High-Mobility Group Nucleosome-Binding Protein 1 as Endogenous Ligand Induces Innate Immune Tolerance in a TLR4-Sirtuin-1 Dependent Manner in Human Blood Peripheral Mononuclear Cells

Rob J. W. Arts1, Po-Kai Huang2, De Yang3, Leo A. B. Joosten1, Jos W. M. van der Meer1, Joost J. Oppenheim3, Mihai G. Netea1,4 and Shih-Chin Cheng2*

1 Department of Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands, 2 College of Life Science, Institute of Molecular Medicine, National Tsing Hua University, Hsinchu City, Taiwan, 3 Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States, 4 Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, Craiova, Romania

High-mobility group nucleosome-binding protein 1 (HMGN1) functions as a non-histone chromatin-binding protein in the cell nucleus. However, extracellular HMGN1 acts as an endogenous danger-associated inflammatory mediator (also called alarmin). We demonstrated that HMGN1 not only directly stimulated cytokine production but also had the capacity to induce immune tolerance by a TLR4-dependent pathway, similar to lipopolysaccharide (LPS)-induced tolerance. HMGN1-induced tolerance was accompanied by a metabolic shift associated with the inhibition of the induction of Warburg effect (aerobic glycolysis) and histone deacetylation via Sirtuin-1. In addition, HMGN1 pre-challenge of mice also downregulated TNF production similar to LPS-induced tolerance in vivo. In conclusion, HMGN1 is an endogenous TLR4 ligand that can induce both acute stimulation of cytokine production and long-term tolerance, and thus it might play a modulatory role in sterile inflammatory processes such as those induced by infection, trauma, or ischemia.

Keywords: high-mobility group nucleosome-binding protein 1, endotoxin tolerance, sterile inflammation, sirtuin-1, macrophages

INTRODUCTION

High-mobility group (HMG) proteins are non-histone nuclear proteins. They bind to nucleosomes and regulate chromosome architecture and gene transcription (1). However, upon cell stimulation or under stress situations, such as mechanical change and tissue damage, HMG proteins can be either released or excreted into the extracellular space (2). HMGB1 is the best-characterized HMG-family protein: it is released from injured or activated innate immune cells (1), it stimulates cytokine and chemokine production (3), it can induce dendritic cell activation (4), and it is chemotactic and functions an alarmin.

High-mobility group nucleosome-binding protein 1 (HMGN1) belongs to the HMG N family but it exhibits no homology to HMGB1. The functions of HMGN1 were mainly related to its nuclear...
localization, including modulating histone phosphorylation (5, 6), acetylation (7), methylation preferentially at CpG island-containing promoters (8, 9), and enhancement of DNA damage repair (10). However, two recent studies showed that HMGN1 also has a biological role as an alarmin by inducing DC maturation, antigen-specific immune responses, and antitumor immunity (11, 12).

Upon engaging microbial or endogenous ligands, innate immune cells either directly clear them by phagocytosis, or they induce production of cytokines and chemokines for further activation of the immune system. After the acute inflammatory phase, a resolution phase is actively induced in order to limit the potentially deleterious ongoing inflammation, followed by a return to steady state. Thus, after the initial marked inflammatory response [e.g., induced by the Gram-negative cell wall component lipopolysaccharide (LPS)], subsequent re-stimulation of leukocytes is no longer able to induce the release of inflammatory mediators, but instead activates anti-inflammatory and repair proteins, a process termed innate immune tolerance (13, 14). Interestingly, the first exposure of monocytes to other microbial stimulants “trains” or “primes” the cells and they respond in a more robust way to a secondary stimulation or infection (15).

We have hypothesized that the first exposure of the innate cells to HMG proteins may also induce their functional reprogramming resulting in either tolerance or training. We showed that HMGN1 functions as an endogenous TLR4 ligand that, on the one hand, stimulates acute cytokine production and, on the other hand, induces tolerance in monocytes through a Sirtuin-1-dependent mechanism.

MATERIALS AND METHODS

Isolation and Stimulation of Peripheral Blood Mononuclear Cells (PBMCs)

Separation and stimulation of PBMCs was performed from buffy coats obtained from healthy blood donors after written informed consent (Sanquin Bloodbank, Nijmegen). PBMCs were adjusted to a concentration of $5 \times 10^6 \text{cells/ml}$ and incubated at 37°C in flat-bottom 96-well plates (100 µl/well) with either 100 ng/ml HMGB1, 100 ng/ml HMGN1, 10 ng/ml LPS (E. coli strain O55:B5, Sigma Chemical Co., St. Louis, MO, USA), or culture medium. Recombinant HMGN1 was produced using an insect expression system constructed as previously reported (5). HMGN1 in the culture supernatant of High Five insect cells was purified under sterile condition by affinity chromatography. The endotoxin level in our HMGN1 preparation is $<0.02 \text{EU per µg of protein}$ as determined by Pierce LAL Chromogenic Endotoxin Quantitation Kit (Cat #88282). To assess direct stimulation of cytokines, supernatant was removed and stored for assessment.

To study the potential reprogramming effects of HMGN1 on the function of monocytes/macrophages, after the initial stimulation for 24 h the cells were washed with warm PBS, allowed to rest for 24 h in RPMI containing 10% pooled human serum, and then restimulated with LPS (10 ng/ml), Pam3Cys (10 µg/ml, EMC microcollections, Tuebingen, Germany), flagellin (2 µg/ml, Sigma), or co-culture of Pam3Cys and Candida albicans β-1,3-(1)-glucan [10 µg/ml, kindly provided by D. Williams (East Tennessee State University)] for an additional 24 h. For the long-term studies, cells were incubated for a period of 6 days after the initial 24 h exposure to HMG proteins or LPS. On day 7, the cells were restimulated with the same stimuli for additional 24 h. Supernatants were collected 24 h after restimulation and stored at $-20°C$.

The receptor pathways involved in the biological effects of HMGN1 were assessed by blocking TLR4 with the natural antagonist Bartonella quintana LPS (16). A potential role for histone methylation or acetylation in the long-term effects of HMGN1 was assessed using specific pharmacological inhibitors: ITF2357 (100 nM, Histone deacetylase inhibitor, ITALFARMACO S.p.A, Milano, Italy), EGCG (30 µM, Epigallocatechin-3-gallate, histone acetyltransferase inhibitor, Sigma), and pargyline (3 µM, histone demethylase inhibitor, Sigma) or EX527 (10 µM, sirtuin-1 inhibitor, Sigma) (15, 17).

Animal Experiments

Female C57BL/6J mice (8–10 weeks old, weighing 20 ± 3 g) were obtained from National Laboratory Animal Center (Taipei, Taiwan). All mice were housed in a pathogen-free facility. Animal welfare and experimental procedures were carried out in accordance with the National Institute of Health Guide for the Care and Use of Laboratory Animals, with the approval of the Institutional Animal Care and Use Committee of National Tsing Hua University (Approval number: 10530, Hsinchu, Taiwan). Mice were treated with PBS, recombinant HMGN1 (10 µg per mice) or E. Coli LPS (20 µg per mouse) by intraperitoneal injection. A second injection of LPS (20 µg per mouse) was performed after 6 h post first injection intraperitoneally. Blood samples were collected 1 h post second LPS injection for serum cytokine determination.

Cytokine and Lactate Measurements

IL-6, IL-8 (Sanquin, Amsterdam, Netherlands), TNF-α, IL-1β (R&D, the Netherlands) concentrations in the culture supernatant were measured by commercial ELISA kits. The lowest detection limits are 0.78, 0.78, 3.9, and 3.9 pg/ml for IL-6, IL-8, TNF-α, and IL-1β, respectively. Mouse serum cytokine were measured by Cytokine Beads Array (Becton Dickinson, NJ, USA) according to the manufacturer’s instructions. Lactate was measured by a Lactate Fluorometric Assay Kit (Biovision, CA, USA). Delta lactate production (lactate concentration in the LPS restimulated sample minus the RPMI restimulated sample) is depicted in the figures.

mRNA Extraction and RT-PCR

Cells were primed with either HMGN1 or LPS and restimulated with LPS as described above. mRNA was extracted by Trizol 4 h post-stimulation. The qPCR primers sequences are listed in the (Table S1 Supplementary Material) For sirtuin-1 expression, cells were stimulated for 4 h before RNA was isolated. cDNA was synthesized from 1 µg of total RNA by use of SuperScript reverse transcriptase (Invitrogen). Relative mRNA levels were
HMGN1 induces pro-inflammatory cytokine production in PBMCs

We first examined the capability of HMGN1 to induce pro-inflammatory cytokine production in human PBMCs. HMGN1-induced considerable IL-6, TNF-α, and IL-1β production in PBMCs after 24 h stimulation in a dose-dependent manner (Figure 1). Strikingly, HMGN1 at 100 ng/ml could induce comparable amount of IL-6 and TNF-α and more IL-1β compared to that induced by LPS at 10 ng/ml.

HMGN1 Induces Immune Tolerance in PBMCs

We hypothesized that HMGN1 may induce long-term effects on innate immune cells. To assess this possibility, PBMCs were first stimulated with HMGN1 or LPS (as a positive control). After 24 h stimulation, cells were washed with PBS to remove remaining stimulants and rested for an additional 24 h or 6 days, before secondary LPS stimulation was performed. IL-6 and TNF-α production upon secondary LPS (TLR4 ligand) stimulation were significantly impaired in HMGN1 pretreated monocytes both in short-term (Figure 2A) and long-term (Figure 2B) tolerance models, suggesting HMGN1-induced considerable tolerance against LPS stimulation. The HMGN1-induced tolerance is similar to LPS-induced tolerance.
Figure 3 | High-mobility group nucleosome-binding protein 1 (HMGN1) immunotolerance is not specific for TLR4 ligands. Human peripheral blood mononuclear cells were primed with recombinant HMGN1 or lipopolysaccharide (LPS) for 24 h and then washed with PBS. The cells were further rested in RPMI containing 10% serum for (A) 24 h or (B) 7 days then stimulated with Pam3Cys, flagellin, β-glucan, or RPMI, respectively, for additional 24 h and supernatant were harvested. The IL-6 and TNF-α levels were determined by ELISA (n = 4–8 *p < 0.05 vs RPMI control within each group of restimulation).
acetylation and methylation (18). To examine whether epigenetic modifications are also involved in HMGN1-induced tolerance, several enzymatic inhibitors of acetyl- and methyltransferases were added to the PBMCs prior to the priming stage. However, no obvious restoration of cytokine production was observed by the inhibitors we tested, with the exception of the short-term restoration effect induced by blocking histone acetylation by EGCG for IL-6 production (Figure S2 in Supplementary Material).

The Effects on SirTuin-1 and Immunometabolism by HMGN1 Stimulation

It has been shown before that SirTuin-1 (a histone deacetylation inhibitor) is a key regulator of LPS tolerance (17, 19). SirTuin-1 has been shown to be upregulated during the early phase after LPS stimulation and has a driving role in the transition from a glycolytic energy metabolism to a more β-oxidation-dependent
Fig. 5

Effect of high-mobility group nucleosome-binding protein 1 (HMGN1) on TNF, IL-6, IL-8, IL-10, and CAMP production. Human peripheral blood mononuclear cells were primed with recombinant HMGN1 or lipopolysaccharide (LPS) for 24 h and then washed with PBS. The cells were further rested in RPMI containing 10% serum for (A) 24 h or (B) 7 days. The cells were stimulated with LPS or RPMI. The total RNA was extracted after 4 h and the different gene expression was measured by RT-PCR. The expression fold of target genes was normalized to the expression of HPRT ($n = 5–6$, *$p < 0.05$ vs RPMI [LPS restimulated] control).
DISCUSSION

Although HMGN1 functions physiologically within the nucleus, the release of extracellular HMGN1 has been demonstrated to possess chemotactic function and to induce DC maturation (11). In the present study, we demonstrate that extracellular exposure of human PBMCs to HMGN1 induces a robust release of pro-inflammatory cytokines, such as IL-6 and TNF-α. This effect is likely to be relevant during sterile inflammation induced by perturbed cellular and/or tissue homeostasis (20), where the release of intracellular HMGN1 may cause acute local inflammation.

HMGB1 is the best-characterized HMG-family protein. It was initially identified as a nuclear protein that is important for the regulation of transcription (21). HMGB1 facilitates the binding of regulatory protein complexes to DNA by causing DNA bending.
(22) to enhance transcription activation (23). The extracellular HMGB1 was first described to be a late-acting mediator of endotoxemia and sepsis (24–26). Moreover, increasing evidence suggests the involvement of endogenous alarmins in ischemia–reperfusion injury (27, 28). The endogenous TLR4 ligands, such as HMGB1 and heat shock protein, have been demonstrated to be involved in these sterile inflammatory conditions (29, 30). In the human primary mononuclear cells used in the present study, we demonstrated that, similar to HMGB1, HMGN1 is a potent pro-inflammatory cytokine inducer and functions as an endogenous TLR4 ligand (11, 12).

Since LPS is well known to induce tolerance in monocytes through TLR4, we further examined whether HMGN1 could also induce similar tolerance effects. We demonstrated that HMGN1 is able to induce both short-term and long-term tolerance in terms of pro-inflammatory cytokines production in response to second stimulation with both TLR agonists as well as the dectin-1 ligand β-glucan. By blocking TLR4 signaling, the tolerance effect could be partially restored, indicating that HMGN1-induced tolerance is TLR4 dependent. In addition, intraperitoneal injection of HMGN1 into mice also renders the mouse less responsive to subsequent LPS stimulation, similar to LPS-mediated immune tolerance in vivo.

Earlier studies have shown that histone modifications play an important role in mediating the tolerance effects induced by LPS (14). We hypothesized that the long-term effects of HMGN1 effects may also be induced by epigenetic mechanisms. The involvement of epigenetic modulators for HMGN1-induced tolerance was examined using inhibitors of epigenetic modifier enzymes including ITF2357 (Histone deacetylase inhibitor), EGCG (Epigallocatechin-3-gallate, histone acetytransferase inhibitor) and pargyline (histone demethylase inhibitor). Only EGCG had a marginal effect on the short-term effects of HMGN1-induced tolerance. By contrast, a different picture emerged when the effect of the NAD+–dependent histone deacetylase Sir2u1-1 was studied (18). First, HMGN1 induced, just as LPS, Sir2u1-1 expression. Second, inhibition of Sir2u1-1 by a specific inhibitor partially restored cytokine production during HMGN1-induced tolerance. This provides further support for the sharing of the tolerance pathway by endotoxin and HMGN1. Sir2u1-1 is a pivotal downstream signal of this pathway.

An additional interesting observation concerns the interplay between immune activation of the cells and the cellular metabolism of glucose. A recent study demonstrated that induction of aerobic glycolysis (Warburg effect) is necessary for the effective production of cytokines by macrophages during LPS stimulation (31). Moreover, we have also recently reported that during trained immunity, a process mirroring tolerance that is also mediated by epigenetic reprogramming, namely induction of aerobic glycolysis is crucial (32). In line with this, the data presented here show that tolerant cells (both induced by HMGN1 or LPS) are not able to mount aerobic glycolysis, as mirrored by defective lactate production. Interestingly, the Sir2u1-1 inhibitor EX527 restored the capacity of monocytes to respond with lactate production upon stimulation with LPS, demonstrating that histone acetylation controls both immune and metabolic function of tolerant monocytes. This suggests Sir2u1-1 to be an attractive potential therapeutic target in immune tolerance and paralysis during Gram-negative sepsis and other severe infections.

In conclusion, HMGN1 induces tolerance in human PBMCs through a TLR4/Sirtuin-1 dependent mechanism, arguing that it may contribute to modulation of sterile inflammation in processes, such as severe trauma and ischemia-reperfusion, during which high amounts of TNF and IL-6 are released in the absence of exogenous stimuli (33). The sterile inflammation may be caused by the release of endogenous HMGN1 from the damaged cells and the induction of cytokines through TLR4 signaling. Moreover, the acute inflammation induced by HMGN1 might later translate into tolerance and even immunoparalysis, to increase the susceptibility of the patient to secondary infections. Therefore, blocking these HMGN1 effects may have potential therapeutic benefits in pathological processes in which hyperinflammation and/or immune paralysis play a role in pathogenesis.

ETHICS STATEMENT

This study was carried out in accordance with the National Institute of Health Guide for the Care and Use of Laboratory Animals, with the approval of the Institutional Animal Care and Use Committee of National Tsing Hua University (Approval number: 10530, Hsinchu, Taiwan).

AUTHOR CONTRIBUTIONS

Conception and drafting of the article: RA, MN, and S-CC. Performed and analysis of experiments: RA and P-KH. Discussions of the data and critical revision of the article: RA, DY, LJ, JM, JO, MN, and S-CC.

ACKNOWLEDGMENTS

We want to thank Dr. M. Bustin from the National Cancer Institute Bethesda, for his contribution to the materials.

FUNDING

MN was supported by a Spinoza Grant of the Netherlands Organization for the Scientific Research, an EFRO grant (COILED), and a Competitiveness Operational Program Grant of the Romanian Ministry of European Funds (FUSE). S-CC was supported by grants 105-2320-B-007-007 and 106-2628-B-007-002-MY4 from the Ministry of Science and Technology, Taiwan.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at https://www.frontiersin.org/articles/10.3389/fimmu.2018.00526/full#supplementary-material.
REFERENCES

 gde.2005.08.007

3. Lotze MT, Tracey KI. High-mobility group box 1 protein (HMGB1): nuclear
 nri1594

4. Gougeon M-L, Melki M-T, Saidi H. HMGB1, an alarmin promoting HIV dis-
doi:10.1038/cdd.2011.134

5. Lim J-H, Catez F, Birger Y, West KL, Prymakowska-Bosak M, Postnikov YV,
et al. Chromosomal protein HMGN1 modulates histone H3 phosphorylation. Mol

6. Postnikov YV, Belova GL, Lim J-H, Bustin M. Chromosomal protein HMGN1
modulates the phosphorylation of serine 1 in histone H2A. Biochemistry

protein HMGN1 enhances the acetylation of lysine 14 in histone H3. EMBO J

doi:10.1016/j.chom.2012.06.006

modulates nuclease occupancy and DNase I hypersensitivity at the CpG

Chromosomal protein HMGN1 enhances the rate of DNA repair in chroma-

group nuclease-binding protein 1 acts as an alarmin and is critical for lipo-
doi:10.1084/jem.20110354

contributes to antitumor immunity and is a potent immunoadjuvant. Cancer

lation of cytokine production and cellular changes in response to endotoxin

14. Foster SL, Hargreaves DC, Medzhitov R. Gene-specific control of inflam-
doi:10.1038/nature05836

15. Quintana FJ, Cohen JR. Heat shock proteins as endogenous adjuvants in
 jimmunol.175.5.2777

16. Tamahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGetrick AF,
Goel G, et al. Succinate is an inflammatory signal that induces IL-1α through
HIF-1α. Nature (2014) 496:238–42. doi:10.1038/nature12198

mTOR- and HIF-1-mediated aerobic glycolysis as metabolic basis for trained

18. Catania RA, Schwacha MG, Cioffi WG, Bland KI, Chaudry IH. Does
endotoxin–sirtuin + contribute to antitumor immunity and is a potent immunoadjuvant.

19. Liu TF, Vachharajani VT, Yoza BK, McCall CE. NAD+-dependent sirtuin
1 and 6 proteins coordinate a switch from glucose to fatty acid oxidation
doi:10.1074/jbc.M112.362343

paradigm: toll-like receptor 4-sentinel for the detection of tissue damage.

21. Bustin M, Reeves R. High-mobility-group chromosomal proteins: architec-
tural components that facilitate chromatin function. Prog Nucleic Acid Res Mol

22. Stros M, Polanska E, Struncová S, Pospišilová S. HMGB1 and HMGB2 pro-
teins up-regulate cellular expression of human topoisomerase IIAlpha. Nucleic

23. Ueda T, Chou H, Kawase T, Shirakawa H, Yoshida M. Acidic C-tail of HMGB1
is required for its target binding to nuclease linker DNA and transcription

24. Wang H, Yang H, Tracey KI. Extracellular role of HMGB1 in inflammation and

25. Huang W, Yang Y, Li L. HMGB1, a potent proinflammatory cytokine in sepsis.

35:577–84. doi:10.1080/03655430310016286

TLR4 activation impairs intestinal microcirculatory perfusion in necrotizing
enterocolitis via ENOS-NO-nitrite signaling. Proc Natl Acad Sci U S A (2013)
110:9451–6. doi:10.1073/pnas.1219997110

mediate differential responses to limb ischemia through MyD88-dependent
pone.0050654

29. Erridge C. Endogenous ligands of TLR2 and TLR4: agonists or antagonists?

30. Quintana FJ, Cohen JR. Heat shock proteins as endogenous adjuvants in
jimmunol.175.5.2777

31. Catania RA, Schwacha MG, Cioffi WG, Bland KI, Chaudry IH. Does
endotoxin–sirtuin + participates in epigenetic reprogramming

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2018 Arts, Huang, Yang, Joosten, van der Meer, Oppenheim, Netea
and Cheng. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) and the copyright
owner are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.