A SIMPLE PROOF OF THE MODULAR IDENTITY FOR THETA FUNCTIONS

Wim Couwenberg

Report No. 0114 (July 2001)
A SIMPLE PROOF OF THE MODULAR IDENTITY FOR THETA FUNCTIONS

WIM COUWENBERG

To A.C.M. van Rooij on occasion of his 65th birthday

Abstract. The modular identity arises in the theory of theta functions in one complex variable. It states a relation between theta functions for parameters \(\tau \) and \(-1/\tau\) situated in the complex upper half plane. A standard proof uses Poisson summation and hence builds on results from Fourier theory. This paper presents an elementary proof using only a uniqueness property and the simple heat equation.

1. The \(\theta \) function

Let \(\mathbb{H} \subset \mathbb{C} \) denote the upper half plane of all complex numbers with a positive imaginary part. The following series converges locally uniformly in \(z \in \mathbb{C} \) and \(\tau \in \mathbb{H} \) and hence defines a holomorphic function on \(\mathbb{C} \times \mathbb{H} \):

\[
\theta(z, \tau) = \sum_{k \in \mathbb{Z}} e^{2\pi ikz + \pi ik^2 \tau}
\]

This function is often called the \(\theta_3 \) function of Jacobi (some texts use \(q = e^{\pi i \tau} \) or replace \(2\pi iz \) by \(z \)). For \(z = 0 \) it is also called Ramanujan’s theta function. It satisfies the shift relations in \(z \)

\[
\theta(z + 1, \tau) = \theta(z, \tau)
\]

and

\[
\theta(z + \tau, \tau) = e^{-2\pi iz - \pi i \tau} \theta(z, \tau)
\]

that can easily be verified from its definition. The following heat equation is also apparent from the definition of \(\theta \):

\[
\frac{d^2 \theta}{dz^2} = 4\pi i \frac{d \theta}{d\tau}.
\]

Let \(\Lambda(\tau) = \mathbb{Z} + \mathbb{Z} \tau \) be the lattice spanned by 1 and \(\tau \). For fixed parameter \(\tau \) the function \(\theta \) in \(z \) is the only entire function satisfying (1.1) and (1.2) up to complex multiples. This follows from the following theorem:

Theorem 1.1. If \(f(z) \) is an entire function on \(\mathbb{C} \) satisfying the shift relations (1.1) and (1.2) then either \(f \) vanishes identically or all its roots equal \((\tau + 1)/2\) modulo the lattice \(\Lambda(\tau) \).
Suppose f does not vanish identically. The shift relations for f imply
\[
\frac{f'(z+1)}{f(z+1)} = \frac{f'(z)}{f(z)} \quad \text{and} \quad \frac{f'(z + \tau)}{f(z + \tau)} = \frac{f'(z)}{f(z)} - 2\pi i.
\]
For $b \in \mathbb{C}$ define a closed fundamental domain $P \subset \mathbb{C}$ by
\[
P = \{ b + x + y\tau \mid x, y \in [0,1] \}.
\]
The number of roots of f on P and the sum of its roots on P can be computed by the integrals
\[
\frac{1}{2\pi i} \oint_{\partial P} \frac{f'(z)}{f(z)} dz
\]
and
\[
\frac{1}{2\pi i} \oint_{\partial P} \frac{zf'(z)}{f(z)} dz
\]
respectively. By varying the number b we may assume that f has no roots on ∂P so both integrals are well defined. Using the shift relations for f the first integral evaluates to 1, showing that f has only one root on P. The second integral evaluates to a value equal to $(\tau + 1)/2$ modulo the lattice $\Lambda(\tau)$. This proves the theorem. □

Corollary 1.2. If f is as theorem 1.1, then $f(z) = c \cdot \theta(z, \tau)$ for some constant $c \in \mathbb{C}$.

Also by theorem 1.1 we find that $\theta(0, \tau)f(z) - f(0)\theta(z, \tau)$ must vanish identically as it vanishes at $z = 0$ as well as at $(\tau + 1)/2$. □

2. The modular identity

We are already in a position to prove the modular identity (2.3) for θ. A very accessible treatment of this identity using Poisson summation can be found in [1]. For the proof given below, the heat equation suffices. Define an entire function ϑ by
\[
\vartheta(z) = e^{\pi i\tau z^2} \theta(\tau z, \tau).
\]
Then $\vartheta(z + 1) = \vartheta(z)$ and
\[
\vartheta(z - 1/\tau) = e^{-2\pi iz + \pi i/\tau} \vartheta(z).
\]
Hence $\vartheta(z) = c(\tau) \cdot \theta(z, -1/\tau)$ for some function c on the upper half plane by corollary 1.2. Substituting $\tau = i$ and $z = 0$ shows that $c(i) = 1$. The heat equation for ϑ will produce a simple differential equation for c. Elementary computations show:

\[
\begin{align*}
(2.1) \quad \frac{d^2 \vartheta}{dz^2}(0) &= 2\pi i \vartheta(0, \tau) + \tau^2 \frac{d^2 \vartheta}{dz^2}(0, 0) = c(\tau)\frac{d^2 \vartheta}{dz^2}(0, -1/\tau) \\
(2.2) \quad \frac{d \vartheta}{d\tau}(0) &= \frac{d \vartheta}{d\tau}(0, \tau) = c'(\tau) \theta(0, -1/\tau) + c(\tau)\tau^{-2} \frac{d \vartheta}{d\tau}(0, -1/\tau).
\end{align*}
\]

Using the heat equation (1.3) on (2.1) yields
\[
\frac{1}{2\tau^{-1}} \theta(0, \tau) + \frac{d \theta}{d\tau}(0, 0) = c(\tau)\tau^{-2} \frac{d \theta}{d\tau}(0, -1/\tau)
\]
and combining this with (2.2) leads to
\[
\theta(0, \tau) = -2\tau c'(\tau) \theta(0, -1/\tau).
\]
However, substituting \(z = 0 \) in \(\vartheta(z) \) gives
\[
\theta(0, \tau) = \vartheta(0) = c(\tau) \theta(0, -1/\tau)
\]
and as \(\theta \) does not vanish at \(z = 0 \) we find
\[
-2\tau c'(\tau) = c(\tau).
\]
Together with \(c(i) = 1 \) we finally find
\[
c(\tau) = \frac{1}{\sqrt{-i\tau}}
\]
and thus the modular identity for the \(\theta \) function:
\[
\theta(z, -1/\tau) = \sqrt{-i\tau} e^{\pi i z^2} \theta(\tau z, \tau).
\]

References