found that the majority of instances where there was a discrepancy
between the CSR’s judgments and listeners’, it was due to the listeners choosing a short
schwa and the CSR choosing a deletion. This underpins the idea that durational effects are
playing a role.

In a sense these findings are encouraging because they indicate that the difference
between humans and machine is a question of using different thresholds and that by
adjusting these thresholds some sort of tuning could be achieved so that the machine’s
performance becomes more similar to the listeners’. The question is of course whether
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TABLE 8
Examples of application of schwa-deletion and schwa-insertion. Syllable markers indicate pre-
and postvocalic position of /l/ and /r/

base form rule applied 

schwa-deletion [la-tə-rə] [la-trə]

schwa-insertion [dεlft] [dε-ləft]
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this is desirable or not. On the one hand, the answer should be affirmative, because this is
also in line with the approach adopted in our research. In order to determine whether the
machine’s performance is acceptable we compare it with the listeners’ performance, which,
in the absence of a better alternative, constitutes the point of reference. The corollary of
this view is that we should try to bring the machine’s performance closer to the listeners’
performance. On the other hand, we have pointed out above that human performance does
not guarantee hundred percent accuracy. Since we are perfectly aware of the shortcomings
of human performance in this respect, we should seriously consider the various cases
before unconditionally accepting human performance as the authoritative source.

To summarize, the results of the more detailed analyses of human and machine
performance do not immediately suggest that by using an optimization procedure that
brings the machine’s performance closer to the listeners’, better machine transcriptions would
be obtained. This brings us back to the point where we started, namely taking human
performance as the reference. If it is true that there are systematic differences between human
and machine, as appeared from our analyses, then it is not surprising that all agreement
measures between listeners were higher than those between listeners and machine.
Furthermore, if we have reasons to question the validity of the human responses, at least
for some of the cases investigated, it follows that the machine’s performance may indeed
be better than we have assumed so far.

Going back to the central question in this study, namely whether the techniques that
have been developed in CSR to obtain some sort of phonetic transcriptions can be mean-
ingfully used to obtain phonetic transcriptions for linguistic research, we can conclude
that the results of our experiments indicate that the automatic tool proposed in this paper
can be used effectively to obtain phonetic transcriptions of deletion and insertion processes.
It remains to be seen whether these techniques can be extended to other processes.

Another question that arises at this point is how this automatic tool can be used in
linguistic studies. It is obvious that it cannot be used to obtain phonetic transcriptions of
complete utterances from scratch, but is clearly limited to hypothesis verification, which
is probably the most common way of using phonetic transcriptions in various fields of
linguistics, like phonetics, phonology, sociolinguistics, and dialectology. In practice, this
tool could be used in all research situations in which the phonetic transcriptions have to
be made by one person. Given that a CSR does not suffer from tiredness and loss of concen-
tration, it could assist the transcriber who is likely to make mistakes owing to concentration
loss. By comparing his /her own transcriptions with those produced by the CSR a 
transcriber could spot possible errors that are due to absent-mindedness.

Furthermore, this kind of comparison could be useful for other reasons. For instance,
a transcriber may be biased by his /her own hypotheses and expectations with obvious conse-
quences for the transcriptions, while the biases which an automatic tool may have can 
be controlled. Checking the automatic transcriptions may help discover possible 
biases in the listener’s data. In addition, an automatic transcription tool could be employed
in those situations in which more than one transcriber is involved; in order to solve possible
doubts about what was actually realized. It should be noted that using an automatic transcription
tool will be less expensive than having an extra transcriber carry out the same task.

Finally, an important contribution of automatic transcription to linguistics would be
that it makes it possible to use existing speech databases for the purpose of linguistic
research. The fact that these large amounts of material can be analyzed in a relatively short
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time, and with relatively low costs makes automatic transcription even more important (see
for instance Cucchiarini & van den Heuvel, 1999). The importance of this aspect for the
generalizability of the results cannot be overestimated. And although the CSR is not infal-
lible, the advantages of a very large dataset might very well outweigh the errors introduced
by the mistakes the CSR makes.
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Appendix 1
Number of items in each reference transcription set per excluded listener

Set of reference transcriptions

RT Strictness 1 2 3 4 5 6 7 8 9

5 of 8 445 448 449 443 449 454 453 454 448

6 of 8 407 399 395 403 407 399 403 404 398

7 of 8 353 349 340 341 345 338 347 348 354

8 of 8 273 249 251 256 250 250 262 254 258
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Appendix 2

Number of items in each reference transcription set per excluded listener for each of the phonological

processes. (Strictness: 5 out of 8 listeners agreeing)

Phonological

Set of reference transcriptions

processes 1 2 3 4 5 6 7 8 9

/n/-del 152 151 155 151 153 152 154 153 154

/r/-del 116 120 115 114 117 120 117 121 118

/t/-del 79 80 81 79 80 82 82 80 78

schwa-del 51 50 51 51 51 52 53 52 51

schwa-ins 47 47 47 48 48 48 47 48 47

Appendix 3

Counts (percentages between brackets) of agreement /disagreement CSR and reference transcription

(RT) based on a majority of 5 of 9 listeners agreeing, for all items together and split up for each of

the processes. Phone present = Y, and phone not present = N

phonological processes

all /n/-del /r/-del /t/-del schwa-del schwa-ins

RT=Y, CSR=Y 235 (50) 86 (55) 52 (41) 59 (70) 18 (34) 23 (48)

RT=N, CSR=N 143 (31) 53 (34) 44 (35) 9 (11) 14 (26) 20 (42)

RT=Y, CSR=N 67 (14) 9 (6) 26 (20) 11 (13) 20 (38) 4 (8)

RT=N, CSR=Y 22 (5) 7 (5) 5 (4) 5 (6) 1 (2) 1 (2)

Total RT=Y 302 (65) 95 (61) 78 (61) 70 (83) 38 (72) 27 (56)

Total CSR=Y 257 (55) 93 (60) 57 (45) 64 (76) 19 (36) 24 (50) 

Total items 467 (100) 155 (100) 127 (100) 84 (100) 53 (100) 48 (100)
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Abstract 

The first goal of this study is to investigate the effect of several properties of a 
continuous speech recognizer (CSR) on automatic phonetic transcription. Our results 
show that changing certain properties of the CSR affects the resulting automatic 
transcriptions. The quality of the automatic transcriptions can be improved by using 
‘short’ HMMs and by reducing the amount of contamination in the HMMs. The 
amount of contamination can be reduced by training the HMMs on the basis of a 
transcription that better matches the actual pronunciation, e.g. by modeling 
pronunciation variation or by training HMMs on read speech. Furthermore, it appeared 
that context-dependent HMMs should not be trained on canonical transcriptions since 
the transcriptions obtained with these HMMs are too much biased towards the 
canonical transcriptions. Finally, we found that by combining these changes in 
properties of the CSR the quality of automatic transcription can be further improved.  

The second goal of this study is to find out whether there exists a relation 
between the word error rate (WER) and transcription quality. As no clear relation was 
found, we conclude that in order to obtain automatic transcriptions taking the CSR 
with the lowest WER does not always provide the optimal solution. 

1. Introduction 
Phonetic Transcriptions (PTs) of speech are needed in many disciplines. In linguistic 
research, for instance phonetics, phonology, sociolinguistics, and dialectology, PTs 
form a vital component of the research methodology. In speech pathology, PTs are 
needed in research and in clinical practice. In clinical applications, PTs are used for 
diagnostic purposes in order to measure the severity of the handicap or disability 
(Shriberg & Lof, 1991), and during treatment programmes, to monitor and document 
progress (or lack thereof). Furthermore, PTs are used in speech technology, both in 
speech synthesis and in automatic speech recognition (ASR). For the development of 
speech synthesis systems, a phonetically transcribed database is needed from which 
diphones and/or larger concatenation segments can be extracted, and of which the 
segmentation can be used for duration modeling of the concatenation units (Ljolje, 
Hirschberg, & van Santen, 1997). During the last decades, one of the approaches that 
has been used to improve ASR is by modeling pronunciation variation (for an 
overview see Strik and Cucchiarini, 1999). Reliable and accurate PTs of speech form 
an essential resource for this type of research.  

 PTs can be obtained in two ways. Manual Phonetic Transcriptions (MPTs) are 
made by experts who listen to an utterance and transcribe it into a sequence of speech 
units represented by phonetic symbols. These experts may use the full set of IPA8 
symbols, including diacritics, to produce what is known as ‘narrow phonetic 
transcriptions’. However, making MPTs is extremely time-consuming and therefore 
costly. Moreover, MPTs tend to contain an element of subjectivity (Shriberg & Lof, 
1991). The time needed to make MPTs can be reduced by limiting the transcription 
                                                 
8 http://www2.arts.gla.ac.uk/IPA/ipa.html 
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process to a few phenomena that are of special interest for the study at hand, such as 
the presence or absence of the vowel schwa (Kuijpers & van Donselaar, 1997). Time 
investment can also be diminished – and accuracy improved (see Shriberg & Lof, 
1991) - by using broad phonetic transcriptions, i.e. transcriptions in which only the 
subset of the symbols is used that correspond to the phonemes of the language.  

 PTs can also be made automatically, i.e. by a speech recognizer: This results 
in what we will call Automatic Phonetic Transcriptions (APTs) in this paper. Almost 
invariably, APTs are ‘broad phonetic’, or phonemic transcriptions. This is a direct 
consequence of the fact that virtually all operational ASR systems are trained to handle 
only the ‘phonemes’ of the target language. APTs are much faster to make, and 
therefore much cheaper, than MPTs. However, before APTs of large corpora can be 
used as the raw data for research in speech science or technology, many questions 
about accuracy and also reliability must be answered. APTs are certainly reliable in 
the sense that the same material transcribed by the same ASR will result in identical 
output. However, it is much less self-evident that transcriptions of the same material 
by different ASR systems will show a high degree of agreement. Differences between 
the transcriptions of ASR systems parallel the subjectivity that is inherent in MPTs.  

APTs can be made in various ways. One approach is to perform phone 
recognition. In this kind of recognition, instead of words - as is the case during a 
normal recognition task - phones are recognized. Often, the recognizer is constrained 
by a phone N-gram, and by penalties on the generation of many short sequences of 
phones. In the cases when the content of an utterance (the orthographic transcription) 
is available, a second kind of APTs can be made. The phonetic transcriptions of the 
words in the utterance are then used as a starting point for automatic transcription. 
This phonetic transcription can be looked up in a lexicon or can be obtained by means 
of a grapheme-phoneme converter. Next, a number of possible pronunciation variants 
are generated on the basis of the phonetic transcription, e.g. by applying phonological 
rules (e.g. Adda-Decker & Lamel, 1998), data-derived rules (e.g. Kessens & Strik, 
2001) or by means of D-trees (e.g. Riley et al., 1998). The task of the recognizer is 
then to decide for each word, which of the variants best matches the acoustic signal. 
This study is an example of this second kind of APT. The number of transcription 
variants is restricted by allowing only pronunciation variants generated by applying 
five phonological rules to the canonical transcriptions. Other research (Wester, 
Kessens, Cucchiarini, & Strik, 2001; Saraclar, 2000) showed that for such a 
transcription task, APTs can be made that form acceptable substitutes for MPTs. 

In order to evaluate the quality of our APTs, each APT is compared to a human 
Reference Transcription (RT). However, given that humans can make mistakes there is 
no completely error free RT with which the automatic transcriptions can be compared 
(Cucchiarini, 1993: 11-13). To circumvent this problem (at least partly), the following 
two strategies have been devised for obtaining a human RT: 

1) A consensus transcription is used, which is a transcription made by several 
transcribers after they have agreed on each individual symbol (Shriberg, 
Kwiatkowski & Hoffman, 1984). 
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2) A majority vote principle is used, which means that the material is transcribed by 
more than one transcriber and that only the part of the material is used for which 
all transcribers agree (Kuijpers & van Donselaar, 1997), or at least the majority of 
them (Wester et al., 2001). 

In this paper, both strategies to obtain RTs are used. We use agreement between the 
APTs and the human RTs as a measure of quality for the various APTs; the higher the 
agreement with the human RTs, the better the quality of the APT. 

In our previous study (Wester et al., 2001), we simply employed the CSR used 
in other research without trying to optimize it to make the CSR’s transcriptions more 
similar to the human transcriptions. It is likely that properties of the CSR, such as for 
instance the speech material used for training and the procedure to estimate the 
acoustic models, all influence the APTs. This holds true for phone recognition and for 
selection of pre-defined pronunciation variants. Some research on this issue has 
already been carried out. In the study reported in Saraçlar (2000a) and Saraçlar, Nock 
& Khudanpur (2000b) different techniques to improve APTs are investigated. For 
evaluation, phone accuracy is calculated with MPTs as the reference. These 
experiments reveal that the following techniques hardly influence the accuracy of the 
APTs: speaker and channel adaptation, acoustic models with lower resolution (less 
Gaussian mixtures) and jack-knifing, i.e. one half of the training data is used to 
transcribe the other half. They conclude that it is quite difficult to further improve 
automatic phonetic transcription using acoustic models trained on canonical 
transcriptions. For this reason, acoustic models are trained on hand-labeled data or on 
data for which automatic transcriptions are made using a pronunciation model based 
on the same hand-labeled data. These acoustic models appeared to substantially 
improve automatic transcription compared to the baseline models that are trained on 
canonical transcription of the training material. Another study is conducted by Cox, 
Brady & Jackson (1998). These authors compared various automatic transcription 
systems by calculating phone accuracy between APTs and MPTs made by a 
professional phonetician. They found that speaker adaptation improves the quality of 
APTs. Besides adaptation, they used confidence measures to label phones, and trained 
acoustic models using the phones for which the confidence value exceeded a certain 
threshold. These acoustic models further improved the quality of the APTs. Finally, 
the work of Brugnara, Falavigna & Omologo (1993) is mainly concerned with 
segmentation of speech. As part of this research, these authors investigated the effects 
of the topology of the HMMs with phone accuracy as evaluation criterion. They found 
an optimal accuracy for HMMs that have a minimum duration of 20 ms.  

 The first goal of this paper is to investigate and compare a number of properties 
of ASR systems for their effects on the quality of APTs. In addition to some of the 
properties described above, we will also investigate the impact of the type of acoustic 
models (e.g., context dependent versus context independent models) and the type of 
speech material used to train these models.  
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In previous research on APT (Wester et al., 2001), we simply took the CSR 
with the lowest Word Error Rate (WER) that was available from our research on 
pronunciation variation modeling. In other research on APT, the choice of the CSR 
usually is not clearly motivated. Intuitively one might expect that the ASR system that 
obtains the lowest WER on some reference recognition task will also yield the best 
APTs. However, on second thoughts (automatic) speech recognition may well appear 
to be quite a different task than (automatic) phonetic transcription. Therefore, it is 
worthwhile to investigate whether lower WERs do indeed indicate higher quality 
APTs. This is the second goal of the research reported here.  

This paper is organized as follows: In section 2, the method that we employed is 
illustrated. Subsequently, in section 3, we present the results for each of the properties 
of the ASR system that are investigated. The relation between degree of agreement 
and WER is examined in section 4. Finally, in section 5, we discuss the results, while 
in section 6 we present our general conclusions. 

2. Method 
As explained in the introduction, the focus of this study is a restricted form of 
automatic transcription. Only the pronunciation variants that are automatically 
generated by the application of five phonological rules to the canonical transcriptions 
can be chosen by the recognizer. In section 2.1, we will first explain which 
pronunciation variants are selected for transcription. Next, in section 2.2, we will 
describe the speech material and our CSR. Section 2.3 describes how the APTs and 
the two kinds of RTs are obtained and what the differences are between the two kinds 
of transcription tasks. For evaluation of the various APTs, we calculate agreement 
between the various APTs and human RTs, as will be explained in section 2.4.  
 

2.1 Pronunciation variants 

The pronunciation variants were automatically generated by applying a set of 
phonological rules to the canonical transcriptions of the words that occur in the 
transcription material. For variant generation, we used five phonological rules 
concerning deletions and insertions of phones: /n/-deletion, /r/-deletion, /t/-deletion, 
/@/-deletion and /@/-insertion (SAMPA9 notation is used throughout this paper). The 
main reasons for selecting these five phonological processes are that they occur 
frequently in Dutch and are well described in the linguistic literature. Furthermore, 
these phonological processes typically occur in fast or extemporaneous speech; 
therefore, it is to be expected that they will occur in the speech material that we use 
(see section 2.2). Table 1 provides an example of each rule. The deleted phones are 
shown between ‘(..)’, and the inserted phone is indicated by ‘[..]’. For more details 
and a description of the five phonological rules, see Wester et al. (2001). 
 

                                                 
9 http://www.phon.ucl.ac.uk/home/sampa/dutch.htm 
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Table 1: Examples of the five phonological rules 

Rule Example   Orthography Translation 
/n/-deletion rEiz@(n)  � rEiz@ reizen to travel 
/r/-deletion Amst@(r)dAm  � Amst@dAm Amsterdam Dutch city: ‘Amsterdam’ 
/t/-deletion sa:vOn(t)s  � sa:vOns 's avonds in the evening 
/@/-deletion la:t(@)r@ � la:tr@ latere later 
/@/-insertion dElft  � dEl[@]ft Delft Dutch city: ‘Delft’ 

 
The transcription task can be considered to be a binary decision task, since the CSR 
(and the humans in one of the two approaches used to produce RTs) must decide 
whether a rule was applied or not. For analysis purposes, we treated the transcription 
task as a binary decision task: For each phone that can possibly be deleted or inserted 
since the condition for one of the five rules is met, a binary score is obtained: (1) if the 
rule is applied and (0) if this is not the case. To clarify this, let us consider the 
following example: For the word /dELft/ (‘Delft’) the rule conditions for the /t/-
deletion and the /@/-insertion are met; thus, four pronunciation variants are generated. 
Table 2 shows the four variants (column 1), the rules that are applied (column 2), and 
the corresponding binary scores (column 3). 

Table 2: Example of pronunciation variants and corresponding binary scores 

pronunciation variant rules that are applied binary scores 
/dELft/ none /t/-deletion=0, /@/-insertion=0 
/dElf/ /t/-deletion /t/-deletion=1, /@/-insertion=0 
/dEl@ft/ /@/-insertion /t/-deletion=0, /@/-insertion=1 
/dEl@f/ /@/-insertion + /t/-deletion /t/-deletion=1, /@/-insertion=1 

 

2.2 Speech material and CSR 

The speech material used in the experiments is taken from a Dutch database, which 
contains a large number of telephone calls recorded with the on-line version of a 
spoken dialogue system called OVIS (Strik, Russel, van den Heuvel, Cucchiarini & 
Boves, 1997). OVIS is employed to automate part of an operational Dutch public 
transport information service. The speech material consists of interactions between 
man and machine, and can be described as extemporaneous or spontaneous. From the 
VIOS material, two sets of data are selected and for each data set a different kind of 
human RT is obtained. For the first set, a reference transcription is employed based on 
a majority vote procedure. This set is equal to the one that was used in Wester et al. 
(2001). For the second set, a consensus transcription is made. The statistics of the two 
sets of transcription material are given in Table 3. In the column ‘#utts’ and ‘#words’, 
the number of utterances and words in the set is given. The remaining columns display 
the number of times a condition for rule application is met, and thus the number of 
binary scores that are obtained. The two sets of material are selected in such a way 
that the relative frequencies of potential and actual application of the rules correspond 
more or less to the relative rule frequencies in the training material. For the /@/-
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deletion and /@/-insertion rules, the relative frequencies of potential application are 
higher so as to obtain a sufficiently high number of observations. 
 
Table 3: Statistics of transcription material 
set reference # utts # words /n/-del /r/-del /t/-del /@/-del /@/-ins all 
1 majority vote 186 1208 155 127 84 53 48 467 
2 consensus 296 2035 287  230 109 41 103 770 

TOTAL: 482 3243 442 357 193 94 151 1237 
 

We used a standard CSR that is part of the spoken dialogue system OVIS (Strik et al., 
1997). The baseline phone models are continuous density HMMs with 32 Gaussians 
per state. Every 10 ms, 14 cepstral coefficients (including c0) and their deltas are 
calculated for frames with a width of 16 ms. The HMMs are trained on 25,104 VIOS 
utterances (81,090 words), which do not overlap with the material that was manually 
transcribed. The baseline HMMs consist of a tripartite structure; each of the three 
parts consists of two identical states, one of which can be skipped (Steinbiss et al., 
1993). In total, 38 HMMs are trained. For 35 of the phonemes, context-independent 
HMMs are trained. In addition, one model is trained for non-speech sounds, one 
model is used for filled pauses, and a model consisting of one state is employed to 
model silence. The baseline lexicon contains one transcription for each word. These 
canonical transcriptions are obtained using the grapheme-phoneme-converter which is 
part of a Text-to-Speech system for Dutch (Kerkhoff & Rietveld, 1994), followed by a 
manual correction. The only rule that is applied in the canonical transcriptions is the 
/n/-deletion rule, since the pronunciation without the /n/ is considered to be the most 
likely pronunciation according to the linguistic literature (van de Velde, 1996). The 
CSR uses a unigram and bigram language model, which is trained on the same 25,104 
VIOS utterances used to train the acoustic models.  
 

2.3 Automatic transcriptions and human reference transcriptions 

2.3.1 Automatic transcriptions 

The CSR is used to make the APTs. To this end, pronunciation variants are 
automatically generated by applying the five phonological rules (see section 2.1) to the 
canonical transcriptions of the words. The task of the CSR is to determine which of the 
generated variants best matches the acoustic signal. We refer to this type of 
recognition as forced recognition, since the CSR is forced to choose among a number 
of pronunciation variants. During forced recognition, all variants of the same words 
are assigned the same language model probability; thus, variant selection is completely 
determined by the acoustics. For more details on our approach to forced recognition, 
see Wester et al. (2001). The details on each investigated property of the CSR are 
given together with the results in section 3. 
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2.3.2 Majority vote reference transcriptions 

The majority vote reference transcriptions are identical to those made in Wester et al. 
(2001). We briefly summarize the relevant points of this transcription task; for more 
details, see Wester et al. (2001). The transcriptions were made by nine expert listeners 
who listened to the speech signal and decided which pronunciation variant best 
matched the realization that they had just heard for each of the 379 words in Table 3. 
In this sense, their task was exactly the same as the CSR’s, i.e. deciding which 
pronunciation variant best matched the speech signal. The listeners were selected to 
participate in this experiment because they all had carried out similar tasks for their 
own investigations. For this reason, they are representative of the kind of people who 
may benefit from automatic ways of obtaining such transcriptions. The RTs were 
determined by a majority vote procedure, which implies that the transcription that is 
produced by the majority of the listeners (5 or more out of 9) is taken to be the human 
RT.  

2.3.3 Consensus reference transcriptions 

The transcribers who made the consensus reference transcriptions are Language and 
Speech Pathology students at the University of Nijmegen. They had all attended the 
same transcription course including 32 hours contact time. The transcriptions used in 
this experiment were made as part of the final examination. The IPA transcription 
alphabet is used in this course. The transcribers all worked in one of 12 groups of two 
or three people (eleven duos and one trio) and based their transcriptions on auditory 
analysis of the full utterances without any kind of visual support. The groups of 
listeners made consensus transcriptions for whole utterances, which implies that two 
(or three) listeners had to agree on each symbol in the utterance. The utterances of the 
transcription material were distributed over the groups in such a way that the number 
of words that each group had to transcribe was about equal. No overlap existed 
between the transcription material of the different groups. 

The consensus transcriptions cannot directly be used for analysis, as they are 
produced using the whole range of IPA symbols and diacritics, whereas the CSR uses 
a limited set of SAMPA symbols. For this reason, the diacritics are discarded and the 
IPA-symbols are mapped to SAMPA symbols, as is shown in Table 4. 

Table 4: mapping of IPA to SAMPA symbols 

IPA �, �* �,��,��, ���	 , 
 , � � 
, � 
SAMPA n r t @ 
* the /�/ is only allowed in case of nasal assimilation 

 
The different IPA symbols shown in Table 4 are all allophonic variants of the phone 
that is represented by the corresponding SAMPA symbol. In case the consensus 
transcription is not an allophonic variant but a different phoneme, then this 
transcription is excluded from further analysis. In total 22 consensus transcriptions 
were excluded: 1 /n/-deletion, 16 /r/-deletion, 2 /t/-deletion, 2 /@/-deletion and 1 /@/-
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insertion transcriptions. This results in the number of transcribed phones as presented 
in Table 3. 

 

2.3.4 Differences between majority vote and consensus reference transcriptions 

As mentioned above, the two transcription procedures described in the previous 
sections are two attempts of obtaining human transcriptions that approach the actual 
speech realisations as much as possible. However, there are differences between these 
two procedures, which might have effects on the results obtained. First, the majority 
vote transcription is based on transcriptions that are made independently by various 
transcribers, whereas in the consensus transcription task the transcribers work together 
to produce one single transcription. In other words, in the first case the transcribers do 
not influence each other, while in the second case they do. This form of influence 
between transcribers may work either positively or negatively. It has been reported 
that if one of the transcribers is clearly more experienced and competent than the 
others, “the consensus transcription may be biased to reflect the judgements of the 
more competent, higher ranked, or ‘forceful’ transcriber” (Shriberg et al., 1984: 458). 
However, in many cases this influence helps resolve cases of disagreement between 
transcribers that are caused by the fact that one of the transcribers was “inattentive to a 
particular phonetic behaviour, which was immediately obvious upon replay” (Shriberg 
et al. 1984: 464).  

Another difference between the two procedures as they were applied in our 
experiments is that the transcribers that made the majority vote transcriptions 
(linguists) were much more experienced than those who made the consensus 
transcriptions (Language and Speech Pathology students). In view of the possibilities 
of having bias in the data when transcribers of different status make the consensus 
transcription, this choice appears to be a plausible one, as status differences seem 
more likely among linguists than among students. However, the differences in degree 
of experience may affect the results in another way. For example, it seems reasonable 
to assume that linguists will be much more aware of the various phonological 
processes that can occur in Dutch than students are. As a consequence they may be 
more attentive to details that are otherwise ignored by students. However, these types 
of expectations may also bias their transcriptions. 

Furthermore, an important difference between these two procedures concern 
the number of subjects involved. The majority vote transcription was based on input 
from nine subjects, whereas the consensus transcription was produced by two and, in 
one case, by three subjects. Given the differences in procedure, this seems logical, as 
it would be very time-consuming to obtain a consensus transcription from nine people. 
However, we have to realise that this has methodological consequences in terms of 
transcription reliability. The notion of reliability in relation to phonetic transcription is 
described in Cucchiarini (1993: 10): “The reliability of a measuring instrument 
represents the degree of consistency observed between repeated measurements of the 
same object made with that instrument. It is an indication of the degree of accuracy of a 
measuring device [...] The notion of reliability is related to the idea that each 
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measurement is subject to some degree of error and, therefore, each score can be seen as 
a combination of error and true value [...] Mathematically, the true value is defined as the 
limit of the average as the number of observations approaches infinity. ” It follows that a 
measurement based on larger number of observations is bound to be more accurate than 
one based on a smaller number of observations. Therefore, in our case the majority vote 
transcription can be assumed to be more accurate than the consensus transcription. 

Finally, the last difference is that the two transcription tasks were quite different. 
The majority vote transcribers were specifically instructed to decide whether one of 
the five optional phonological rules under investigation was (or was not) applied in 
specific words in the utterance. The consensus transcribers, on the other hand, were 
not aware of the purpose of the investigation. Their task consisted of transcribing all 
sounds in the utterances, which means that they had to pay attention to all phonetic 
phenomena in the utterances. Through this difference in focus, the majority vote 
transcribers probably base their decisions on more subtle differences than the listeners 
who make the consensus transcriptions. Furthermore, by focusing on a few 
phenomena, the reliability of the transcriptions might also be improved.  

2.4 Evaluation of the APTs 

The APTs are evaluated by comparing them to the human RTs. To this end, the binary 
scores of the APTs are compared to the binary scores that are derived from the RTs. 
As a measure of agreement between the APTs and the RTs we use Cohen’s κ, which 
corrects percentage agreement for chance agreement (Cohen, 1968):  

• Cohen’s
c

co

P100
PP

�

−
−=  (1) 

-1 ≤ κ ≤ 1 

Pc = percentage agreement on the basis of chance 

ntsdisagreeme#agreements#
agreements#

100%Po
+

×=  (2) 

Table 5 shows the qualifications for κ-values greater than zero, to indicate how the κ-
values should be interpreted (taken from Landis & Koch, 1977). 

Table 5: qualifications for κ-values > 0 

κ-value qualification 

0.00 - 0.20 slight 

0.21 - 0.40 fair 
0.41 - 0.60 moderate 
0.61 - 0.80 substantial 
0.81 - 1.00 almost perfect 
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3 Results 
The first aim of this investigation is to determine how various properties of ASR 
systems affect the quality of APTs. The properties of the CSR that are investigated are 
all related to the HMMs. The general procedure is to take our baseline CSR and 
substitute it with a different set of HMMs for which each of the following properties is 
changed: 

1) HMM topology   (section 3.1) 
2) Degree of contamination of the HMMs  (section 3.2) 
3) Context-independent versus context-dependent HMMs  (section 3.3) 
4) Combinations of 1) to 3)  (section 3.4) 

Each section in this chapter starts with a description of the investigated property of the 
CSR. As there are differences between the majority vote en consensus transcription 
procedures (see section 2.3.4), we present κ-values for the two sets of material 
separately. Both the total agreement values (=agreement for all rules) and the 
agreement values per rule are presented. Finally, each section ends with a discussion 
of the results and some concluding remarks. 

3.1 Topology of the HMMs 

In Wester et al. ( 2001), we found that, in general, our CSR detects fewer phones as 
present than the humans do. Figure 1 shows the percentages ‘phone present’ in the 
human RTs and in the APTs made with the baseline HMMs. In Figure 1, these 
percentages are given for: a) the majority vote material, and b) the consensus material. 
Figure 1 shows that for all rules and in each of the data sets the humans tend to detect 
more phones than the CSR. For the majority vote material, the difference is largest for 
the /@/-deletion and /@/-insertion rules, whereas for the consensus material the 
differences in percentages ‘phone present’ are comparable across rules. 
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Figure 1a: Percentages ‘phone present’   Figure 1b: Percentages ‘phone present’  
for the majority vote material   for the consensus material  
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The results in Wester et al. (2001) showed that agreement between the APTs 
and the human RTs (consensus transcriptions) increased if the /@/s which were judged 
to be short in duration by the humans were denoted as ‘not present’. This could be an 
indication that the minimum duration associated with the HMM topology is too long, 
with the consequence that it may be difficult for the CSR to detect short duration /@/s. 
In this paper, we define topology length as the duration corresponding to the minimum 
number of states to visit from the beginning to the end of the HMM model. Since the 
baseline HMMs consists of 6 states of which 3 can be skipped, the topology length of 
the baseline /@/ HMM is 3 states, or 30 ms. 

Brugnara et al. (1993) pointed out that topology length is a critical point for 
automatic segmentation of speech. The topology length of an HMM should be shorter 
than the minimum phone duration in order to avoid skipping of models. However, 
using a too short topology length (without any duration model) can cause a high 
insertion rate. In order to investigate the optimal topology length, Brugnara et al. 
(1993) compared various HMM topologies, with phone recognition rate as an 
evaluation criterion. They found an optimal accuracy for HMMs that have a minimum 
duration of 20 ms. This result might be an indication that our HMM topology length of 
30 ms is suboptimal for the task of automatic transcription. 

We decided to investigate the effect of using HMMs with topology lengths 
shorter than 30 ms on the task of automatic transcription. For two reasons, we started 
off by only changing the HMM topology for the phone /@/. First, the majority vote 
transcriptions showed very large differences in the numbers of /@/s that are denoted as 
present by the CSR and by the humans. Second, the results reported in Wester et al. 
(2001) indicate that duration might be a factor that plays a role in the difference in the 
number of /@/s transcribed by humans and CSR. For training of the short /@/ HMMs, 
we first made a segmentation of the training material using the baseline HMMs. In 
order to determine the duration of the phone /@/ in the training material, the /@/ must 
be present in the transcriptions used for segmentation. Therefore, the canonical 
transcriptions were used for all words, except for those to which the /@/-insertion rule 
is applicable. For these words, we inserted a /@/ at all places where the rule condition 
for /@/-insertion was met. Subsequently, we determined the number of frames that 
were assigned to each /@/. Next, we divided the /@/-s into two categories: 

1. short /@/: the duration in the segmentation is exactly 3 frames (30 ms); 1796 /@/s 
2. long /@/: the duration in the segmentation is > 3 frames (>30 ms);18,640 /@/s 

All short /@/s were then used to train an HMM consisting of 1 segment (2 identical 
states of which one can be skipped), with a topology length of 10 ms. The long /@/s 
were used for training the long-/@/ HMM, consisting of 3 segments. In addition to this 
HMM set, another set of HMMs was trained. For this model set the short /@/ HMM 
has a 2 segment topology, and thus a topology length of 20 ms. 

In order to find out whether using a short /@/ HMM indeed results in higher 
frequencies of /@/ in the APTs, which in turn increases agreement, the results of the 
/@/-deletion and /@/-insertion rule are investigated in more detail. First of all, we 
expect that by using the short /@/ HMM, more /@/s will be transcribed by the CSR. 
Table 6 shows the percentage of /@/s that are denoted as ‘present’ by the CSR. The 
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following abbreviations are used: ‘3seg’ denotes the baseline HMMs with a 3-segment 
topology for the phone /@/, ‘2seg’ denotes the 2-segment topology, and ‘1seg’ 
denotes the 1 segment topology. In Table 6, it can be seen that the percentages ‘/@/ 
present’ indeed increase when using the short-@/ HMM. Especially for the /@/-
deletions of the majority vote material the discrepancy between the percentages ‘/@/ 
present’ is decreased (the percentages ‘phone present’ are doubled).  

Table 6: Percentages ‘/@/ present’ for HMMs with various topology lengths and 
human RTs 

majority vote consensus 

APTs APTs rule 

3 seg 2 seg 1 seg 
human 

RTs 3 seg 2 seg 1 seg 
human 

RTs 

/@/-deletion 32% 57% 68% 72% 49% 51% 61% 68% 
/@/-insertion 29% 33% 38% 56% 23% 32% 33% 37% 

 
Second, we expect that agreement will increase for the /@/-deletion and /@/-insertion 
rule. Figure 2 shows the agreement values per rule. These data reveal that the increase 
in the number of /@/s that are detected by the CSR (as shown in Table 6) does not 
necessarily mean that agreement is also increased: There is a decrease in agreement 
for the majority vote transcriptions of the /@/-insertion rule. Another observation that 
can be made from Figure 2 is that the use of a shorter topology length for the phone 
/@/ also influences the agreement values for the other rules. 
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In Figure 3, the total agreement values are given for HMMs with various 

topology lengths for the phone /@/. As agreement deteriorates for the /@/-insertion 
rule of the majority vote material and also for some of the other rules (see Figure 2), it 
is not surprising that the improvement in the total agreement values is not very large 
when a short /@/ HMM is used. Another observation that can be made from Figure 3 
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is that for the consensus transcriptions an HMM topology length of 2 segments - or 20 
ms – performs slightly better than the two other lengths. This is in line with the results 
of Brugnara et al. (1993), since they also found an optimal topology length of 20 ms. 
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Figure 3: Total agreement values for HMMs with various topology lengths 
 

The question that arises is why the agreement values for the /@/-insertion rule do not 
increase for the majority vote transcriptions while they do increase for the consensus 
transcriptions. This difference in result can probably be attributed to the listeners. It is 
striking that the listeners in the majority vote transcription task tend to choose for 
considerably more /@/-insertions (56%) than the humans who make the consensus 
transcriptions (37%) (see Figure 1). This difference in result might be explained by a 
difference in experience level between the majority vote and consensus transcribers. 
Furthermore, the different way in which the two kinds of transcriptions are made is 
probably another factor that is playing a role (see section 2.3.4). 

To conclude, using a shorter topology length for the phone /@/ improves the 
total agreement values, but the improvements are very small. Furthermore, agreement 
is improved for the /@/-insertion rule of the consensus material, whereas this is not 
the case for the majority vote transcriptions. As mentioned in section 2.3.4, it seems 
reasonable to assume that the linguists who made the majority vote transcriptions will 
be much more aware of the various phonological processes that can occur in Dutch 
than the students who made the consensus transcriptions. This bias through 
expectation might be strong for the /@/-insertion rule as it is a frequently occurring 
process (Kuipers & van Donselaar, 1997). Another factor mentioned in section 2.3.4 
is that the majority vote transcribers were aware of the purpose of this investigation. 
This difference of focus might bias the majority vote transcribers towards more /@/-
insertions. 

3.2 Degree of contamination of the HMMs 

The speech material used for training contains much variation in pronunciation, 
whereas the baseline training lexicon contains only one canonical transcription for 
each word. Therefore, some of the transcriptions used for training the baseline HMMs 
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will be incorrect, e.g. a phone is present in the transcription but has not been realized. 
Through this mismatch between transcription and pronunciation the HMMs get 
contaminated. Subsequently, the contamination can lead to errors in the automatic 
transcriptions. The effect of contamination of the HMMs on automatic transcription 
will probably be that the APTs are more biased towards the transcriptions on which 
the HMMs are trained. To better illustrate our point, we can look at the following 
example: We train our baseline HMMs on the basis of canonical transcriptions of the 
training corpus in which /@/-insertion is not applied. Consequently, if the /@/ is 
present (‘inserted’) in the pronunciation, the HMM of the adjacent phones get 
contaminated with acoustic signal of the/@/. Through this contamination, the baseline 
CSR probably tends to choose less easily for /@/-insertion: If the /@/ is pronounced it 
can still be transcribed as not since the HMM for the adjacent phones contains 
acoustic information of the /@/.  

The effect of contamination of our baseline HMMs probably will be that they 
are biased towards the transcriptions on which the HMMs are trained, i.e. the 
canonical transcriptions. By removing (some of) the mismatch between the 
transcription on which the HMMs are trained and the actual pronunciation, the bias 
can be reduced. Saraçlar (2000a) reported that this is indeed the case: The baseline 
HMMs that are trained on canonical transcriptions produce more canonical APTs than 
HMMs that are trained on the basis of automatic or manual transcriptions of the 
training material in which pronunciation variation is transcribed.  

In this section, we will investigate whether using less contaminated HMMs is 
beneficial to automatic transcription. To this end, we used two kinds of HMMs that 
we expect to be less contaminated than the baseline HMMs, namely HMMs from 
pronunciation variation modeling research and HMMs that are trained on read speech 
material. 
 

3.2.1 Modeling of pronunciation variation  

One of the approaches we used to minimize the mismatch in the training corpus 
consists of modeling pronunciation variation (Wester, Kessens & Strik, 1998). In this 
research, automatic transcriptions of pronunciation variation are made by means of 
forced recognition. The new automatic transcriptions are then used to train new 
HMMs. From this pronunciation variation research, two sets of HMMs were taken 
that were used in addition to the baseline HMMs for making automatic transcriptions: 

1. HMMs trained on a corpus for which automatic transcriptions of within-word 
pronunciation variants are made (‘within HMMs’). These variants are generated 
using the same five within-word phonological rules as mentioned in section 2.1. 

2. HMMs trained on a corpus for which also cross-word variation is transcribed 
(‘within + cross HMMs’). For more details on the cross-word variation modeled, 
see Wester et al., 1998. 
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Figure 4 shows the total agreement values for the baseline HMMs and the 
HMMs from pronunciation variation research. It can be seen that for both data sets the 
total agreement values increase when less contaminated HMMs are used. These 
results are in line with the findings of Saraçlar (2000a). 
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Figure 4: Total agreement values for the baseline HMMs and for HMMs from 
pronunciation variation research 

 
Saraçlar (2000a) also showed that the pronunciation variation HMMs are less biased 
towards the canonical transcriptions than baseline HMMs. Closer inspection of our 
data reveals that also in our material the CSR tends to choose less often for canonical 
transcriptions; the percentage of canonical APTs for all rules decreases from 57.9% 
for the baseline HMMs, to 50.6% and 50.8% for respectively the ‘within’ and the 
‘within+cross’ HMMs. This tendency is also observed per rule (see Appendix 1). 
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Figure 5a: Agreement values per rule  Figure 5b: Agreement values per rule 
for the majority vote transcriptions  for the consensus transcriptions 
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As the total agreement values increase if pronunciation variation HMMs are 
used, one could easily conclude that the contamination of the baseline HMMs indeed 
leads to transcription errors. However, the results per rule do not confirm this 
hypothesis unconditionally since agreement is not increased for all rules (see Figure 
5).  

Another observation that can be made from Figure 5 is that the agreement 
values are considerably increased for the /@/-insertion rule of the majority vote 
material, whereas this is not the case for the consensus material. The fact that we 
again find discrepancies in the results of the majority vote and consensus 
transcriptions of the /@/-insertion rule confirms our hypothesis that the way in which 
the transcribers decide on the application of this rule is different in the two 
transcription tasks.  

Finally, it should be noted that the increase in agreement values is mainly 
caused by an increase in agreement for the /n/-deletion rule (see Figure 5). Another 
way of modeling pronunciation variation is to take the most frequent transcription of a 
word as the transcription in the lexicon (Cohen, 1989). If the most frequent 
transcription of a word is used in the training lexicon, the number of words for which 
there is a mismatch between the transcription and the realized pronunciation is 
reduced, which probably leads to better transcription quality. The /n/-deletion rule is 
the only rule for which the canonical transcription is not the most frequent one 
according to the human transcribers: The baseline HMMs are trained on transcriptions 
in which /n/-deletion is applied, whereas in our speech material the percentage of /n/-
deletions according to the transcribers is less than 50% (see Figure 1). In order to 
investigate whether HMMs trained on the most frequent transcription of a word is 
beneficial to automatic transcription quality, we trained new HMMs on the basis of 
transcriptions in which /n/-deletion is not applied. To this end, we re-inserted all the 
/n/s in the transcriptions of the training material and we then train new HMMs. The 
new HMMs are referred to as ‘/@n#/’ (‘#’= word boundary) whereas the baseline 
HMMs are referred to as ‘/@-#/’ (‘-‘ = deletion).  

Besides the effect that the ‘/@n#/’ HMMs are probably less contaminated, 
they are also contaminated in a different way. For the ‘/@n#/’ HMMs, the HMM for 
the phone /n/ will be contaminated with acoustic signal of the /@/, whereas for the 
‘/@-#/’ HMMs the HMM for the phone /@/ will be contaminated with acoustic signal 
of the /n/. This different kind of contamination will probably bias the CSR to choose 
more transcriptions containing the /n/. As expected, by using the new ‘/@n#/’ HMMs 
considerably more /n/s are detected by the CSR; 71 more /n/s for the majority vote 
transcriptions, and 60 more /n/s for the consensus transcriptions (see Appendix 1). 
Figure 6 shows that the total agreement values increase using the ‘/@n#/’ instead of 
the ‘/@-#/’ HMMs.  
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Figure 6: Total agreement values for ‘/@-#/’ and ‘/@n#/’ HMMs 
 

Figure 7 shows the agreement values per rule. It can be seen that using the ‘/@n#/’ 
HMMs instead of ‘/@-#/’ HMMs increases agreement not only for the /n/-deletion 
rule, but also for some of the other rules. Furthermore, Figure 7 shows that especially 
for the /n/-deletion rule of the consensus transcriptions, the agreement values are 
improved. The agreement values for the ‘/@n#/’ HMMs are even higher than for the 
‘within+cross’ HMMs. Since we expect that the amount of contamination in the 
‘within+cross’ HMMs is smaller than that in the ‘/@n#/’ HMMs, one should expect 
that the agreement values are also higher for the ‘within+cross’ HMMs. A factor that 
might partly explain this result is that the ‘/@-#/’ HMMs that were used for automatic 
transcription of the within- and cross-word pronunciation variation are contaminated. 
For this reason, the ‘within+cross’ HMMs that are trained on the basis of these partly 
incorrect automatic transcriptions are also (indirectly) contaminated.  
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Figure 7a: Agreement values per rule   Figure 7b: Agreement values per rule 
for the majority vote transcriptions   for the consensus transcriptions 

3.2.2 Spontaneous versus read speech for model training 

It is well known that the amount of pronunciation variation tends to be larger in 
spontaneous than in read speech. Consequently, fewer mismatches should be found 
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between the speech signal and the transcriptions in read speech. Thus, it is to be 
expected that HMMs trained on read speech will be less contaminated than those 
trained on spontaneous speech. Since in the previous section it was shown that less 
contaminated HMMs can yield better results, we decided to use HMMs trained on 
read speech for automatic transcription. The HMMs were trained on 18,000 
phonetically rich read sentences of the Dutch Polyphone corpus (den Os, 1995) 
containing about twice as many words as the VIOS training material. 

Figure 8 shows that the total agreement values are higher when we use HMMs 
trained on read speech (Polyphone) instead of on spontaneous speech (VIOS). The 
total agreement values are also improved compared to the ‘/@n#/’ HMMs. 
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Figure 8: Total agreement values for read speech HMMs 
 

Figure 9 shows that the trends in the results of the read speech HMMs are very similar 
to those obtained for the pronunciation variation HMMs: Agreement values mainly 
increase for the /n/-deletion rule and for the /@/-insertion rule. Furthermore, also the 
read speech HMMs are less biased towards the canonical transcriptions than the 
baseline HMMs: The percentage of canonical transcriptions for all rules decreases 
from 57.9% for the baseline HMMs, to 51.0% for read speech HMMs (see Appendix 
1). The increase in overall agreement values could be caused by the larger amount of 
training material used to train the read speech HMMs. However, since the trends for 
the pronunciation variation HMMs and the read speech HMMs are very similar, the 
kind of contamination that is contained in the baseline HMMs is probably absent in 
both the pronunciation variation HMMs and the read speech HMMs.  

The results presented in this section show that contamination of the HMMs due 
to pronunciation variation affects the overall quality of automatic transcription. The 
quality of automatic transcription can be improved by reducing the amount of 
contamination. This can be achieved by using pronunciation variation modeling 
HMMs or HMMs trained on read speech.  
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Figure 9a: Agreement values per rule  Figure 9b: Agreement values per rule 
for the majority vote transcriptions  for the consensus transcriptions 
 

3.3 Context-independent vs. context-dependent HMMs 

As CD-HMMs take account of the context in which a phone occurs, CD-HMMs are 
better equipped for modeling context effects such as transitions and co-articulation 
between phones. For this reason, CD-HMMs generally yield lower WERs (see e.g. 
Schwartz, Chow, Roucos, Krasner, Makhoul, 1984) and one could expect that CD-
HMMs also produce better quality transcriptions. However, we hypothesize that CD-
HMMs do not necessarily generate better transcriptions. As mentioned in section 3.2, 
the effect of contamination of the HMMs on automatic transcription is that the APTs 
are more biased towards the transcriptions on which the HMMs are trained. This 
means that if CD-HMMs are trained on the basis of canonical transcriptions of the 
training material, the CD-HMMs will produce APTs that are biased towards the 
canonical transcriptions. We hypothesize that the bias towards the canonical 
transcriptions is sometimes larger for the CD-HMMs than for the CI-HMMs. To 
illustrate this point, let us consider the following example. Suppose we train CD-
HMMs on the basis of transcriptions of the training corpus in which /r/-deletion is not 
applied. In these transcriptions of the VIOS training corpus 30,018 /r/s are transcribed, 
of which 1,813 occur in the context /@rd/. However, a large part of these /r/s are not 
realized since for all words in our material that contain /@rd/, the rule conditions for 
the /r/-deletion rule are met. According to the human listeners, /r/-deletion is applied 
in about 1/3 of the cases (see Figure 2), thus of the /r/s in the context /@rd/ about 1/3 
are not pronounced. This percentage corresponds to 2% of all /r/s in the training 
material. Consequently, if a CD-HMM is trained for /@rd/, then the /r/ is not present 
in 1/3 of the training tokens, which corresponds to 2% of the training tokens for the 
CI-HMM. This means that the CD-HMM for the context /@rd/ is more contaminated 
than the CI-HMM for the /r/. For this reason, the bias towards canonical transcriptions 
is larger for the CD-HMM (for the context /@rd/) than for the CI-HMM for the /r/. As 
the results in section 3.2 show that removing (part of) the bias towards the canonical 
transcriptions is beneficial for automatic transcription, we expect that enlarging the 
bias towards the canonical transcriptions will reduce the agreement values.  
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In order to investigate the effect of CD-HMMs on automatic transcription, 
state-tied CD-HMMs are trained on the basis of the canonical transcriptions of our 
training material. Since our HMMs have a tripartite structure and each of the three 
parts (or segments) consists of two identical states, state-tying is performed by tying 
segments. For state-tying it is assumed that all first segments are dependent on the left 
context of the phone, all middle segments are independent of the context, and all last 
segments are dependent on the right context. For this reason, all middle segments of 
each phone are clustered to train a CI-model for all middle segments of the same 
phone. Left and right CD-models are trained for clusters of first and last segments 
with equal left or right contexts. Each cluster of first and last segments contains at 
least 200 observations. All left and right contexts with less than 200 observations are 
clustered to train two backing off models: one for all first and one for all last segments 
with less than 200 observations. In total, 237 left CD-models and 227 right CD-
models are trained. If we then look at the training corpus consisting of 326,494 
phones, and thus 326,494 left and right contexts, we see that 94.3% and 94.4% of 
these contexts are covered by the right and left CD-models, respectively. 
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Figure 10: Agreement values for CI- versus CD-HMMs 
 

Figure 10 shows that the agreement values are lower if CD-HMMs are used to obtain 
automatic transcriptions of the majority vote material, whereas for the consensus 
transcriptions a small improvement in the total agreement values is found. Figure 11 
shows that agreement increases for some of the rules (viz. the /t/- and /@/-deletion 
rules), but decreases for others (viz. the /r/-deletion and /@/-insertion rules). 
Especially for the /r/-deletion rule of the majority vote material a large decrease in 
agreement is found. Due to this large decrease in agreement for the /r/-deletion rule, 
the total agreement value decreases for the majority vote transcriptions. If we look at 
the numbers of detected /r/s using CD-HMMs, it is striking that this number is 
extremely large for the majority vote transcriptions (see Appendix 1). The large 
deterioration in agreement for the /r/-deletion rule is indeed mainly caused by a large 
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Figure 11a: Agreement values per rule   Figure 11b: Agreement values per rule 
for the majority vote transcriptions  for the consensus transcriptions 

 
bias towards the canonical transcriptions (i.e. the transcription in which the /r/ is 
present): For the majority vote material, more /r/s are unjustly denoted as present by 
the CSR using CD-HMMs instead of CI-HMMs. The different /r/-deletion results for 
the majority vote and the consensus material is probably related to the fact the /r/-
deletion rule is the only rule for which there exist a considerably difference in the 
identity and frequency of the words that are contained in the two types of material. 
Therefore, for obtaining the automatic transcription of /r/-deletion, CD-HMMs are 
used that concern other contexts. Probably, the amount of contamination in these 
different contexts varies and thus, also agreement varies. 

Another observation that can be made from Figure 11 is that there is a large 
increase in agreement values for the /@/-deletion rule. Closer inspection of the /@/-
deletion transcriptions reveal that this increase is caused by an increase in the number 
of detected /@/s: Nearly all extra /@/s that are now detected by the CSR concern /@/s 
that are denoted as present by the human transcribers.  

To conclude, using CD-HMMs for automatic transcription causes a 
deterioration in the total agreement for the majority vote transcriptions, whereas a 
small improvement is found for the consensus transcriptions. The deterioration in 
agreement values for the majority vote transcriptions is mainly caused by an increase 
in the number of /r/s that are unjustly detected by the CSR. The difference in result for 
the two sets of materials with respect to the /r/-deletion rule can probably by explained 
by the fact that the identity and frequency of the words that are contained in the two 
types of material are different for this rule. 

3.4 Combinations of properties 

In this section, we will investigate the effect of two combinations of properties, on the 
assumption that some properties will be (partly) complementary in terms of their 
ability to improve automatic transcription quality.  
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3.4.1 Combination of pronunciation variation modeling and a short /@/ HMM 

First, we investigate a combination of using a shorter topology length for the phone 
/@/ (see section 3.1) and pronunciation variation modeling (see section 3.2). It can be 
expected that these properties benefit from each other. On the one hand, pronunciation 
variation modeling removes the /@/-transcriptions for the /@/s that are not 
pronounced, thus making the short /@/ HMMs less contaminated. On the other hand, 
the short /@/ HMM will probably make better automatic transcriptions of the within- 
and cross-word pronunciation variation (recall that the agreement values are higher 
using the short /@/ HMM).  

In order to train the combination HMMs, we make a new transcription of the 
within- and cross-word variation in the training material using the set of HMMs that 
contains the short /@/ HMM with the highest total agreement values (the short /@/ 
HMM consisting of 2 segments). Next, the new transcriptions are used to train a new 
set of HMMs. 
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Figure 12: Total agreement for the combination of pronunciation variation modeling 
and short /@/ HMMs  

Figure 12 shows the total agreement values for the baseline HMMs (‘base’), 
the agreement values for changing the separate properties (‘short /@/’ and 
‘pron.var.’), and the agreement values for changing the two properties simultaneously 
(‘combi’). It can be seen that the combination of the two properties results in higher 
agreement values than each property separately.  

Figure 13 shows that - compared to the baseline - agreement is largely 
improved for the /n/-deletion rule and the /@/-insertion rule. This increase in 
agreement for the /n/-deletion rule can be attributed to the pronunciation variation 
modeling since the increase in agreement was also found for the pronunciation 
variation HMMs. The two rules that especially benefit from the combination of the 
two properties are the /@/-deletion and /@/-insertion rules: For both rules the 
combination results are better than the results of the individual properties. 
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Figure 13a: Agreement values per rule   Figure 13b: Agreement values per rule 
for the majority vote transcriptions  for the consensus transcriptions 
 
3.4.2 Combination of pronunciation variation modeling and CD-HMMs 

Another combination of properties that could enhance the system’s transcription 
quality is pronunciation variation modeling (section 3.2) and CD-HMMs (section 3.3). 
Due to modeling of pronunciation variation, part of the mismatch between the 
phonetic transcriptions of the training material and the actual pronunciation is 
removed, thus the CD-HMMs are less contaminated.  

In order to train the combination HMMs, we make an automatic transcription 
of the within- and cross-word variation in the training material using the baseline 
HMMs. On the basis of this transcription, state-tied CD-HMMs are trained (see 
section 3.3 for more details on the state-tying procedure). Figure 14 shows the 
agreement values for the pronunciation variation HMMs (‘pron.var.’) and CD-HMMs 
(‘CD’) and the combination of pronunciation variation modeling and CD-HMMs 
(‘combi’). In general, the combination of the two properties results in higher total 
agreement values than the agreement values for each property separately.  
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Figure 14:  Total agreement values for combination of pronunciation variation and 
CD-HMMs 
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Figure 15a: Agreement values per rule  Figure 15b: Agreement values per rule 
for the majority vote transcriptions  for the consensus transcriptions 

 
Figure 15 reveals that CD-HMMs can indeed benefit from pronunciation variation 
modeling: The large decreases in agreement values that were found for the majority 
vote transcriptions of the /r/-deletion rule disappear. Furthermore, for the /@/-
insertion rule the combination results are better than the individual results. Clearly, 
context-dependent modeling improves upon pronunciation variation modeling. The 
/@/-deletion rule is the only rule for which the combination results substantially 
deteriorates compared to the results of each individual property. This result might be 
explained as follows: As the automatic transcriptions of the /@/-deletion variants are 
obtained with the baseline HMMs and as low agreement values are found for the /@/-
deletion rule (the κ values are qualified as ‘slight’ and ‘fair’ for the baseline HMMs), 
the pronunciation variation modeling might deteriorate the context-dependent 
modeling.  

4 Agreement and WER 

In other research on APT, the choice of the speech recognizer is usually not clearly 
motivated. Most probably, one generally takes the speech recognizer with the lowest 
WER. Obviously, the assumption on which this choice rests is that a recognizer with a 
lower WER will produce better APTs. To investigate whether a recognizer with lower 
WERs indeed produces better quality transcriptions, we looked at the relation between 
WER on the one hand, and the agreement values between the APTs and human RTs 
on the other hand. We measured WER on the total transcription material (majority 
vote + consensus) for all sets of HMMs that are used in this article. The lexicon used 
in the recognition experiments contains 1,154 words, to which 1,119 pronunciation 
variants were added. The variants were automatically generated by applying the five 
phonological rules (see section 2.1) to the canonical transcriptions of the words, thus 
obtaining a lexicon containing 2273 entries. A language model is employed that 
distinguishes between different variants of the same word. For more details on this 
kind of language model, see Kessens et al. (1999). For more details on the CSR, see 
section 2.2. The WER is defined as follows: 
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where S is the number of substitutions, D the number of deletions, I the number of 
insertions, and N the total number of words. As a measure of agreement we used the 
total κ, which is the κ for the two data sets pooled together. In Figure 16, the scatter 
plot of the total κ as a function of WER is given. 
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Figure 16: Scatter plot of total κ and WER on transcription data  

The relation between κ and WER that we would expect is: The lower the WER, the 
higher κ. Figure 3 shows that this trend is not present. If we had selected the HMMs 
with the lowest WER (‘within + cross HMMs’) for automatic transcription, we would 
not have obtained the most optimal APTs. Furthermore, the HMMs that produce the 
optimal APTs (combination of pronunciation variation modeling and CD-HMMs) do 
not yield the lowest WERs. One could argue that it is not correct to use the total κ as a 
measure of agreement, since the agreement values are different for the two data sets. 
However, even when the two sets of data sets are treated separately, the expected 
relation between WER and κ is not found either. For both data sets the best agreement 
values are found for the combination of pronunciation variation modeling and CD-
HMMs, whereas the lowest WERs are found for the pronunciation variation HMMs. 

 Saraçlar (2000a) and Saraçlar et al. (2000b) also reported results showing that 
a better transcription accuracy does not imply that the WER is also improved. They 
found that HMMs trained on automatic transcriptions of pronunciation variation 
improve transcription accuracy by 4.5% compared to using baseline HMMs, whereas 
the WER deteriorates by 1.4%. They conclude that this result can be explained by an 
increased lexical confusion: “Since our decision tree pronunciation model allows 
words to have a large number of pronunciations, many of which overlap with 
pronunciations of other words, ‘recovering’ the right word strings from more accurate 
phone recognition is difficult”. We think that also another factor also plays a role. The 
sequences of phones that can be recognized during a normal recognition task are 
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constrained by the lexicon and the (word-level) language model. Through these 
constraints, it is impossible or less likely to recognize some sequences of phones 
during a conventional recognition task. During automatic transcription, however, the 
lexicon and the language model do not influence the resulting transcription and thus, 
these constraints do not influence transcription quality. 

These results illustrate that recognition and automatic transcription are different 
tasks and should be optimized in different ways. For this reason, for automatic 
transcription one should not select the speech recognizer with the highest recognition 
performance in a conventional recognition task, but one should rather concentrate on 
the properties that the recognizer should have for making optimal APTs.  

5. Discussion 
In this paper, we evaluated the quality of APTs by measuring agreement with two 
kinds of human RTs, namely RTs based on a majority vote principle and consensus 
RTs. The agreement values for the consensus transcriptions were, in general, lower 
than the agreement values for the majority vote transcriptions. There are various 
possible explanations for the difference in absolute agreement values. First of all, the 
experience level of the students who made the consensus transcribers is probably 
lower than that of the majority vote transcribers. It seems reasonable to assume that 
linguists will be much more aware of the five phonological processes that were the 
focus of this study. As a consequence they may be more attentive to details that might 
be ignored by the students. Second, as the number of subjects involved in making the 
consensus transcriptions is smaller than the number of transcribers that made the 
majority vote transcriptions, the consensus transcriptions are probably less accurate. 
Third, the consensus transcribers were not specifically instructed to decide whether 
one of the five optional phonological rules under investigation was (or was not) 
applied in specific words in the utterance, whereas the majority vote transcribers were 
aware of the purpose of the investigation. Through this difference in focus, the 
reliability of the majority vote transcriptions might also be improved. 

Although the absolute agreement values vary for the two types of human RTs, 
the general trends that we observe are very similar. There are two exceptions. First of 
all, for the /@/-insertion rule, the majority vote and consensus transcriptions reveal 
contradictory trends: Using a short /@/ HMM, agreement values deteriorate for the 
majority vote material, whereas agreement values increase for the consensus material. 
Furthermore, pronunciation variation HMMs lead to lower agreement values for the 
consensus transcriptions, whereas it is the other way around for the majority vote 
transcriptions. A possible explanation for the opposite results is that the majority vote 
transcribers are more biased towards /@/-insertion since they expect this process to 
occur. Since the consensus transcribers are probably less familiar with the /@/-
insertion rule, they are probable less biased. Second, we found contradictory results 
for the CD-HMMs: Compared to using CI-HMMs, agreement values are lower for the 
majority vote material whereas the agreement values are higher for the consensus 
material. Probably, this difference is not related to the way the manual transcriptions 
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are made, but is probably due to the fact that the two types of material contain 
different words for the /r/-deletion rule.  

The results that we obtained in this investigation are in concordance with the 
results reported by other authors. We observed that a topology length of 20 ms for the 
phone /@/ results in better quality APTs than the baseline topology length of 30 ms, 
which confirms the results reported by Brugnara et al. (1993). Furthermore, we found 
that pronunciation variation HMMs yield better quality APTs, a result that has also 
been reported by Saraçlar (2000a) and Saraçlar et al. (2000b). These authors also 
showed that the pronunciation variation HMMs were less biased towards canonical 
transcriptions than the baseline HMMs; this trend was also observed in our data.  

Closer inspection of our data reveals that the results vary per rule. For this 
reason, we now discuss the results per rule. For the /n/-deletion rule, the baseline 
HMMs seem to contain contamination which results in a bias towards the deletion of 
/n/. This contamination can be reduced by training HMMs on the basis of a 
transcription of the training material in which the /n/-deletion rule is not applied since 
according to the humans /n/-deletion is applied in less than half of the cases. 
Furthermore, the contamination can be reduced by training HMMs on automatic 
transcriptions of pronunciation variation. Finally, by training the HMMs on read 
speech material the amount of contamination in the HMMs is also reduced. For the /r/-
deletion rule, the most striking result is that agreement is considerably reduced by 
context-dependent modeling. This is mainly caused by a large bias of the CD-HMMs 
towards the canonical transcriptions. Consequently, more /r/s are unjustly detected 
using the CD-HMMs compared to using the CI-HMMs. The deterioration in 
agreement for the CD-HMMs can be reduced if the context-dependent modeling is 
combined with pronunciation variation modeling. For the /t/-deletion rule the only 
clear trend is that context-dependent pronunciation modeling seems to give the highest 
agreement values. For the /@/-deletion rule, the discrepancy between the number of 
detected phones by humans and CSR seems to be partly of a durational nature, since 
using a short /@/ HMM improves agreement values. The /@/-deletion rule is the only 
rule for which the combination of pronunciation modeling and CD-HMMs results in 
considerably lower agreement values than the agreement values for CD-HMMs 
without pronunciation variation modeling. A possible explanation for this result is that 
the quality of the automatic transcriptions of the /@/-deletion variants is low as they 
are obtained with the baseline HMMs (the κ values are qualified as ‘slight’ and ‘fair’ 
for the baseline HMMs). Finally, for the /@/-insertion rule we find differences in 
results for the majority vote and consensus transcriptions. In general, the number of 
phones that are denoted as present is higher for the humans than for the CSR. For the 
majority vote transcriptions this difference in detected phones becomes smaller if the 
amount of contamination contained in the HMMs is reduced, whereas for the 
consensus transcriptions, the topology length of the /@/ HMM seems to play a role. 
The fact that we find discrepancies in the results of the majority vote and consensus 
transcriptions of the /@/-insertion rule probably means that the way in which the 
humans decide on the application of this rule is different in the two transcription tasks. 
A way of limiting the discrepancy between the number of detected phones by CSR 
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and humans and increasing agreement for both materials is to use a combination of 
pronunciation variation modeling and a short /@/ HMM. 

6 Conclusions 
In this study, we have shown that changing the properties of a CSR does influence the 
degree of agreement between the automatic transcriptions and the reference 
transcription: For the majority vote transcriptions, the overall κ-value varies between 
0.464 and 0.629. For the consensus transcriptions, the overall κ-value varies between 
0.426 and 0.505. Although the absolute agreement values for the two kinds of human 
RTs differ, the general trends are very similar. Our results indicate that the quality of 
the automatic transcriptions can be improved by using ‘short’ HMMs. The quality of 
automatic transcription can also be improved by reducing the amount of 
contamination due to pronunciation variation. This can be achieved by using HMMs 
trained on the most frequently observed transcription, by using HMMs trained on 
automatic transcriptions of pronunciation variation, or by using HMMs trained on 
read speech. Furthermore, we found that CD-HMMs should not be trained on the 
baseline transcriptions, since for these transcriptions there is a mismatch between the 
phonetic transcriptions of the speech material and the realized pronunciation. If CD-
HMMs are trained on automatic transcriptions of pronunciation variation, the 
mismatch is reduced, resulting in better quality transcriptions. The combination of two 
other properties, namely pronunciation variation modeling and ‘short’ HMMs, results 
in higher agreement values than those obtained with the individual properties. Finally, 
we found that by combining properties the quality of automatic transcription can be 
improved even further. For both data sets, the lowest total agreement values are 
obtained for the baseline HMMs, whereas the highest values are obtained for a 
combination of pronunciation variation modeling and CD-HMMs.  

Finally, we observed that there is no clear relation between the WER of a CSR 
and the κ-values. Therefore, we can conclude that for obtaining automatic 
transcriptions, using the CSR with the lowest WER is not always the optimal solution. 
It appears that for this specific purpose, CSRs should be used that have been specially 
optimized for automatic transcription. 
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Appendix 1: Numbers APTs in which the relevant phone is ‘present’. For the /r/-, /t/- 
and /@/-deletion rules the APTs in which the relevant phone are ‘present’ are the 
canonical transcriptions. For the /n/-deletion rule and /@/-insertion rule, the APTs in 
which the relevant phones are ‘present’ are the non-canonical transcriptions. 
Therefore, for the /n/-deletion rule and /@/-insertion rule the numbers of canonical 
transcriptions are given between brackets. In the last row, the numbers are given for 
the human RTs. 

 
Table A1.1: Numbers of ‘phone present’ for the majority vote material.  
section HMMs /n/-del /r/-del /t/-del /@/-del /@/-ins all 

3.1 3seg (baseline) 72 (83) 66 64 17 14 (34) 233 (264) 
3.1 2seg 77 (78) 73 63 30 16 (32) 259 (276) 
3.1 1seg 79 (76) 83 66 36 18 (30) 282 (291) 
3.2 within 90 (65) 58 62 16 18 (30) 244 (231) 
3.2 within+cross 90 (65) 57 63 19 17 (31) 246 (235) 
3.2 /@n#/ 110 (45) 68 66 20 11 (37) 275 (236) 
3.2 read speech 96 (59) 69 63 19 20 (28) 267 (238) 
3.3 CD 83 (72) 107 71 29 8 (40) 298 (319) 
3.4 pron.var. & short /@/ 96 (59) 61 62 31 29 (19) 279 (232) 
3.4 pron.var & CD 95 (60) 67 66 19 19 (29) 266 (241) 

human RTs 95 (60) 78 70 38 27 (21) 308 (267) 
 
Table A1.2: Numbers of ‘phone present’ for the consensus material.  
section HMMs /n/-del /r/-del /t/-del /@/-del /@/-ins all 

3.1 3seg (baseline) 121 (166) 123 64 20 24 (79) 352 (452) 
3.1 2seg 136 (151) 129 62 21 33 (70) 381 (433) 
3.1 1seg 137 (150) 148 64 25 34 (69) 408 (456) 
3.2 within 146 (141) 109 57 18 33 (70) 363 (395) 
3.2 within+cross 148 (139) 110 59 15 32 (71) 364 (394) 
3.2 /@n#/ 181 (106) 131 66 17 27 (76) 422 (396) 
3.2 read speech 164 (123) 120 62 21 36 (67) 403 (393) 
3.3 CD 150 (137) 172 72 25 15 (88) 434 (494) 
3.4 pron.var. & short /@/ 151 (136) 123 63 22 41 (62) 400 (406) 
3.4 pron.var & CD 158 (129) 124 69 19 35 (68) 405 (409) 

human RTs 181 (106) 155 83 28 38 (65) 485 (437) 
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Appendix 2: Agreement values for all sets of HMMs 

 
Table A2.1: Agreement values for majority vote material 
section HMMs /n/-del /r/-del /t/-del /@/-del /@/-ins all 

3.1 3seg (baseline) 0.632 0.555 0.488 0.184 0.327 0.504 
3.1 2seg 0.691 0.495 0.464 0.279 0.240 0.517 
3.1 1seg 0.689 0.509 0.462 0.285 0.152 0.518 
3.2 within 0.799 0.568 0.372 0.163 0.475 0.559 
3.2 within+cross 0.799 0.585 0.393 0.227 0.517 0.584 
3.2 /@n#/ 0.672 0.520 0.538 0.250 0.376 0.518 
3.2 read speech 0.795 0.566 0.464 0.159 0.469 0.571 
3.3 CD 0.607 0.309 0.515 0.488 0.269 0.464 
3.4 pron.var. & short /@/ 0.795 0.547 0.442 0.307 0.658 0.619 
3.4 pron.var. & CD 0.810 0.633 0.538 0.294 0.517 0.629 

 
Table A2.2: Agreement values for consensus material 
section HMMs /n/-del /r/-del /t/-del /@/-del /@/-ins all 

3.1 3seg (baseline) 0.504 0.323 0.414 0.323 0.458 0.426 
3.1 2seg 0.567 0.292 0.466 0.360 0.507 0.455 
3.1 1seg 0.545 0.256 0.374 0.310 0.531 0.429 
3.2 within 0.573 0.300 0.398 0.253 0.464 0.432 
3.2 within+cross 0.600 0.306 0.463 0.245 0.440 0.447 
3.2 /@n#/ 0.626 0.306 0.484 0.311 0.401 0.459 
3.2 read speech 0.616 0.338 0.387 0.262 0.578 0.474 
3.3 CD 0.528 0.317 0.449 0.417 0.356 0.438 
3.4 pron.var. & short /@/ 0.661 0.287 0.441 0.399 0.651 0.504 
3.4 pron.var. & CD 0.664 0.312 0.488 0.192 0.640 0.505 
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Abstract 

This paper describes a rule-based data-driven (DD) method to modeling pronunciation 
variation in automatic speech recognition (ASR). The DD-method consists of the 
following steps. First, the possible pronunciation variants are generated by making 
each phone in the canonical transcription of the word optional. Next, forced 
recognition is performed in order determine which variant best matches the acoustic 
signal. Finally, the rules are derived by aligning the best matching variant with the 
canonical transcription of the variant. Error analysis is performed in order to gain 
insight into the process of pronunciation modeling. This analysis shows that although 
modeling pronunciation variation brings about improvements, also deteriorations are 
introduced. A strong correlation is found between the number of improvements and 
deteriorations per rule. This result indicates that it is not possible to improve ASR 
performance by excluding the rules that cause deteriorations, because these rules also 
produce a considerable number of improvements. Finally, we compare three different 
criteria for rule selection. This comparison indicates that the absolute frequency of rule 
application (Fabs) is the most suitable criterion for rule selection. For the best testing 
condition, a statistically significant reduction in Word Error Rate (WER) of 1.4% 
absolutely, or 8.2% relatively, is found. 

1. INTRODUCTION 

As has been widely recognized in the last two decades, the enormous variation in 
pronunciation among speakers of the same language or even the same language variety 
constitutes a serious challenge to automatic speech recognition (for an overview, see 
Strik and Cucchiarini, 1999). For this reason, researchers have been looking for ways 
to model at least part of this variation in order to improve the performance of ASR 
systems.  

In previous papers (Kessens et al, 1999; Wester et al, 1998), we reported on our 
attempts to model pronunciation variation on the basis of phonological knowledge. We 
showed that this kind of knowledge can indeed be used to improve the recognition 
performance of our Dutch continuous speech recogniser (CSR) significantly. 
However, comprehensive inventories of systematic pronunciation variation do not 
exist in the literature. In particular, this applies to the type of speech we are dealing 
with, i.e. extemporaneous/spontaneous speech. As is well known, spontaneous speech 
is still an under-researched area at the moment (Strik and Cucchiarini, 1999), with the 
result that the kind of information we would like to have cannot be found in the 
literature. For this reason, we have been looking for alternative ways of obtaining 
information on pronunciation variation.  

A method that we have investigated, and that has been used by other authors too 
(see e.g. Cremelie and Martens, 1999; Fukada et al, 1999; Williams and Renals, 1998; 
Schiel et al, 1998; Amdal et al., 2000), consists in trying to obtain this information 
directly from the speech signal, i.e. in a data-driven (DD) manner. As in most DD 
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methods, we use the CSR to get a transcription of the speech signal. However, this is 
not straightforward. Of course it is possible to carry out unconstrained phone 
recognition by using the acoustic models alone, i.e. without the top-down constrictions 
of language model and lexicon, but phone accuracy appears to be only 50-70% in this 
case, and this is not enough for most purposes. For this reason, the results of free 
phone recognition is usually filtered or smoothed (see e.g. Riley et al., 1999; Fosler-
Lussier, 1999). In the present study, however, we use another approach, namely forced 
recognition. Forced recognition means that the CSR has to decide for each word in 
each utterance which pronunciation variant best matches the acoustic signal. Usually, 
the number of variants that can be chosen during forced recognition is limited to a 
small number of variants. For example, in our knowledge-based approach to modeling 
pronunciation variation, maximally 16 variants per word were obtained (Kessens et al., 
1999). In the approach that we use in this study, however, the number of variants that 
can be chosen is much larger. By increasing the number of possible variants that can 
be chosen during forced recognition, the CSR is less constrained and forced 
recognition more and more resembles phone recognition. 

There are two main reasons why we chose only to focus on deletion processes. 
The first one is that we expect deletions (and insertions) to be more important than 
substitutions, since substitutions can implicitly be modelled in the phone models. The 
second reason for choosing deletions, as opposed to or in addition to insertions, is that 
we expect deletion processes to be more frequent in our speech material. A reason for 
expecting deletions to be more frequent is that we are dealing with 
extemporaneous/spontaneous speech. Furthermore, we started off with a lexicon 
containing a single canonical pronunciation for each word. This canonical 
pronunciation is a kind of citation form, which contains no deletions except deletions 
due to a number of obligatory deletion rules (e.g. degemination).  

In many data-driven approaches, the new pronunciation variants found by the 
CSR are directly added to the lexicon. In some studies, the new information is 
implemented in terms of rules, which are subsequently used to generate pronunciation 
variants (e.g. Cremelie and Martens, 1999; Amdal et al., 2000). In the present study, 
we employ data-derived rules. The main reason for using rules instead of adding the 
variants directly to the lexicon is that it is easier to draw conclusions in terms of rules 
than in terms of the individual pronunciation variants, since there are more 
observations available per rule than per individual variant. 

The aim of the present paper is threefold. First, we analyse whether the DD 
method of modeling pronunciation variation that we have adopted leads to a reduction 
in the WER. Second, since we are convinced that just reporting on decreased WERs 
does not contribute very much to our understanding of pronunciation variation 
modeling and the way this can improve CSR performance, we carried out an error 
analysis at word level. The goal of this error analysis is to determine how the changes 
in WER came about. It should be noted that this kind of analysis is seldom done in 
pronunciation variation modeling research (but Ravishankar and Eskenazi, 1997; 
Kessens et al., 1999; and Wester et al., 2000b), despite its indisputable importance for 
understanding what is really going on. However, limitations of these error analyses are 



Article 4 137 

 

that they are performed manually, with the consequence that only limited numbers of 
variants/rules can be analyzed. Since the present error analysis is performed 
automatically, much larger amounts of material can be analysed. The third goal of this 
paper is examine the adequacy of three criteria for rule selection. In this way it would 
be possible to make more sound choices about which rules (or which pronunciation 
variants) to model. 

The three goals described above will be dealt with in sections 3, 4 and 5 of this 
paper, preceded by section 2, in which details are given about the speech material and 
the CSR we used. Section 6 contains a general discussion of the findings presented in 
this paper, while the main conclusions are drawn in Section 7. 

2.  SPEECH MATERIAL AND CSR  

2.1 Speech material 

Our speech material was selected from the VIOS database, which contains a large 
number of telephone calls recorded with the on-line version of a spoken dialogue 
system called OVIS (Strik et al, 1997). OVIS is employed to automate part of an 
existing Dutch public transport information service. The total VIOS material was 
divided into three non-overlapping corpora. Table 1 shows the statistics of these three 
corpora. The second column displays the number of utterances that are included in 
each corpus (# utterances). The third column shows the number of words (# words), 
and the last column displays the percentage of the total VIOS database (percentage).  
 
Table 1: Statistics of the three corpora 
corpus # utterances # words percentage 

training 59,640 176,080 60% 

test 19,880 58,647 20% 
error analysis 19,880 58,630 20% 

TOTAL 99,400 293,357 100% 

2.2 CSR 

The main characteristics of the CSR are as follows. The input signals were sampled at 
8 kHz using 8 bit A-law coding. The front-end acoustic processing consists of 
calculating 14 MFCCs plus their deltas, every 10 ms for 16 ms frames. The topology 
of the HMMs is as follows: each HMM consists of six states, three parts of two 
identical states, one of which can be skipped (Steinbiss et al, 1993). In total, 39 HMMs 
were trained. For each of the phonemes /l/ and /r/, two models were trained, because a 
distinction was made between prevocalic (/l/ and /r/) and postvocalic position (/L/ and 
/R/). For each of the other 33 phonemes context-independent models were trained. In 
addition, one model was trained for non-speech sounds and a model consisting of only 
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one state was employed to model silence. For more details on the CSR, see Strik et al 
(1997). The test and training lexica contain 1288 words and 1465 words, respectively, 
plus three entries; one for noise and two for filled pauses. In the baseline system, for 
each word, one transcription is present in the lexicon. This so-called ‘canonical 
transcription’ was obtained using a Text-to-Speech system (TTS) for Dutch (Kerkhoff 
and Rietveld, 1994) followed by a manual correction. The acoustic models and 
language models (unigram and bigram) are estimated on the training material. 

3. WER REDUCTION THROUGH DATA DRIVEN MODELING OF 
PRONUNCIATION VARIATION 

The goal of the first phase of the research is to analyse whether the DD method of 
modeling pronunciation variation that we have adopted indeed leads to a reduction in 
the WER. The pronunciation variants that we use in the recognition experiments are 
generated using rules that are derived on the basis of automatic transcriptions of the 
training data. In section 3.1, the automatic rule extraction procedure and the procedure 
for selection of the candidate rules are described. This is followed by a description of 
the recognition experiments in section 3.2. Subsequently, in section 3.3, the results are 
presented. Finally, in section 3.4 we discuss the results and we draw conclusions. 

3.1 Obtaining the rules 

3.1.1 Automatic extraction of candidate rules 

The candidate rules were extracted from automatic transcriptions of all the utterances 
in the training corpus. As was mentioned in the introduction, in this research we 
limited ourselves by looking only at deletions of phones, and thus only deletion rules 
were obtained. The following five steps describe the whole procedure of automatic 
extraction of the candidate rules: 

1. For each word in an utterance, the so-called ‘canonical transcription’ (Tcan) is 
looked up in the baseline lexicon.  

2. Pronunciation variants are generated by making each phone in Tcan optional, with 
the constraint that one phone per syllable should remain present. For example: 
Suppose Tcan is “/wIL/” (want), then the following pronunciation variants were 
generated for this word: /wIL/, /wI/, /wL/, /IL/, /w/, /I/ and /L/.  

3. With all the generated pronunciation variants, forced recognition is performed 
using the baseline phone models. During forced recognition, the CSR does not 
choose between all the words in the lexicon, instead, for each word in the 
utterance, it has to determine which pronunciation variant best matches the acoustic 
signal. In this way, data-driven transcriptions (Tdd) of all the utterances of the 
training corpus are obtained. 

4. A dynamic programming algorithm is used to align Tcan with Tdd. An example of 
the alignment of Tcan with Tdd is the following: 
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Tcan | v @ R b I n d I N | Y t r E x t |  (’|’ = word boundary) 
Tdd | v @ - b I n - I N | Y t r E - - | ( (’-’ = deletion) 

 
5. Using the alignments obtained in step 4, we formulate candidate deletion rules. 

These rules are defined in the following manner:  
 
/L F R/can → /L – R/dd  
 
This means that the focus phone F in Tcan following the phone L (left context) and 
preceding the phone R (right context) is deleted in Tdd. The left and right context 
can be a phone or a word boundary. These kinds of rules are referred to in the 
literature as ‘rewrite rules’, see Strik and Cucchiarini (1999). It should be noted 
that this rule formalism is different from the one that is normally adopted in 
knowledge-based studies. The most striking difference is that knowledge-based 
rules are usually more generally formulated. For example, L and R can be classes 
of phones, instead of one single phone. 
 

6. For each candidate rule, we calculate three frequency measures: 
• Fcond: the number of times the condition for the rule (/L F R/) is met in Tcan, 
• Fabs: the number of times a rule is applied in Tdd, and 
• Frel: Fabs/Fcond (0 ≤ Frel ≤ 1). 

3.1.2 Motivations for performing rule selection 

Before using the rules in order to generate variants for the recognition experiments, we 
made a selection on the set of candidate rules. In the research on modeling of 
pronunciation variation, rule (or variant) selection forms a vital part of the research 
methodology (for an overview of rule selection procedures, see Strik, 2001). There are 
various motivations for performing rule/variant selection. First of all, the addition of 
pronunciation variants to the lexicon increases confusability, especially if the lexicon 
is large. This means that the more variants are included in the lexicon, the more lexical 
confusability increases due the addition of variants. The large increase confusability is 
probably the reason why usually only small improvements or even deteriorations are 
found if the number of variants that has been included in the lexicon is very large. By 
making an appropriate selection of the pronunciation variants, the balance between 
solving and introducing errors is probably more positive. A second reason for 
constraining the number of variants is to limit the decoding time, since decoding time 
is directly related to the size of the lexicon. Third, in data-driven approaches, the data-
derived variants are usually selected or filtered, as the variants might be based on 
artefacts of the CSR (e.g. contamination of the acoustic models) instead of based on 
genuine pronunciation variation. In this paper, there are two extra reasons for 
performing rule selection. First of all, we carried out an error analysis procedure at rule 
level. In order to ensure that substantial changes in WER are measured, it is necessary 
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to select the rules that are most ’promising’ in this respect. Second, we estimate prior 
probabilities of pronunciation variants based on automatic transcriptions of the training 
material (obtained through forced recognition). In order to reliably estimate the prior 
probabilities, the number of observed variants may not be too small. 

 Several measures have been used to select rules or variants, e.g.: confidence 
measures (e.g. Wiliams, 1999), a maximum likelihood criterion (e.g. Holter and 
Svendsen, 1999), confusability measures (Wester and Fossler-Lussier, 2000), and 
entropy (Yang and Martens, 2000a). In this paper, we concentrate on frequency 
measures to select the rules. One is inclined to think that the most frequent rules 
should be selected, but rules can be frequent in three different ways: 1) because the 
condition for rule application occurs frequently (Fcond is large), 2) because the rule is 
frequently applied (Fabs is large), and 3) because the rule is frequently applied in 
relation to the number of times its condition for application is met (Frel is large). 
Several other authors have used frequency measures for rule or variant selection, or 
have used frequency measures as part of the selection procedure. For instance, Riley et 
al (1998) and Lehtinen et al (1998) use Frel to select variants. Others, like Williams 
and Renals (1998), use Fabs as part of their variant selection method. Furthermore, a 
combination of Frel and Fabs is also used as a criterion to select variants (Schiel et al, 
1998; Ravishankar and Eskenazi, 1997). For rule selection, Frel is probably used more 
often (see e.g. Cremelie and Martens, 1999; Amdal et al., 2000). 

3.1.3 Details on the rule selection procedure 

The first criterion we applied was to select the rules for which Fabs>100. This was 
done for various reasons. First, the data-driven transcriptions may contain errors due to 
artefacts of the CSR. Since it can be expected that transcription errors occur randomly, 
the rules that are based on transcription errors are probably not as frequent as the rules 
that are based on genuine deletion processes. For this reason, we expect them to be 
filtered out if the threshold for Fabs is set to 100. Furthermore, we expect that a 
minimum number of occurrences of 100 is enough to ensure substantial changes in 
WER and to reliably estimate the probabilities of the pronunciation variants. The 
second criterion we applied was to exclude the rules for which either the left or the 
right context was deleted, or in other words, we excluded the rules based on 
transcriptions with two or more deletions in a row. This is done because these 
deletions occur probably less often, and the occurrence of two deletions in a row might 
be an indication of an error.  

After applying the automatic rule extraction procedure to the training corpus, in 
total 2,951 candidate rules were obtained, which together describe the deletions of 
8.5% of the total number of 686,909 phones in the training corpus. If the two selection 
criteria are applied simultaneously, about half of the deletions are covered, whereas the 
size of the rule set is reduced to 3% of the original size. The first selection criterion 
(Fabs>100) appears to be the strictest pruning measure, since it excludes 20% more 
rules than the second selection criterion (L and R not deleted). By applying the two 
selection criteria simultaneously, 91 of the 2,951 rules are selected. In Appendix 1, the 
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statistics of the 91 selected rules are given. A number of the rules that are found are 
related to phonological processes described in the literature. For example, rule 9 (word 
final deletion of /n/ after /@/) is very similar to the process of /n/-deletion (Booij, 
1995). More examples of plausible deletion rules are described in Kessens et al. 
(2000). 

3.2 Recognition experiments 

The 91 selected rules are tested in recognition experiments by composing various sets 
of rules. At this point of the research, we had no certainty about the optimal criterion 
for rule selection. As Frel is probably used most often for rule selection, we used Frel 
for selection of the various rules sets. Seven sets of rules were selected by varying the 
threshold for Frel. These threshold values are shown in the second column of Table 2 
(Frel >). Next, we applied the selected rules to the transcriptions in the baseline test 
lexicon in order to generate pronunciation variants. By adding these variants to the 
baseline test lexicon, different multiple pronunciation lexica were obtained. In Table 2, 
the statistics of the multiple pronunciation lexica are given. The third column displays 
the number of rules that were selected (# rules). The fourth column shows the number 
of added variants (# added variants), and column five displays the average number of 
pronunciation variants per word present in the recognition lexicon (<variants/word>). 
Finally, in the last column, the maximum number of pronunciation variants per word is 
given (max.). 
 
Table 2: Statistics of the multiple pronunciation lexica 

 Frel > # rules # added variants <variants/word> max. 

1 0.50 7 81 1.06 4 

2 0.40 10 322 1.25 8 

3 0.30 16 466 1.36 12 

4 0.20 25 702 1.54 12 

5 0.15 38 993 1.77 12 

6 0.10 53 1896 2.47 64 

7 0 91 3528 3.73 128 
 
The selected sets of rules were tested in recognition experiments. As in Kessens et al 
(1999) three other testing conditions were used in addition to the baseline testing 
condition (SSS). In short, these testing conditions imply incorporating the 
pronunciation variants at all three levels of the CSR: the lexicon, the phone models 
and the language model: 
 
• Testing condition MSS: 

The lexicon is expanded by adding pronunciation variants to it, thus creating a 
multiple pronunciation lexicon. The only difference with the baseline testing 
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condition SSS is that in testing condition MSS the baseline lexicon is replaced by a 
multiple pronunciation lexicon. 

For the other two testing conditions, an extra step is needed. In this step, pronunciation 
variants are automatically transcribed in the training corpus. This is accomplished by 
performing forced recognition with the baseline phone models and the set of variants 
which have been automatically generated with the selected set of rules. 
 
• Testing condition MMS:  

The phone models are retrained on the basis of the new transcription of the training 
corpus. The only difference with testing condition MSS is that in testing condition 
MMS the baseline phone models are replaced by the retrained phone models. 

 
• Testing condition MMM:  

A new language model is calculated on the basis of automatic transcriptions of the 
pronunciation variants in the training corpus. In the baseline language model all 
pronunciation variants of the same word are assigned equal prior probabilities. In 
the new language model, however, different variants of the same word are assigned 
their own specific prior probabilities. These prior probabilities are calculated on the 
basis of the automatic transcriptions of the pronunciation variants in the training 
corpus. The only difference with testing condition MMS is that in testing condition 
MMM the baseline language model is replaced by the new language model. 

3.3 Results of recognition experiments 

The WER is defined as follows: 
 

N

IDS
WER

++=  (1) 

 
where S is the number of substitutions, D the number of deletions, I the number of 
insertions, and N the total number of words. The WER of 16.94% for our baseline 
system (SSS) is indicated by the symbol ‘• ’ in Figure 1. Furthermore, the WERs for 
the three testing conditions are plotted as a function of the average number of variants 
per word in the lexicon (for the correspondence between the average number of 
variants per word and the number of rules, see Table 2). The reason for using the 
average number of variants per word is that this measure is directly related to the size 
of the lexicon, and thus to decoding time. Figure 1 shows the following trends when 
going from using 1 variant/word to 3.7 variants/word: 
 

1) Testing condition MSS: The WER first decreases, but if more than 1.5 
variants/word (25 rules) are used the WER increases until the level of the 
baseline system is reached for 2.5 variants/word (53 rules). When 3.7 
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variants/word are used (91 rules), a large increase in WER is measured 
compared to the baseline (SSS or 1 variant/word). 

2) Testing condition MMS: The same trend is observed as for testing condition 
MSS, but the absolute values of the WERs are somewhat lower. 

3) Testing condition MMM: As opposed to the previous testing conditions, the 
WERs are always lower than the WER for the baseline testing condition. The 
reduction in WER is significant (t-test, α=0,05) for 1.25 variants/word (or: 10 
or more rules). Furthermore, it can be seen that the decrease in WER becomes 
smaller with an increasing average number of variants per word. This means 
that a similar gain in performance will cost more and more in terms of decoding 
time. 
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Figure 1: WERs for the different testing conditions 

3.4 Discussion and conclusions 

The recognition experiments demonstrated that the DD rules can be used effectively to 
improve recognition performance. Our results showed that only adding variants to the 
lexicon (MSS) does not always lead to a reduction in WER. The WERs were only 
slightly lower when also retrained phone models were used (MMS). The best results 
were obtained when, in addition to the new lexicon and phone models, variant-specific 
probabilities were used in the language model (MMM). The difference in recognition 
result between testing condition MMM on the one hand and testing condition MSS and 
MMS on the other hand was largest for the set of 91 rules; without using variant-
specific probabilities in the language model (MSS and MMS), a significant deterioration 
in recognition result is obtained, whereas the opposite is true if each variant is 
associated with its corresponding probability in the language model (MMM). In previous 
research in which we used knowledge-based rules, we also found that testing condition 
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MMM yields the best results (Kessens et al, 1999), but we did not find significant 
deteriorations for the other two testing conditions. Yang and Martens (2000b) have 
reported on recognition experiments in which the probabilities of the variants were 
removed. They found that recognition performance rapidly decreases with an 
increasing number of variants per word in the lexicon. With more than 3 variants per 
word, the system with variants performed even worse than the baseline system. These 
results are very comparable to our results, since we found a decrease in recognition 
performance if more than 2.5 variants per word are used in the lexicon. 

For the best testing condition (MMM, 91 rules), we measured a significant 
improvement in WER of 1.2% absolutely or 7.3% relatively compared to the baseline 
(SSS). However, at this point it is not clear whether an even larger improvement could 
be obtained by using more rules. Since we are not only interested in reducing the 
WER, we do not try to further improve recognition performance. At this moment, we 
first try to understand how exactly the changes in WER came about. In this way we 
hope to gain insight that might be used to further improve recognition performance. 

4. ANALYSIS OF THE REDUCTION IN WER 

The goal of this phase of the research is to find out how exactly the reduction in WER 
came about. This is accomplished by carrying out an error analysis at word level. In 
section 4.1, the method of error analysis is described and this method is compared with 
a method used in a previous study (Kessens et al, 1999). In section 4.2, the results of 
the error analysis are presented. Finally, in section 4.3 we will discuss the results and 
summarize our conclusions. 

4.1.1 Method of error analysis 

During error analysis, we analysed the changes in recognition result by comparing the 
recognition result of testing condition MMM to the baseline testing condition SSS. The 
following four steps describe the automatic error analysis procedure: 

 
1. Automatic alignment 

The recognition results of MMM and SSS were aligned with the spoken utterance. 
This step is necessary in order to determine whether a word is recognized correctly 
or not (and thus to calculate the WER). An example of the alignment result is 
given in Table 3. The first column indicates the word number, whereas the second 
column shows the word that is spoken (SPOKEN). The third column displays the 
recognized word in the baseline testing condition (SSS), and the fourth column 
shows the recognized word in testing condition MMM. Between ‘<>’ the 
transcription of the recognized word is given.  
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2. Type of change 
Each change was labelled as ‘improvement’ (SSS=incorrect, MMM=correct), 
‘deterioration’ (SSS=correct, MMM=incorrect), as ‘no-change’ (SSS=correct, 
MMM=correct), or as ‘different error’ (SSS=incorrect, MMM=incorrect). An example 
of this labelling is shown in column 5 of Table 3.  

 
3. Category of change 

Since we are only interested in changes in recognition result that have a direct 
consequence on the WER, we excluded the ‘different errors’ from further analysis. 
Each change (improvement or deterioration) was classified in one out of two 
categories: the change was labelled as ‘variant’ if the recognized word was a 
variant, or ’no-variant’ if this was not the case, e.g. word 4 was labelled as 
‘variant’, whereas words 2 and 3 were labelled as ‘no-variant’ (see column 6 of 
Table 3).  
 

4. Contributions per rule 
For each change that is labelled as ‘variant’, it was determined by which rule the 
variant was generated. For example, the variant ‘naar<na:>’ was generated by 
applying rule 64 to the word ‘naar<na:R>’ (see last column of Table 3). In this 
way, we were able to count the number of times that an improvement or 
deterioration in recognition result was caused by a specific rule. If more than one 
rule applied, the count was equally distributed over the rules: If N rules applied to 
the recognized word, each of these rules was assigned a score of 

N

1 . 

 
Table 3: Changes in recognition result between testing condition MMM and SSS 
 SPOKEN SSS MMM type category  rule 

1 Ik ik<Ik> ik<Ik> no-change - - 

2 wil wil<wIL> - deterioration no-variant - 

3 - ik<Ik> - improvement no-variant - 

4 naar Maarn<ma:Rn> naar<na:> improvement variant 64 

5 Elst Delft<dELft> Ede<e:d@> different error - - 

4.1.2 Comparison with previous error analysis 

In  Kessens et al (1999), we also reported on an error analysis that was carried out to 
analyse the effect of modeling pronunciation variation. The error analysis that we 
perform in the present study is different from the previous one in various ways. A first 
difference is that error analysis was performed at sentence level, whereas in this study 
it is done at word level. In Kessens et al (1999) we noted that error analysis should not 
be carried out on the test corpus, because then the test corpus is no longer an 
independent test set. Therefore, error analysis is now performed on an independent 
error analysis corpus. Furthermore, in Kessens et al (1999) we concluded that due to 
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interaction between pronunciation variants it will not suffice to study rules in isolation. 
For this reason, in this study we analyse the results of different combinations of rules,  
and we determine the contribution per rule. Finally, in the current error analysis, we 
analyse changes in recognition result for the best testing condition ‘MMM’ instead of for 
the sub-optimal testing condition ‘MSS’, as we did in the previous study.  

4.2 Results of error analysis 

In section 4.2.1, we present the WERs measured on the error analysis corpus and 
compare them to the results measured on the test corpus. Next, in the three following 
sections, the results are given for the four different steps of the error analysis 
procedure. 

4.2.1 Automatic alignment: WERs 

The WER for the baseline testing condition measured on the error analysis corpus is 
16.49%. In Figure 2, the WERs are given for testing condition MMM measured on the 
test and error analysis corpus, plotted as a function of the average number of variants 
in the lexicon. It can be seen that the WERs are in general somewhat lower for the 
error analysis corpus compared to the test corpus. However, in general the same trend 
is observed: For an increasing number of variants per word the WER decreases, but 
the decrease in WER becomes smaller if the average number of variants per word is 
increased. 
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Figure 2: WERs for testing condition MMM measured on test- and error analysis 
corpus   
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4.2.2 Type of change 

WERs only reflect the net result of the changes in recognition result. To gain more 
insight, we analysed the different types of changes that actually occur. Figure 3 shows 
the different types of changes. Furthermore, the ‘total net result’ is shown, which is 
defined as the difference between the number of improvements and the number of 
deteriorations. The total net result is directly related to the reduction in WER: 

wordsofnumbertotal

resultnettotal
x%WERWERWERinreduction MMMSSS 100=−=  (2) 

Figure 3 shows that many changes occur, whereas the total net result or the reduction 
in WER is very small. To give an example: For the set of 91 rules, 2219 words 
improve, 1613 deteriorate, and 2185 ‘different errors’ occur. The improvements 
correspond to an absolute WER reduction of 3.8%, and the deteriorations to an 
increase in WER of 2.8%. The total net result or the reduction in WER is (3.8%-
2.8%=) 1%. These results show that it is in principle possible to obtain a larger gain in 
recognition performance if one could find a way to make the balance between solving 
and introducing errors more positive. 
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Figure 3: Different types of changes for testing condition MMM compared to SSS 
measured on error analysis corpus 
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4.2.3 Category of change 

The next step in the error analysis procedure is a further analysis of the total net result. 
This was done by dividing all changes into the two categories of changes: ‘variant’ 
and ‘no-variant’. The net result for each category of changes was obtained by 
subtracting the number of deteriorations from the number of improvements for that 
category. The distribution of the total net result over the two categories of changes is 
given in Figure 4. 
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Figure 4: Distribution of the total net result over the two categories of changes for all 
rule sets  
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Figure 5: Regression line for correlation between ‘net result of variants’ at rule set 
level and the total net result 
  
The category changes with the label ‘variant’ (black bars in Figure 4) contribute for 
21-33% to the total net result. For this category of changes we can determine the 
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contributions per rule, whereas this cannot be done for the ‘no-variant’ category of 
changes. The net result of the category of changes with the label ‘variant’ will be 
referred to as ‘net result of variants’ in the rest of this paper. Figure 5 shows the 
regression line between the ‘net result of variants’ and the total net result. Such a 
strong correlation (0.98) indicates that the total net result (or WER, see (2)) can be 
predicted quite well on the basis of the ‘net result of variants’. 

4.2.4 Contributions per rule 

We further analysed the contributions of the different rules to the ‘net result of 
variants’. To this end, we took the changes that were labelled as ‘variant’. Next, we 
counted for each rule (in each of the 7 rule sets) how many deteriorations and 
improvements the rule caused. Finally, the net result per rule was determined by 
subtracting the number of deteriorations from the number of improvements.  

Figure 6 displays the number of improvements as a function of the number of 
deteriorations for each rule in each of the seven rule sets (240 data points). There 
exists a high correlation between the number of improvements and deteriorations 
caused by a specific rule (Pearson’s correlation is 0.98). The regression line in Figure 
6 might give the impression that the high correlation between deteriorations and 
improvements is mainly determined by a small number of points, namely the six data-
points in the right upper half of Figure 6. This is not the case, since Pearson's 
correlation is still fairly high (0.77) if these six data-points are excluded. Figure 6 also 
shows that, in general, more improvements are introduced than deteriorations, which 
means that the net result per rule is in general an improvement (thus a reduction in 
WER, see (2)). 
 

0

50

100

150

0 50 100 150

number of deteriorations

nu
m

be
r 

of
 im

pr
ov

em
en

ts
  

 
Figure 6: Correlation between improvements and deteriorations 
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In Figure 7, the contributions to the net result are plotted for each specific rule 

in each of the seven rule sets. In order to make it easier to interpret this figure, we only 
plotted the rules for which the absolute value of the net result is ≥ 5 in one of the rule 
sets (this was the case for 21 rules). On the horizontal axis, the rules are plotted 
together with the rule number and the context. On the vertical axis the change in net 
result is plotted (’+’ = improvement, ’-’ = deterioration). 
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Figure 7: Contributions of each individual rule to the net result  
 
In Figure 7, it can be observed that not all rules contribute equally to the net result as 
the total net result is mainly determined by about 1/4 of the rules (plotted in Figure 7). 
Among these rules, rule 9 (@ n |) makes the largest positive contribution. Rules 20 (E 
R t) and 64 (n a: R) are the only rules that have a negative net result of more than 5 
deteriorations. 

4.3 Discussion and conclusions of error analysis 

The error analysis that we performed in this study clearly has some advantages 
compared to the error analysis that we performed in our previous study (Kessens et al, 
1999). The present error analysis revealed some differences and commonalities with 
the previous one, but also some new results. In our previous study we found that the 
results for the various rules tested in isolation cannot predict the results for the rules 
tested in combination. In this study, we tested different combinations of rules and for 
each rule we determined the contribution to the total net result. These results show that 
indeed the contribution in WER reduction per rule is different in each set of rules, but 
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the differences are not very large. Three remarks concerning this apparent discrepancy 
in result have to be made. First of all, another study (Wester et al, 2000b) revealed that 
the differences in SER (=number of incorrect sentences) for rules tested in isolation 
and in combination are corpus dependent. Second, one has to take into account that 
SERs/WERs cannot be simply summed up. Different rules can solve or introduce 
exactly the same errors when they are tested in isolation, whereas when the same rules 
are tested in combination, the error can be solved or introduced only once. Second, as 
we already mentioned in the previous study, interaction between pronunciation 
variants can occur, whereas this interaction is not possible when the rules are tested in 
isolation.  

A commonality between the results of the two error analyses is that besides 
improvements, also deteriorations are introduced through the modeling of 
pronunciation variation. These deteriorations substantially negate the improvements, 
resulting in a small total net improvement in SER/WER. The results are also in line 
with the error analysis results of Ravishankar and Eskenazi (1999). These authors 
found that the number of errors corrected through the modeling of pronunciation 
variation are quite significant, but at the same time also new errors were introduced, 
substantially or completely negating the gains. 

The current error analysis also revealed some new results. We found that about 
1/3 of the reduction in WER was obtained because a variant was recognized. For this 
category of changes we can directly determine which rules caused the changes. For the 
other 2/3 of the reduction in WER we cannot directly determine which rules caused the 
changes. At rule set level, a high correlation was found between the net result of the 
category changes that were labelled as ‘variant’ and the total net result (Pearson’s 
correlation is 0.98). This finding is encouraging, since it suggests that the total 
recognition result can be predicted on the basis of the recognition result of the category 
of changes labelled as ‘variant’.  

Furthermore, analysis of changes labelled as ‘variant’ revealed that the 
contribution to the total net result differs per rule: In total, the net improvement was 
mainly determined by only 1/4 of the rules, the other 3/4 of the rules had a very small 
effect on the total net result. Furthermore, it turned out that the number of 
improvements and the number of deteriorations per individual rule are highly 
correlated. This result is somewhat disappointing, since it means that by leaving out a 
rule that causes many deteriorations, the number of improvements is also reduced. 
However, the positive message is that most of the time there are more improvements 
than deteriorations, which means that the total net result is an improvement.  

Since the results of error-analysis indicate that the number of improvements and 
deteriorations are highly correlated, excluding rules that cause many deteriorations is 
not a solution for obtaining maximal WER reduction. The question that remains is 
what criteria are most suitable for selecting an optimal set of rules, since there is a 
practical constraint on the number of variants that can be included in the lexicon as 
decoding time is increased if the lexicon is expanded. This question will be addressed 
in the following section. 
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5. CRITERIA FOR OPTIMAL RULE SELECTION 

5.1 The three selection criteria 

In section 4.2.2, we saw that the correlation between the ‘net result of variants’ and the 
total net result at rule set level is very high (Pearson’s correlation is 0.98). Since the 
total net result is directly related to the reduction in WER (see formula 2), this 
indicates that the ‘net result of variants’ could be used to predict the reduction in 
WER. For this reason, the first obvious criterion to select the rules seems to be ‘net 
result of variants’. 

 A disadvantage of using ‘net result of variants’ as a selection criterion is that it 
is always necessary to perform error analysis to be able to select the optimal set of 
rules, while it would be better to have a measure that does not require the two extra 
steps of performing a recognition experiment and error analysis. We used two rule-
related frequency measures, namely Frel and Fabs, to select the rules (see section 3.1.2). 
These two measures were determined directly from the DD transcriptions obtained 
during automatic extraction of the candidate rules (see step 3 described in section 
3.1.1). Since it is to be expected that the frequency of application of a rule is related to 
the reduction in WER, we investigated the adequacy of the two frequency measures 
Fabs and Frel as selection criteria for the rules.  

We examined the adequacy of the three criteria in the following way: Rules are 
selected on the basis of different criteria and for each set of rules the WER is 
calculated. In section 5.2, we first present the results of the recognition experiments. 
Subsequently, the relation between the reduction in WER and each investigated 
criterion is presented. Next, in section 5.3, we compare the results and we will draw 
conclusions on the adequacy of each criterion investigated. 

5.2 Results 

5.2.1 Recognition experiments 

The ‘net result of variants’ was determined on the basis of the recognition experiment 
carried out with all 91 rules (see Figure 7 for the values of the ‘net result of variants’ 
per rule). Rule selection was performed by including those rules for which the ‘net 
result of variants’ was larger than the threshold value. First, we selected the rule with 
the largest net result (rule 9) and then, we added rules by lowering the threshold for the 
net result. The following values of ‘net result of variants’ were used as a threshold: 45, 
10, 5, 1, 0, -1. To investigate the adequacy of Fabs, we composed different rule sets by 
varying the threshold for Fabs. The following values of Fabs were used as a threshold: 
5000, 500, 400, 300, 200, 140. Since we already used Frel as a selection criterion, we 
did not repeat the recognition experiments, and simply used the results reported in 
section 3.3.  
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Figure 8 presents the WERs measured for the rule sets obtained by selecting the 
rules on the basis of the three different selection criteria. It can be seen that for all 
selection criteria, apart from slight fluctuations, the WER decreases when the average 
number of variants per word is increased. Furthermore, in general, the reduction in 
WER becomes smaller if the average number of variants per word is increased. 
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Figure 8: WERs for rules selected on the basis of Fabs, Frel and ‘net result of variants’ 

5.2.2 Correlations at rule set level 

The reduction in WER was calculated by subtracting all the WERs plotted in Figure 8 
from the WER measured for the baseline (16.94%). Since correlations are calculated at 
rule set level, it was necessary to determine the values of the three criteria at rule set 
level. In total, 19 rule sets were selected: 6 rule sets based on ‘net result of variants’, 6 
rule sets based on Fabs, and 7 rule sets based on Frel. For each of the 19 rule sets, the 
values of the three selection criteria were determined in the following manner. The 
‘net result of variants’ at rule set level (‘net result of variants - rule set’) was obtained by 
summing the net result of all rules in the set. Fabs at rule set level (Fabs-rule set) was 
obtained by summing the values of Fabs for all the rules in the set. Frel at rule set level 
(Frel-rule set) was obtained by dividing Fabs-rule set by Fcond-rule set. Fcond (see Section 3.1.1, 
step 6) at rule set level (Fcond-rule set) was obtained by summing the values of Fcond for all 
the rules in the set.  

Figure 9 shows the values of the reduction in WER and the corresponding 
measures at rule set level, together with the regression lines based on all 19 data 
points. In Figure 9, ‘�’ indicates the rule sets selected on the basis of ‘net result of 
variants’, ‘�’ indicates the rule sets that are selected on the basis of Fabs and ‘�’ 
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indicates the rule sets selected on the basis of Frel. In Figure 9, going from left to right 
means that the number of rules in the set is increased. The regression lines of all 
selection criteria show the trend that the reduction in WER increases as the number of 
rules is increased.  

In Figure 9a, it can be seen that if ‘net result of variants- rule set’ is increased, the 
reduction in WER becomes larger, and the correlation is high (0.86). Figure 9b shows 
that if Fabs-rule set is increased, the reduction in WER is also larger, and the correlation is 
even higher (0.93). The strong correlation between Fabs-rule set and reduction in WER 
can be explained by the results that we found earlier. Error analysis revealed that the 
improvements and deteriorations per rule are highly correlated, but the net result is an 
improvement (see Figure 6). This means that the more rules are used, and thus the 
higher Fabs-rule set, the larger is the total net improvement.  
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Figure 9a: Relation between ‘net result of variants-rule set’ and reduction in WER 
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Figure 9b: Relation between Fabs-rule set and reduction in WER   
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In Figure 9c, it can be seen that the reduction in WER is increased if Frel-rule set 
becomes smaller (Pearson's correlation is -0.83). This is against expectation, as one 
would expect the reduction in WER to be larger if the relative frequency of application 
of the rules in the set is increased. A possible explanation for this result is that two 
criteria play a role, namely Frel-rule set and Fabs-rule set: If Frel-rule set becomes smaller, Fabs-

rule set increases, and we observed that the reduction in WER is larger if Fabs-rule set is 
increased. 
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Figure 9c: Relation between Frel-rule set and reduction in WER 

5.3 Discussion and conclusions on rule selection criteria 

Our results indicate that Fabs and ‘net result of variants’ are better criteria for selecting 
the rules than Frel. Let us try to understand why Fabs is probably a better predictor of 
the reduction in WER than Frel. A specific value of Frel could be the result of two 
completely different situations. To illustrate, an Frel value of 50% could be obtained in 
the following two situations:  

1. Fabs= 1 and Fcond= 2,  

2. Fabs = 10,000 and Fcond = 20,000.  

It is easy to imagine that in relation to the total amount of material, situation 2 is 
bound to have a much greater effect on recognition performance than situation 1. 
While this difference clearly emerges from Fabs, it is completely blotted out in Frel, 
which in turn explains why Fabs appeared to be a better predictor of the reduction in 
WER.  

 The question that remains is which of the two measures Fabs and ‘net result of 
variants’ is the better criterion. Let us compare the results of the two criteria. First of 
all, the correlation with the reduction in WER is higher for Fabs (0.93) than for ‘net 
result of variants’ (0.86). Second, the ‘net result of variants’ clearly has the 
disadvantage that it can only be used after performing a recognition experiment and 
carrying out an error analysis. Fabs, on the other hand, can be directly determined on 
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the basis of the transcriptions used for automatic rule extraction. Third, for Fabs the 
optimal WER is obtained using an average of two variants/word in the lexicon, 
whereas three variants/word are needed to obtain optimal WER when ‘net result of 
variants’ is used as a selection criterion (see Figure 8). Since decoding time is 
correlated with the number of entries in the lexicon, this means that the decoding time 
is shorter when the optimal rule set is obtained by selecting the rules on the basis of 
Fabs than on the basis of ‘net result of variants’. For all of these reasons, Fabs seems to 
be the most suitable criterion for rule selection. 

GENERAL DISCUSSION 

The results presented in this paper indicate that Fabs is an adequate predictor of 
recognition performance, and can therefore be used to select pronunciation rules. The 
question arises whether the recognition performance could be further improved by 
using more rules. If indeed a linear relation exists between Fabs-rule set and reduction in 
WER, as plotted in Figure 9a, then recognition performance could be further improved 
by increasing Fabs-rule set. Two remarks should be made about this point. The first 
remark concerns the linear relationship between Fabs-rule set and the reduction in WER. 
We expect that the relationship between Fabs-rule set and reduction in WER cannot be 
modelled by a simple straight line. For higher values of Fabs-rule set we expect the 
straight line to flatten out. It might even be the case that recognition performance 
decreases for very high Fabs-rule set values. A first reason for expecting that the gain in 
recognition performance will be limited is that probably more unreliable rules are 
introduced by lowering the threshold for Fabs, as we expect that the rules based on 
transcription errors will have a low Fabs. A second reason is that, if the threshold for 
Fabs is lowered, the probabilities of the variants are estimated on the basis of smaller 
numbers, and the risk of not properly estimating the variant probabilities increases. 

 The second remark that should be made is that for our material, the relation 
between Fabs-rule set and the average number of variants per word in the lexicon is not 
linear, as is shown in Figure 10. As a consequence, although we have indications that 
including more variants (by lowering the threshold for Fabs) can lower the WER, we 
know that the gain in performance will cost more and more in terms of decoding time. 

 For all these reasons, only a limited further improvement in recognition 
performance can be expected. The optimal value for Fabs will clearly be database and 
language specific, and for this reason, information concerning the values of Fabs can 
probably not be generalized to other contexts. In this connection, it would be 
interesting to devise a relative measure that can be more easily interpreted in other 
situations. Examples of such measures are: Fabs divided by the total number of deleted 
phones (e.g. for Fabs>100, this measure would have the value 0.51), Fabs divided by the 
total number of phones (e.g. for Fabs>100, this measure would have the value 0.04). An 
interesting research question would be to investigate whether more general 
conclusions can be drawn on the basis of this kind of relative measures by calculating 
them for different kinds of speech material, and comparing the values to each other. 
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Figure 10: Relation between Fabs-rule set and the average number of variants per word in 
the lexicon. Fabs-rule set = 0 corresponds to the baseline system (SSS) 

7. GENERAL CONCLUSIONS 

As mentioned in the introduction, the aim of the present paper was threefold. First, we 
analysed whether the data-driven method of modeling pronunciation we adopted does 
indeed lead to improvements in recognition performance. Since we found a total, 
statistically significant improvement of 1.4% WER absolutely, or 8% relatively for the 
best testing condition compared to the baseline testing condition, we conclude that the 
data-driven method of modeling pronunciation we adopted does indeed lead to 
improvements in recognition performance. Furthermore, we conclude that in order to 
ensure improvements in recognition performance, prior probabilities of the 
pronunciation variants need to be incorporated in the decoding process.  

The second goal was to determine how exactly the reduction in WER came 
about. We found that besides improvements, also deteriorations were introduced 
through the modeling of pronunciation variation. These deteriorations substantially 
negate the improvements, resulting in a small total net improvement in WER. These 
results show that it is in principle possible to obtain a larger gain in recognition 
performance if one could find a way to make the balance between solving and 
introducing errors more positive. Furthermore, we showed that about 1/3 of the 
reduction in WER can be directly assigned to the rules, since the recognized words are 
variants, whereas for the other 2/3 of the changes, we could not determine which rule 
caused the change. However, since we found a high correlation between the number of 
changes labelled as ‘variant’ and the total number of changes, it might be possible to 
predict the reduction in WER on the basis of the changes labeled as ‘variant’. For this 
category of changes, the contribution to the net result differs per rule. Unfortunately, 
the number of improvements and the number of deteriorations per rule are highly 
correlated, but the positive message is that the net result per rule is, in general, an 
improvement.  
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Finally, the third goal was to find criteria that could be used for optimal rule 
selection. On the basis of our results, Fabs seems to be a more suitable criterion for 
optimal rule selection than Frel and ‘net result of variants’.  
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Appendix 1 
 
Table 4: Statistics of the 91 selected rules, ordered according to descending Frel. In the 
column ‘Context’, the rule context is given (/L F R /can, see section 3.1.1 step 5). 
Furthermore, the relative (Frel) and absolute (Fabs) frequencies of rule application are 
given for each rule. 
 

 Context Frel Fabs  Context Frel Fabs  Context Frel Fabs 

1 m  @  r 0.88 225 31 i  t  | 0.18 416 61 e: n  | 0.08 106 
2 n  d  I 0.66 174 32 |  n  i 0.18 442 62 w  I  L 0.08 404 
3 @  R  m 0.61 272 33 |  @  t 0.18 102 63 n  d  A 0.07 118 
4 @  R  t 0.57 638 34 n  t  s 0.17 165 64 n  a: R 0.07 678 
5 @  n  v 0.53 131 35 t  A  S 0.16 186 65 o: R  | 0.07 101 
6 A  L  s 0.53 110 36 |  w  E 0.15 196 66 O  R  x 0.07 145 
7 @  R  b 0.51 151 37 A  t  | 0.15 310 67 |  O  m 0.07 300 
8 @  R  d 0.48 2031 38 m  a: R 0.15 117 68 s  E  n 0.07 136 
9 @  n  | 0.43 5339 39 s  t  A 0.14 173 69 x  @  n 0.07 328 

10 w  A  R 0.42 234 40 p  t  | 0.14 118 70 a: x  | 0.06 237 
11 n  d  @ 0.34 417 41 |  r  O 0.14 175 71 i  n  | 0.06 187 
12 x  @  v 0.34 109 42 x  t  | 0.13 498 72 E  n  t 0.06 118 
13 @  R  s 0.33 158 43 n  t  @ 0.13 187 73 |  d  A 0.06 276 
14 |  h  E 0.32 266 44 R  t  | 0.13 209 74 y  R  | 0.06 490 
15 r  y  w 0.31 147 45 E  n  | 0.13 310 75 |  O  p 0.06 123 
16 d  @  r 0.30 333 46 v  @  n 0.12 212 76 |  I  k 0.06 390 
17 s  t  @ 0.29 777 47 n  t  | 0.11 128 77 d  A  N 0.06 159 
18 v  @  r 0.28 555 48 w  I  n 0.11 149 78 a: L  | 0.05 108 
19 R  n  | 0.27 131 49 n  I  N 0.11 124 79 v  A  n 0.05 463 
20 E  R  t 0.27 272 50 t  @  x 0.11 221 80 |  w  I 0.04 233 
21 |  d  @ 0.26 205 51 |  s  t 0.10 147 81 |  v  A 0.04 370 
22 @  n  t 0.25 528 52 o: n  I 0.10 104 82 |  n  a: 0.04 379 
23 @  n  s 0.23 106 53 a: R  | 0.10 1089 83 N  k  | 0.04 106 
24 f  t  | 0.22 235 54 O  n  | 0.09 117 84 |  d  E 0.04 129 
25 |  h  u 0.22 156 55 A  n  | 0.09 736 85 A  N  k 0.04 108 
26 R  d  @ 0.19 137 56 I  L  | 0.09 481 86 A  x  | 0.03 130 
27 @  R  | 0.19 244 57 d  A  t 0.09 160 87 O  m  | 0.03 130 
28 |  I  s 0.19 186 58 t  @  r 0.09 378 88 I  k  | 0.03 199 
29 d  @  | 0.19 317 59 R  x  @ 0.08 177 89 d  A  x 0.03 142 
30 t  w  I 0.18 226 60 @  x  | 0.08 194 90 |  n  e: 0.01 155 

 91 j  a: | 0.01 150 
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Samenvatting 
 

Spraak is voor mensen een zeer natuurlijke en efficiënte manier van communiceren. 
Tegenwoordig is het mogelijk om met behulp van een computer spraak automatisch 
om te zetten in tekst. Deze techniek wordt automatische spraakherkenning (ASH) 
genoemd. Sinds de komst van de eerste automatische spraakherkenners zijn de 
herkenprestaties en mogelijkheden van automatische spraakherkenners enorm 
verbeterd. In het verleden was het alleen mogelijk om een beperkte set van geïsoleerd 
uitgesproken woorden te herkennen (bijvoorbeeld de cijfers 0-10). Huidige 
spraakherkenners daarentegen hebben een veel grotere woordenschat en kunnen ook 
omgaan met continue spraak. Bij continue spraak gaat het om complete uitingen, 
waarbij de woorden niet los, maar aan elkaar uitgesproken worden. De 
herkenprestaties van huidige spraakherkenners zijn zo goed dat het mogelijk is om 
spraak in te zetten als communicatiemiddel tussen mens en machine. De 
mogelijkheden van het gebruik van ASH zijn echter beperkt, omdat ASH niet altijd 
foutloos werkt.  

Ondanks de snelle ontwikkeling van ASH blijken mensen nog steeds beter te 
zijn in spraakverstaan dan computers. Dit is echter niet zo verwonderlijk, aangezien 
mensen veel meer (en andere) informatie gebruiken dan spraakherkenners bij de 
decodering van spraak. Eén van de moeilijkheden van het herkennen van continue 
spraak is dat de manier waarop woorden worden uitgesproken erg variabel is. Als twee 
woorden bijvoorbeeld achter elkaar worden gesproken, kan het gebeuren dat sommige 
klanken niet (of niet volledig) worden uitgesproken, bijvoorbeeld, “dat is” kan 
uitgesproken worden als “da’s”. Het verschijnsel dat woorden op verschillende 
manieren kunnen worden uitgesproken wordt ook wel uitspraakvariatie genoemd. 
Mensen hebben meestal geen moeite om de verschillende uitspraken van een woord te 
herleiden tot één en hetzelfde woord, maar hoe ze dat precies voor elkaar krijgen is 
niet bekend. Van spraakherkenners weten we wel precies hoe ze werken en dus ook 
hoe ze zouden kunnen omgaan met uitspraakvariatie. De huidige spraakherkenners 
maken echter niet altijd expliciet gebruik van de verschillende manieren waarop 
woorden uitgesproken kunnen worden, waardoor uitspraakvariatie kan leiden tot 
herkenfouten. In dit onderzoek is daarom nagegaan of het modelleren van 
uitspraakvariatie in spraakherkenners de herkenprestaties ervan kan verbeteren.  

Het proefschrift bestaat uit een viertal artikelen die onderzoek beschrijven dat 
gerelateerd is aan het modelleren van uitspraakvariatie. De vier artikelen worden 
voorafgegaan door zes inleidende hoofdstukken die een kader scheppen voor het 
onderzoek dat beschreven is in de artikelen. In Hoofdstuk 1 worden de basisprincipes 
van ASH in het kort uitgelegd aan de hand van werking van de automatische 
spraakherkenner die gebruikt is in dit onderzoek. In Hoofdstuk 2 wordt beschreven 
welke bronnen van uitspraakvariatie te onderscheiden zijn en wordt uitgelegd waarom 
uitspraakvariatie kan leiden tot herkenfouten. In Hoofdstuk 3 worden het doel van het 
onderzoek en de gebruikte onderzoeksmethodologie beschreven. Hoofdstuk 4 bestaat 
uit de samenvattingen van de vier artikelen. In Hoofdstuk 5 worden de 
onderzoeksresultaten bediscussieerd. Tenslotte worden in Hoofdstuk 6 de conclusies 
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van dit proefschrift beschreven, samen met aanbevelingen voor verder onderzoek. De 
inleidende hoofdstukken worden hieronder kort besproken, gevolgd door 
samenvattingen van de vier artikelen. Tenslotte worden de algemene conclusies van dit 
proefschrift en suggesties voor toekomstig onderzoek gegeven. 
 
Automatische spraakherkenning 
De werking van een automatische spraakherkenner kan in het kort als volgt uitgelegd 
worden. Een spraakherkenner kan opgebouwd gedacht worden uit drie modules:  

1. Het lexicon. Het lexicon bestaat uit een lijst van alle woorden die de 
spraakherkenner kan herkennen (orthografische representatie), samen met een 
beschrijving van de klanken waaruit de standaarduitspraak van het woord is 
opgebouwd (fonetische representatie). 

2. De foonmodellen. Dit zijn statistische modellen waarin de akoestische 
eigenschappen van de klanken (fonen) van de taal zijn vastgelegd.   

3. Het taalmodel. Het taalmodel bevat statistische informatie over de taal, zoals de 
frequentie van voorkomen van woorden en sequenties van woorden.  

Tijdens training worden de parameters van de foonmodellen geschat aan de hand van 
een grote hoeveelheid spraak met bijbehorende automatisch gegenereerde fonetische 
transcripties. De parameters van het taalmodel worden geschat op basis van een grote 
hoeveelheid tekst (orthografische transcripties). Tijdens herkenning wordt voor een 
groot aantal mogelijke sequenties van woorden (hypotheses) de waarschijnlijkheden 
bepaald. Hiertoe zijn twee scores bepalend:  
1. De akoestische score; deze wordt geschat met behulp van de foonmodellen en geeft 

aan hoe waarschijnlijk het is dat het geobserveerde akoestische signaal is 
gegenereerd door het statistische model van ieder afzonderlijk foon, en  

2. De taalmodel score; deze wordt geschat met behulp van het taalmodel en geeft de a 
priori waarschijnlijkheid voor iedere hypothese aan.  

De hypothese met de hoogste totale waarschijnlijkheid is de sequentie van woorden 
die uiteindelijk wordt herkend.  

De spraakherkenner die in dit onderzoek gebruikt is vormt een onderdeel van 
het gesproken dialoogsysteem OVIS (Openbaar Vervoer Informatie Systeem). Door 
met OVIS te bellen kan telefonisch informatie worden verkregen over binnenlandse 
treinreizen. Voor het trainen van de foonmodellen en het taalmodel en voor het 
uitvoeren van de herkenexperimenten is spraakmateriaal nodig. Het spraakmateriaal 
dat we hebben gebruikt in het in dit proefschrift beschreven onderzoek bestaat uit 
opnames van telefoongesprekken met OVIS.  
 

Uitspraakvariatie 
In onze referentieherkenner is slechts één uitspraak per woord aanwezig. Een 
uitspraak die afwijkt van de uitspraak in het lexicon kan op twee verschillende 
manieren herkenfouten veroorzaken. Ten eerste kan de afwijking in de uitspraak zo 
groot zijn dat er een ander woord in het lexicon is dat meer op het uitgesproken woord 
lijkt en dus ten onrechte wordt herkend. Ten tweede zorgt de afwijkende uitspraak er 



Samenvatting 165 

 

tijdens training voor dat verkeerde stukken akoestisch signaal worden toegewezen aan 
een foonmodel, waardoor dit foonmodel wordt vervuild. Het gebruik van deze 
vervuilde foonmodellen tijdens herkenning kan vervolgens weer leiden tot 
herkenfouten.  

Methodes voor het modelleren van uitspraakvariatie ter verbetering van ASH 
kunnen op verschillende manieren ingedeeld worden. Voor het onderzoek beschreven 
in dit proefschrift is het belangrijk om een onderscheid te maken tussen 
kennisgebaseerde en datagestuurde methoden. Bij een kennisgebaseerde methode 
wordt de informatie over uitspraakvariatie uit de literatuur gehaald, terwijl bij een 
datagestuurde methode deze informatie uit (een grote hoeveelheid) spraakdata wordt 
afgeleid.  
 
Doel en onderzoeksmethodologie 
Het doel van het modelleren van uitspraakvariatie is om de herkenprestaties van 
spraakherkenners te verbeteren. Voordat het mogelijk is om uitspraakvariatie adequaat 
te modelleren, is het nodig om te weten welke uitspraakvarianten voorkomen in de 
spraak die de herkenner moet kunnen verwerken en wat de frequenties van voorkomen 
van de uitspraakvarianten is. Deze informatie kan verkregen worden door fonetische 
transcripties te maken van zeer grote hoeveelheden spraakmateriaal. In dit onderzoek 
is ervoor gekozen om de transcripties automatisch te genereren. Dit houdt in dat de 
spraakherkenner zelf op basis van het akoestisch signaal beslist welke van een aantal 
mogelijk uitspraakvarianten het meest waarschijnlijk is uitgesproken. Aangezien 
automatische transcriptie een essentieel onderdeel vormt van onze 
onderzoeksmethodologie is eerst een uitgebreide studie verricht waarin de gebruikte 
automatische transcriptiemethode nader is onderzocht. Deze studie is beschreven in de 
eerste twee artikelen van het proefschrift. Het doel van dit deel van het onderzoek is 
om erachter te komen wat de kwaliteit van automatisch gegenereerde transcripties is 
en hoe de best mogelijke automatische transcripties verkregen kunnen worden. In de 
laatste twee artikelen worden twee studies beschreven waarin uitspraakvariatie wordt 
gemodelleerd. Het doel van deze studies is om te achterhalen of het mogelijk is de 
herkenprestaties van spraakherkenners te verbeteren door het modelleren van 
uitspraakvariatie. Bovendien hopen we ook meer inzicht te krijgen in hoe 
uitspraakvariatie het best gemodelleerd kan worden.  

Onze onderzoeksmethodologie komt erop neer dat uitspraakvariatie wordt 
gemodelleerd in alle drie de modules van de spraakherkenner. Ten eerste worden er 
uitspraakvarianten toegevoegd aan het referentielexicon (dat één fonetische 
transcriptie voor ieder woord bevat), zodat er voor sommige woorden verschillende 
uitspraken mogelijk zijn. Op deze manier is er een betere overeenstemming tussen de 
gerealiseerde uitspraak van woorden en de fonetische transcriptie ervan in het lexicon. 
Ten tweede wordt een automatische fonetische transcriptie van het trainingsmateriaal 
gemaakt. Tijdens automatische transcriptie gebruikt de spraakherkenner een lexicon 
waaraan uitspraakvarianten zijn toegevoegd en beslist de herkenner zelf welke van de 
varianten het best past bij het akoestische signaal. Het is de verwachting dat deze 
automatisch verkregen fonetische transcripties de spraak beter beschrijven dan de 
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fonetische transcripties die verkregen zijn uit het referentielexicon. Op basis van deze 
nauwkeurigere transcripties van het trainingsmateriaal worden nieuwe foonmodellen 
getraind. Ten derde wordt uitspraakvariatie gemodelleerd in het taalmodel. Dit houdt 
in dat iedere uitspraakvariant een eigen a priori waarschijnlijkheid krijgt. Deze 
waarschijnlijkheden worden geschat op basis van de nieuwe automatisch verkregen 
transcripties van het trainingsmateriaal. Om te voorkomen dat uitspraakvarianten van 
onwaarschijnlijke woorden ten onrechte worden verward met andere woorden in het 
lexicon, wordt gebruik gemaakt van variantspecifieke waarschijnlijkheden.  
 
Artikel 1 
In artikel 1 is de kwaliteit van de automatische fonetische transcripties onderzocht 
door de automatische transcripties te vergelijken met transcripties gemaakt door 
ervaren transcribenten. Dit zijn mensen die ervaring hebben in het maken van 
fonetische transcripties van spraak. De transcriptietaak van de spraakherkenner 
bestond uit een gedwongen keuze uit een beperkt aantal mogelijke uitspraakvarianten 
voor een beperkt aantal woorden. De varianten werden automatisch gegenereerd door 
vijf optionele fonologische regels toe te passen op de woorden in het lexicon. Deze 
regels zijn gebaseerd op de volgende vijf frequent voorkomende fonologische 
processen: /n/-, /r/-, /t/-, /@/-deletie en /@/-insertie. Aangezien transcribenten ook 
fouten maken, is het niet mogelijk om een referentietranscriptie te verkrijgen waarvan 
aangenomen kan worden dat deze volledig correct is. Om deze reden hebben we twee 
verschillende strategieën gebruikt om menselijke referentietranscripties te verkrijgen 
in de twee experimenten die zijn uitgevoerd. In het eerste experiment gebruikten we 
een referentietranscriptie gebaseerd op het meerderheidsoordeel van negen ervaren 
transcribenten die onafhankelijk van elkaar werkten, terwijl in het tweede experiment 
twee (of drie) transcribenten consensus moesten bereiken over de 
referentietranscriptie. Als kwaliteitsmaat voor de automatische transcripties gebruikten 
we de mate van overeenstemming tussen de automatische transcripties en de 
referentietranscripties. Hoe groter de mate van overeenstemming tussen de 
automatische transcripties en de referentietranscripties, hoe hoger de 
transcriptiekwaliteit.  

De belangrijkste conclusies van het eerste experiment is dat de mate van 
overeenstemming met de referentietrancripties significant lager is voor de 
spraakherkenner dan voor de transcribenten. Het is echter ook gebleken dat de 
verschillen niet voor alle vijf de regels significant zijn en dat voor één van de 
transcribenten de mate van overeenstemming ook significant lager was dan voor de 
overige transcribenten. De verschillen tussen automatisch en handmatig verkregen 
transcripties zijn echter niet groot; ze kunnen heel goed acceptabel zijn, afhankelijk 
van het doel waarvoor de transcripties gebruikt worden.  

In het tweede experiment is specifiek gekeken naar de transcriptie van het foon 
/@/ in de context van de /@/-deletie en /@/-insertie regels. Hieruit blijkt dat de 
spraakherkenner en de transcribenten een andere drempel voor de duur van de /@/ 
gebruiken op grond waarvan besloten wordt of de /@/ uitgesproken is of niet.  
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Artikel 2 
In artikel 2 hebben we nader onderzocht wat de relatie is tussen een aantal 
eigenschappen van de spraakherkenner en transcriptiekwaliteit. De uitspraakvarianten 
werden weer automatisch gegenereerd door dezelfde vijf optionele fonologische regels 
toe te passen op de woorden in het lexicon als in artikel 1. Als kwaliteitsmaat voor de 
automatische transcripties gebruikten we weer de mate van overeenstemming tussen 
de automatische transcripties en de referentietranscripties. Zowel 
referentietranscripties gebaseerd op het meerderheidsoordeel van de transcribenten als 
consensus transcripties werden gebruikt.  

Ten eerste hebben we gekeken naar de invloed van verschillende eigenschappen 
van de foonmodellen op de transcriptiekwaliteit. Hiertoe hebben we vier experimenten 
uitgevoerd. Het eerste experiment toont aan dat de impliciete minimale duur van een 
foonmodel die gerelateerd is aan de topologie van de foonmodellen invloed heeft op 
de transcriptiekwaliteit. De minimale duur opgelegd door de topologie van de 
foonmodellen die wij gebruiken tijdens een normale herkentaak blijkt te lang te zijn 
voor automatische transcriptie waardoor het moeilijker is om zeer korte fonen te 
detecteren. Het tweede experiment laat zien dat voor automatische transcripties het 
best foonmodellen gebruikt kunnen worden die getraind zijn op spraakmateriaal 
waarvoor de transcriptie zeer nauwkeurig aansluit bij hetgeen gezegd is. Uit het derde 
experiment blijkt dat het gebruik van context-afhankelijke t.o.v. context-
onafhankelijke foonmodellen niet altijd leidt tot een betere transcriptiekwaliteit. Het 
vierde experiment laat zien dat het gelijktijdig optimaliseren van bovengenoemde 
eigenschappen van de foonmodellen tot een nog hogere transcriptiekwaliteit leidt.  

Ten tweede hebben we onderzocht of er een relatie bestaat tussen het 
percentage herkenfouten dat een spraakherkenner maakt tijdens een normale 
herkentaak en de kwaliteit van de automatische transcripties die met dezelfde 
spraakherkenner worden gegenereerd. Uit deze vergelijking blijkt dat er geen duidelijk 
verband is tussen het percentage herkenfouten en de transcriptiekwaliteit behaald met 
dezelfde spraakherkenner. Deze bevinding bevestigt het intuïtieve idee dat fonetisch 
transcriberen en spraakverstaan (net als voor mensen) twee verschillende processen 
zijn. Voor automatische fonetische transcriptie is het daarom noodzakelijk om 
spraakherkenners te ontwikkelen die geoptimaliseerd zijn voor deze taak. 
 
Artikel 3 
Artikel 3 beschrijft een studie waarin een kennisgebaseerde methode voor het 
modelleren van binnen- en tussenwoorduitspraakvariatie is onderzocht. De 
binnenwoorduitspraakvarianten werden automatisch gegeneerd door de vijf 
fonologische regels die gebruikt zijn in de eerste twee artikelen toe te passen op de 
woorden in het lexicon. Verder zijn ook tussenwoorduitspraakvarianten (t.g.v. 
reductie, contractie en cliticizatie) gegenereerd voor een aantal zeer frequent 
voorkomende woordsequenties. Vervolgens hebben we zowel de binnen- als de 
tussenwoorduitspraakvariatie in alle drie de modules van de spraakherkenner 
gemodelleerd en hebben we gemeten wat de invloed is op de herkenprestaties. Uit 
deze experimenten blijkt dat toevoegen van uitspraakvarianten aan het lexicon tot een 
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kleine verbetering in herkenprestaties leidt. Het hertrainen van de foonmodellen leidt 
ook tot een geringe verbetering. Als tenslotte a priori waarschijnlijkheden worden 
gebruikt voor de uitspraakvarianten wordt de grootste verbetering gevonden. Uit een 
vergelijking van twee methodes om tussenwoorduitspraakvariatie te modelleren blijkt 
dat tussenwoordvariatie het beste gemodelleerd kan worden door een aantal zeer 
frequente woordsequenties als aparte woorden op te nemen in het lexicon - 
zogenaamde multiwoorden - en vervolgens uitspraakvarianten te genereren voor deze 
multiwoorden. Uit de herkenexperimenten blijkt verder dat er interactie plaatsvindt 
tussen uitspraakvarianten: De verbetering in het percentage herkenfouten die je zou 
verwachten op basis van experimenten waarin de binnenwoord- en 
tussenwoordvarianten in isolatie worden getest is niet gelijk aan de verbetering die 
gevonden wordt als de varianten in combinatie worden getest. Tenslotte blijkt dat de 
grootste verbetering wordt gevonden als binnen- en tussenwoorduitspraakvariatie 
gelijktijdig worden gemodelleerd: T.o.v. onze referentieherkenner vinden we een 
significante verbetering in het percentage fout herkende woorden van 1.1% absoluut of 
8.8% relatief. 
 
Artikel 4 
Artikel 4 beschrijft een studie waarin een datagestuurde methode voor het modelleren 
van een uitspraakvariatie is onderzocht. In continue spraak komt het vaak voor dat niet 
alle fonen waar een woord uit bestaat worden uitgesproken. In dit onderzoek 
concentreren we ons op deze zogenaamde deleties van fonen. Dit onderzoek bestaat uit 
drie deelstudies. De methode om de informatie over de deletieprocessen uit de data af 
te leiden is in deze drie deelstudies gelijk en werkt als volgt. Allereerst wordt een 
automatische transcriptie gemaakt van een grote hoeveelheid spraakmateriaal. Hiertoe 
worden een zeer groot aantal mogelijke uitspraakvarianten automatisch gegenereerd 
door ieder foon in de fonetische transcriptie optioneel te maken. De automatisch 
verkregen fonetische transcripties van het spraakmateriaal worden vervolgens 
opgelijnd met de transcripties die worden opgezocht in het lexicon van onze 
referentieherkenner. Uit de opgelijnde transcripties worden vervolgens deletieregels 
afgeleid. Een deletieregel beschrijft in welke context (linker- en rechterbuurfoon) een 
foon gedeleerd wordt. Tenslotte wordt op een aantal verschillende manieren regels 
geselecteerd.  

In de eerste deelstudie worden de regels geselecteerd met de hoogste relatieve 
frequentie van toepassen. Vervolgens worden met deze regels uitspraakvarianten 
gegeneerd, die in alle drie de modules van de spraakherkenner worden gebruikt. Uit 
herkenexperimenten blijkt dat als uitspraakvarianten alleen toegevoegd worden aan het 
lexicon niet altijd een verbetering in herkenfouten wordt gevonden. Als het aantal 
toegevoegde varianten erg groot is wordt zelfs een verslechtering gevonden. Verder 
blijkt wederom dat het hertrainen van de foonmodellen de herkenprestaties slechts 
minimaal verbetert. Tenslotte laten onze experimenten zien dat het gebruik van a priori 
waarschijnlijkheden voor uitspraakvarianten van cruciaal belang is. Als de 
datagestuurde varianten worden gebruikt in alle modules van de spraakherkenner, 
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vinden we t.o.v. de referentieherkenner een significante verbetering in het percentage 
fout herkende woorden van 1.2% absoluut of 7.3% relatief.  

In de tweede deelstudie hebben we geprobeerd te achterhalen hoe de 
veranderingen in het herkenresultaat precies tot stand zijn gekomen door een 
uitgebreide foutenanalyse uit te voeren. Deze foutenanalyse laat zien dat er naast 
verbeteringen ook verslechteringen optreden als gevolg van het modelleren van 
uitspraakvariatie. Door de introductie van deze verslechteringen wordt slechts een 
kleine netto verbetering in herkenresultaat gevonden. Verder blijkt er een sterke 
correlatie te bestaan tussen het aantal verbeteringen en verslechteringen op 
regelniveau. Dit betekent dat het niet mogelijk is de herkenprestaties te verbeteren 
door regels uit te sluiten die veel fouten introduceren, omdat deze regels ook fouten 
oplossen. 

In de derde deelstudie hebben we drie maten onderzocht die gebruikt zouden 
kunnen worden om regels te selecteren. Twee van deze maten zijn gebaseerd op de 
toepassingsfrequentie van een regel: Fabs en Frel, respectievelijk de absolute en 
relatieve frequentie waarmee een regel is toegepast. De derde maat (‘netto resultaat’) 
komt voort uit de eerder uitgevoerde foutenanalyse en geeft aan hoeveel woorden netto 
beter herkend worden ten opzichte van de referentieherkenner. Het blijkt dat Fabs en 
het ‘netto resultaat’ het percentage fout herkende woorden het best voorspellen. Van 
deze twee maten verdient Fabs de voorkeur, omdat Fabs praktisch gezien het makkelijkst 
te berekenen is. Als Fabs gebruikt wordt om de regels te selecteren vinden we ten 
opzichte de referentieherkenner een significante verbetering in het percentage fout 
herkende woorden van 1.4% absoluut of 8.2% relatief. 

 
Conclusies 
Op grond van dit proefschrift kunnen een aantal conclusies getrokken over 
automatische fonetische transcriptie van spraak. We hebben laten zien dat het mogelijk 
is om met een spraakherkenner automatische fonetische transcripties van spraak te 
maken. De kwaliteit van deze automatische transcripties is over het algemeen wel iets 
lager dan de kwaliteit van transcripties die gemaakt zijn door ervaren transcribenten. 
Of dit verschil in kwaliteit acceptabel is, hangt af van het doel waarvoor de 
transcripties gebruikt worden. Verder blijkt de kwaliteit van automatische transcripties 
niet direct gerelateerd te zijn aan de herkenprestaties van een spraakherkenner. Voor 
het verkrijgen van optimale transcripties is het daarom het beste om bepaalde voor de 
transcriptietaak specifieke eigenschappen van de spraakherkenner te optimaliseren. Zo 
blijkt het gebruik van een foonmodeltopologie met een korte impliciete minimale duur 
de transcriptiekwaliteit te verbeteren. Verder is het beter om foonmodellen te 
gebruiken die getraind zijn op spraakmateriaal waarvan de transcripties nauwkeurig 
aansluiten bij de uitspraak. Het gebruik van context-afhankelijke foonmodellen blijkt 
alleen nuttig te zijn als deze foonmodellen getraind zijn op basis van een nauwkeurige 
fonetische transcriptie. Tenslotte blijkt dat het combineren van bovengenoemde 
optimale eigenschappen van de foonmodellen in een nog hogere transcriptiekwaliteit 
resulteert. 
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 Ten aanzien van het modelleren van uitspraakvariatie in ASH kunnen ook een 
aantal conclusies getrokken worden. Het blijkt mogelijk te zijn om de herkenprestaties 
van een spraakherkenner te verbeteren door uitspraakvariatie expliciet te modelleren. 
Voor zowel de kennisgebaseerde als de datagestuurde modelleermethodes werd een 
vergelijkbare, significante verbetering in herkenprestaties gemeten. Het opnemen van 
uitspraakvarianten in het lexicon zonder verdere aanpassingen aan de spraakherkenner 
blijkt niet altijd nuttig te zijn, vooral als het aantal toegevoegde varianten groot is. Het 
hertrainen van de foonmodellen op basis van een nauwkeurigere transcriptie van het 
trainingsmateriaal is slechts van beperkt nut. Tenslotte is een belangrijke conclusie dat 
als uitspraakvarianten toegevoegd worden aan het lexicon het van cruciaal belang is 
om gebruik te maken van a priori waarschijnlijkheden van deze varianten.  
 
Verder onderzoek 
Het proefschrift eindigt met suggesties voor toekomstig onderzoek. Ten aanzien van 
automatische fonetische transcriptie worden een aantal mogelijke richtingen 
aangegeven. Het is wenselijk om meer onderzoek te doen waarin nagegaan wordt in 
welke mate automatische gegenereerde transcripties verschillen van transcripties die 
gemaakt zijn door mensen. Verder is het belangrijk om maten te ontwikkelen waarmee 
de kwaliteit van automatische transcripties ingeschat kan worden zonder dat hiervoor 
een vergelijking met handmatig gegenereerde transcripties nodig is. In automatische 
spraakherkenning worden maten gebruikt waarmee kan worden geschat hoe zeker een 
spraakherkenner is van de uitkomst van het herkenresultaat. Dergelijke maten kunnen 
waarschijnlijk ook gebruikt worden om de kwaliteit van automatische transcripties te 
meten.   

Op het gebied van het modelleren van uitspraakvariatie worden ook een aantal 
suggesties voor verder onderzoek gedaan. Het is bekend dat mensen veel meer (en 
andere) informatiebronnen gebruiken om spraak te herkennen dan de huidige generatie 
automatische spraakherkenners. Om deze reden is het wenselijk om meer onderzoek te 
doen naar mogelijke alternatieve informatiebronnen. Op basis van deze extra 
informatie (zoals spreeksnelheid, de voorspelbaarheid van een woord en de mate 
waarin een woord geaccentueerd is) kan de waarschijnlijkheid van varianten beter 
geschat worden. Eén van de redenen waarom de tot dusver gebruikte methoden voor 
het modelleren van uitspraakvariatie maar een kleine verbetering van het percentage 
fouten opleveren is dat de uitspraakvarianten die toegevoegd zijn aan het lexicon 
verward worden met andere woorden in het lexicon. Een methode om de 
verwarbaarheid van varianten te verkleinen is om uitspraakvariatie dynamisch te 
modelleren, d.w.z. dat de varianten alleen gebruikt worden als ze zeer waarschijnlijk 
zijn. Dynamisch modelleren van uitspraakvariatie wordt gezien als een veelbelovende 
onderzoeksrichting in uitspraakvariatieonderzoek. Tenslotte wordt aangegeven dat het 
voor het vergelijken van verschillende methodes om uitspraakvariatie te modelleren 
niet voldoende is om alleen herkenpercentages te rapporteren. Een uitgebreide analyse 
van de veranderingen in herkenresultaat geeft een beter beeld van het effect van het 
modelleren van uitspraakvariatie en maakt het mogelijk om de verschillende methodes 
beter met elkaar te vergelijken. 
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