Search for electroweak production of supersymmetric states in scenarios with compressed mass spectra at $\sqrt{s} = 13$ TeV with the ATLAS detector

M. Aaboud et al.*
(ATLAS Collaboration)

(Received 21 December 2017; published 27 March 2018)

A search for electroweak production of supersymmetric particles in scenarios with compressed mass spectra in final states with two low-momentum leptons and missing transverse momentum is presented. This search uses proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015–2016, corresponding to $36.1 \, \text{fb}^{-1}$ of integrated luminosity at $\sqrt{s} = 13$ TeV. Events with same-flavor pairs of electrons or muons with opposite electric charge are selected. The data are found to be consistent with the Standard Model prediction. Results are interpreted using simplified models of R-parity-conserving supersymmetry in which there is a small mass difference between the masses of the produced supersymmetric particles and the lightest neutralino. Exclusion limits at 95% confidence level are set on next-to-lightest neutralino masses of up to 145 GeV for Higgsino production and 175 GeV for wino production, and slepton masses of up to 190 GeV for pair production of sleptons. In the compressed mass regime, the exclusion limits extend down to mass splittings of 2.5 GeV for Higgsino production, 2 GeV for wino production, and 1 GeV for slepton production. The results are also interpreted in the context of a radiatively-driven natural supersymmetry model with nonuniversal Higgs boson masses.

DOI: 10.1103/PhysRevD.97.052010

I. INTRODUCTION

Supersymmetry (SUSY) [1–6] predicts new states that differ by half a unit of spin from their partner Standard Model (SM) particles, and it offers elegant solutions to several problems in particle physics. In the minimal supersymmetric extension to the Standard Model [7,8], the SM is extended to contain two Higgs doublets, with supersymmetric partners of the Higgs bosons called Higgsinos. These Higgsinos mix with the partners of the electroweak gauge bosons, the so-called winos and the bino, to form neutralino $\tilde{\chi}_i^0$, $\tilde{\chi}_j^\pm$, and chargino $\tilde{\chi}_j^0$ mass eigenstates (subscripts indicate increasing mass). These states are collectively referred to as electroweakinos. In this work, the lightest neutralino $\tilde{\chi}_1^0$ is assumed to be the lightest SUSY particle (LSP) and to be stable due to R-parity conservation [9], which renders it a viable dark matter candidate [10,11].

Scenarios involving small mass differences between heavier SUSY particles and the LSP are referred to as compressed scenarios, or as having compressed mass spectra. This work considers three compressed scenarios, in which the heavier SUSY particles are produced via electroweak interactions. The first scenario is motivated by naturalness arguments [12,13], which suggest that the absolute value of the Higgsino mass parameter μ is near the weak scale [14,15], while the magnitude of the bino and wino mass parameters, M_1 and M_2, can be significantly larger (such as 1 TeV), i.e. $|\mu| \ll |M_1| , |M_2|$. This results in the three lightest electroweakino states, $\tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm$, and $\tilde{\chi}_2^0$ being dominated by the Higgsino component. In this case the three lightest electroweakino masses are separated by hundreds of MeV to tens of GeV depending on the composition of these mass eigenstates, which is determined by the values of M_1 and M_2 [16]. The second scenario, motivated by dark matter coannihilation arguments [17,18], considers the absolute values of the M_1 and M_2 parameters to be near the weak scale and similar in magnitude, while the magnitude of μ is significantly larger, such that $|M_1| < |M_2| \ll |\mu|$. The $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$ states are consequently wino-dominated, rendering them nearly mass degenerate [19], and have masses of order one to tens of GeV larger than a bino-dominated LSP. The third scenario is also favored by such dark matter arguments, but involves the pair production of the scalar partners of SM charged leptons (sleptons $\tilde{\ell}$). In this scenario, the sleptons have masses near the weak scale and just above the mass of a pure bino LSP.

Experimental constraints in these compressed scenarios are limited partly by small electroweak production cross sections, but also by the small momenta of the visible decay...
products. The strongest limits from previous searches are from combinations of results from the Large Electron Positron collider (LEP) experiments [20–30]. The lower bounds on direct chargino production from these results correspond to \(m(\tilde{\chi}_1^\pm) > 103.5 \text{ GeV for } \Delta m(\tilde{\chi}_1^\pm, \tilde{\chi}_1^0) > 3 \text{ GeV and } m(\tilde{\chi}_1^\pm) > 92.4 \text{ GeV for smaller mass differences. For sleptons, conservative lower limits on the mass of the scalar partner of the right-handed muon, denoted } \tilde{\mu}_R, \text{ are approximately } m(\tilde{\mu}_R) \gtrsim 94.6 \text{ GeV for mass splittings down to } \Delta m(\tilde{\mu}_R, \tilde{\chi}_1^0) \gtrsim 2 \text{ GeV. For the scalar partner of the right-handed electron, denoted } \tilde{e}_R, \text{ a universal lower bound of } m(\tilde{e}_R) \gtrsim 73 \text{ GeV independently of } \Delta m(\tilde{e}_R, \tilde{\chi}_1^0) \text{ exists. Recent phenomenological studies have proposed to probe compressed mass spectra in the electroweak SUSY sector by using leptons with small transverse momentum, } p_T, \text{ referred to as soft leptons [16,31–37].}

A search for electroweak production of supersymmetric particles in compressed mass spectra scenarios with final states containing two soft same-flavor opposite-charge leptons (electrons or muons) and a large magnitude \(E_T^{\text{miss}} \) of missing transverse momentum, \(p_T^{\text{miss}} \), is presented in this paper. The analysis uses proton-proton (\(pp \)) collision data collected by the ATLAS experiment from 2015 and 2016 at the Large Hadron Collider (LHC) [38], corresponding to 36.1 fb\(^{-1}\) of integrated luminosity at \(\sqrt{s} = 13 \text{ TeV.} \) Figure 1 shows schematic diagrams representing the electroweakino and slepton pair production, as well as decays targeted in this work. Same-flavor opposite-charge lepton pairs arise either from \(\tilde{\chi}_2^0 \) decays via an off-shell Z boson (denoted \(Z^* \)) or the slepton decays. The \(E_T^{\text{miss}} \) in the signal originates from the two LSPs recoiling against hadronic initial-state radiation. Electroweakino signal regions are constructed using the dilepton invariant mass \(m_{\ell\ell} \) as a final discriminant, in which the signals have a kinematic endpoint given by the mass splitting of the \(\tilde{\chi}_2^0 \) and \(\tilde{\chi}_1^0 \), as illustrated in Fig. 2. Slepton signal regions exploit a similar feature in the transverse mass \(m_{T2} \) [39,40]. This work complements the sensitivity of existing ATLAS searches at \(\sqrt{s} = 8 \text{ TeV} \) [41–44], which set limits on the production of winos that decay via W or Z bosons for mass splittings of \(\Delta m(\tilde{\chi}_1^\pm, \tilde{\chi}_1^0) \gtrsim 35 \text{ GeV, and } \Delta m(\tilde{\ell}, \tilde{\chi}_1^0) \gtrsim 55 \text{ GeV for slepton production. Similar searches have been reported by the CMS Collaboration at } \sqrt{s} = 8 \text{ TeV [45,46] and at } \sqrt{s} = 13 \text{ TeV [47], which probe winos decaying via W or Z bosons for mass splittings } \Delta m(\tilde{\chi}_1^\pm, \tilde{\chi}_1^0) \gtrsim 23 \text{ GeV.} \)

This paper has the following structure. After a brief description of the ATLAS detector in Sec. II, the data and Monte Carlo samples used are detailed in Sec. III. Sections IV and V present the event reconstruction and the signal region selections. The background estimation and the systematic uncertainties are discussed in Secs. VI and VII, respectively. Finally, the results and their interpretation are reported in Sec. VIII before Sec. IX summarizes the conclusions.

II. ATLAS DETECTOR

The ATLAS experiment [49] is a general-purpose particle detector that surrounds the interaction point with nearly \(4\pi \) solid angle coverage.\(^{1}\) It comprises an inner

FIG. 1. Diagrams representing the two-lepton final state of (a) electroweakino \(\tilde{\chi}_2^0 \tilde{\chi}_1^\pm \) and (b) slepton pair \(\tilde{\ell} \tilde{\ell} \) production in association with a jet radiated from the initial state (labeled \(j \)). The Higgsino simplified model also considers \(\tilde{\chi}_2^0 \tilde{\chi}_1^\pm \) and \(\tilde{\chi}_1^\pm \tilde{\chi}_1^- \) production.

FIG. 2. Dilepton invariant mass \((m_{\ell\ell}) \) for Higgsino and wino-bino simplified models. The endpoint of the \(m_{\ell\ell} \) distribution is determined by the difference between the masses of the \(\tilde{\chi}_2^0 \) and \(\tilde{\chi}_1^0 \). The results from simulation (solid line) are compared with an analytic calculation of the expected line shape (dashed line) presented in Ref. [48], where the product of the signed mass eigenvalues \((m(\tilde{\chi}_2^0) \times m(\tilde{\chi}_1^0)) \) is negative for Higgsino and positive for wino-bino scenarios.
detector, calorimeter systems, and a muon spectrometer. The inner detector provides precision tracking of charged particles in the pseudorapidity region $|\eta| < 2.5$, consisting of pixel and microstrip silicon subsystems within a transition radiation tracker. The innermost pixel detector layer, the insertable B-layer [50], was added for $\sqrt{s} = 13$ TeV data-taking to improve tracking performance. The inner detector is immersed in a 2 T axial magnetic field provided by a superconducting solenoid. High-granularity lead/liquid-argon electromagnetic sampling calorimeters are used for $|\eta| < 3.2$. Hadronic energy deposits are measured in a steel/scintillator tile barrel calorimeter in the $|\eta| < 1.7$ region. Forward calorimeters cover the region $1.5 < |\eta| < 4.9$ for both the electromagnetic and hadronic measurements. The muon spectrometer comprises trigger and high-precision tracking chambers spanning $|\eta| < 2.4$ and $|\eta| < 2.7$, respectively, and by three large superconducting toroidal magnets. Events of interest are selected using a two-level trigger system [51], consisting of a first-level trigger implemented in hardware, which is followed by a software-based high-level trigger.

III. COLLISION DATA AND SIMULATED EVENT SAMPLES

Searches presented here use $p p$ collision data at $\sqrt{s} = 13$ TeV from the LHC, collected by the ATLAS detector in 2015 and 2016. Events were selected using triggers requiring large $E_{\text{T}}^{\text{miss}}$ with run-period-dependent thresholds of 70 to 110 GeV at the trigger level. These triggers are $>95\%$ efficient for events with an offline-reconstructed $E_{\text{T}}^{\text{miss}}$ greater than 200 GeV. The data sample corresponds to an integrated luminosity of 36.1 fb$^{-1}$ with an uncertainty of 2.1%, derived using methods similar to those described in Ref. [52]. The average number of $p p$ interactions per bunch crossing was 13.5 in 2015 and 25 in 2016.

Samples of Monte Carlo (MC) simulated events are used to model both the signal and specific processes of the SM background. For the SUSY signals, two sets of simplified models [53–55] are used to guide the design of the analysis: one based on direct production of Higgsino states (referred to as the Higgsino model), and the other a model involving pair production of sleptons which decay to a pure bino LSP. For the interpretation of the results of the analysis, two additional scenarios are considered: a simplified model assuming the production of wino-dominated electroweakinos decaying to a bino LSP (referred to as the wino-bino model), and a full radiatively-driven SUSY model based on nonuniversal Higgs boson masses with two extra parameters (NUHM2) [56,57]. In all the models considered, the produced electroweakinos or sleptons are assumed to decay promptly.

The Higgsino simplified model includes the production of $\tilde{\chi}^{0}_2 \tilde{\chi}^+_1$, $\tilde{\chi}^{0}_2 \tilde{\chi}_1^0$ and $\tilde{\chi}^+_1 \tilde{\chi}^-_1$. The $\tilde{\chi}^0_1$ and $\tilde{\chi}^0_2$ masses were varied, while the $\tilde{\chi}^+_1$ masses were set to $m(\tilde{\chi}^+_1) = \frac{1}{2}[m(\tilde{\chi}^{0}_1) + m(\tilde{\chi}^{0}_2)]$. The mass splittings of pure Higgsinos are generated by radiative corrections, and are of the order of hundreds of MeV [58], with larger mass splittings requiring some mixing with wino or bino states. However, in this simplified model, the calculated cross sections assume electroweakino mixing matrices corresponding to pure-Higgsino $\tilde{\chi}^{0}_1$, $\tilde{\chi}^+_1$, $\tilde{\chi}^-_1$ states for all mass combinations. The search for electroweakinos exploits a kinematic endpoint in the dilepton invariant mass distribution, where the lepton pair is produced in the decay chain $\tilde{\chi}^0_2 \rightarrow Z^* \tilde{\chi}^0_1, Z^* \rightarrow \ell^+ \ell^-$. Therefore, processes that include production of a $\tilde{\chi}^0_2$ neutralino are most relevant for this search, while $\tilde{\chi}^+_1 \tilde{\chi}^-_1$ production contributes little to the overall sensitivity. Example values of cross sections for $m(\tilde{\chi}^0_2) = 110$ GeV and $m(\tilde{\chi}^0_1) = 100$ GeV are 4.3 ± 0.1 pb for $\tilde{\chi}^0_2 \tilde{\chi}^+_1$ production and 2.73 ± 0.07 pb for $\tilde{\chi}^0_2 \tilde{\chi}^-_1$ production. The branching ratios for $\tilde{\chi}^0_2 \rightarrow Z^* \tilde{\chi}^0_1$ and $\tilde{\chi}^0_1 \rightarrow W^* \tilde{\chi}^-_1$ were fixed to 100%. The $Z^* \rightarrow e^+ e^-$ branching ratios depend on the mass splittings and were computed using SUsY-HIT v1.5b [59], which accounts for finite b-quark and t-lepton masses. At $\Delta m(\tilde{\chi}^0_2, \tilde{\chi}^0_1) = 60$ GeV the branching ratios for $Z^* \rightarrow e^+ e^-$ and $Z^* \rightarrow \mu^+ \mu^-$ are approximately 3.5%, while in the compressed scenario at $\Delta m(\tilde{\chi}^0_2, \tilde{\chi}^0_1) = 2$ GeV they increase to 5.1% and 4.9%, respectively, as the Z^* mass falls below the threshold needed to produce pairs of heavy quarks or t leptons. The branching ratios for $W^* \rightarrow e \nu$ and $W^* \rightarrow \mu \nu$ also depend on the mass splitting, and increases from 11% for large $\Delta m(\tilde{\chi}^+_1, \tilde{\chi}^-_1) < 3$ GeV. Events were generated at leading order with MG5_aMC@NLO v2.4.2 [60] using the NNPDF23LO PDF set [61] with up to two extra partons in the matrix element (ME). The electroweakinos were decayed using MADSPIN [62], and were required to produce at least two leptons (e, μ) in the final state, including those from decays of t-leptons. The resulting events were interfaced with PYTHIA v8.186 [63] using the A14 set of tuned parameters (tune) [64] to model the parton shower (PS), hadronization and underlying event. The ME-PS matching was performed using the CKKW-L scheme [65] with the merging scale set to 15 GeV.

The wino-bino simplified model considers $\tilde{\chi}^0_2 \tilde{\chi}^+_1$ production, where the mass of the $\tilde{\chi}^0_2$ is assumed to be equal to that of the $\tilde{\chi}^+_1$. The generator configuration as well as the decay branching ratios are consistent with those for the Higgsino samples. Pure wino production cross sections are used for this model. An example value of the $\tilde{\chi}^0_2 \tilde{\chi}^+_1$ production cross section for $m(\tilde{\chi}^0_2, \tilde{\chi}^+_1) = 110$ GeV is 16.0 ± 0.5 pb. The composition of the mass eigenstates differs between the wino-bino and Higgsino models. This results in different invariant mass spectra of the two leptons originating from the virtual Z^* boson in the $\tilde{\chi}^0_2 \tilde{\chi}^+_1$ decay. The different spectra are illustrated in Fig. 2, where the leptonic decays modeled by MADSPIN are found to be in good agreement with theoretical predictions that depend on
The sleptons decay with a 100% branching ratio into the corresponding SM partner lepton and the \(\tilde{e}_L \) or \(\tilde{\mu}_L \) neutralino. Events were generated at tree level using MG5_aMC@NLO v2.2.2 and the NNPDF23LO PDF set with up to two additional partons in the matrix element, and interfaced with PYTHIA v8.186 using the CKKW-L prescription for ME-PS matching. The merging scale was set to one quarter of the slepton mass.

Higgsino, wino-bino, and slepton samples are scaled to the relative sign of the \(\tilde{\chi}_L^0 \) and \(\tilde{\chi}_R^0 \) mass parameters [48], which differs between the Higgsino and wino-bino models.

The slepton simplified model considers direct pair production of the selectron \(\tilde{e}_{L,R} \) and smuon \(\tilde{\mu}_{L,R} \), where the subscripts \(L, R \) denote the left- or right-handed chirality of the partner electron or muon. The four sleptons are assumed to be mass degenerate, i.e. \(m(\tilde{e}_L) = m(\tilde{e}_R) = m(\tilde{\mu}_L) = m(\tilde{\mu}_R) \). An example value of the slepton production cross section for \(m(\tilde{e}_{L,R}) = 110 \) GeV is 0.55 ± 0.01 pb.

Table I.

Simulated samples of Standard Model background processes. The PDF set refers to that used for the matrix element.

<table>
<thead>
<tr>
<th>Process</th>
<th>Matrix element</th>
<th>Parton shower</th>
<th>PDF set</th>
<th>Cross section</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Z^{()}/\gamma^ +) jets</td>
<td>SHERPA 2.2.1</td>
<td>SHERPA 2.1.1/2.2.1/2.2.2</td>
<td>NNPDF 3.0 NNLO [86]</td>
<td>NLO [87]</td>
</tr>
<tr>
<td>Diboson</td>
<td>SHERPA 2.2.1</td>
<td>SHERPA 2.1.1/2.2.1/2.2.2</td>
<td>NNPDF 3.0 NNLO</td>
<td>Generator NLO</td>
</tr>
<tr>
<td>Triboson</td>
<td>SHERPA 2.2.1</td>
<td>SHERPA 2.1.1/2.2.1/2.2.2</td>
<td>NNPDF 3.0 NNLO</td>
<td>Generator NLO</td>
</tr>
<tr>
<td>(t\bar{t})</td>
<td>POWHEG-BOX v2</td>
<td>PYTHIA 6.428</td>
<td>NLO CT10 [88]</td>
<td>NLO + NNLL [89–92]</td>
</tr>
<tr>
<td>(t) (s-channel)</td>
<td>POWHEG-BOX v1</td>
<td>PYTHIA 6.428</td>
<td>NLO CT10</td>
<td>NNLO + NNLL [93]</td>
</tr>
<tr>
<td>(t) (t-channel)</td>
<td>POWHEG-BOX v1</td>
<td>PYTHIA 6.428</td>
<td>NLO CT104</td>
<td>NNLO + NNLL [94,95]</td>
</tr>
<tr>
<td>(t + W)</td>
<td>POWHEG-BOX v1</td>
<td>PYTHIA 6.428</td>
<td>NLO CT10</td>
<td>NNLO + NNLL [96]</td>
</tr>
<tr>
<td>(h(\rightarrow \ell\ell', WW))</td>
<td>POWHEG-BOX v2</td>
<td>PYTHIA 8.186</td>
<td>NLO CTEQ6L1 [97]</td>
<td>NLO [98]</td>
</tr>
<tr>
<td>(h + W/Z)</td>
<td>MG5_aMC@NLO 2.2.2</td>
<td>PYTHIA 8.186</td>
<td>NNPDF 2.3 LO</td>
<td>NLO [98]</td>
</tr>
<tr>
<td>(\tilde{t} + Z/\gamma^*)</td>
<td>MG5_aMC@NLO 2.3.3</td>
<td>PYTHIA 8.186</td>
<td>NNPDF 3.0 LO</td>
<td>NLO [60]</td>
</tr>
<tr>
<td>(\tilde{\mu} + Z)</td>
<td>MG5_aMC@NLO 2.2.1</td>
<td>PYTHIA 6.428</td>
<td>NNPDF 2.3 LO</td>
<td>LO [60]</td>
</tr>
<tr>
<td>(t + WZ)</td>
<td>MG5_aMC@NLO 2.3.2</td>
<td>PYTHIA 8.186</td>
<td>NNPDF 2.3 LO</td>
<td>NLO [60]</td>
</tr>
<tr>
<td>(t + \tilde{t})</td>
<td>MG5_aMC@NLO 2.2.2</td>
<td>PYTHIA 8.186</td>
<td>NNPDF 2.3 LO</td>
<td>LO [60]</td>
</tr>
</tbody>
</table>
NLO and up to four partons at LO using COMIX [74] and OPENLOOPS [75], and merged with the SHERPA parton shower [76] according to the ME+PS@NLO prescription [77]. The $Z^{\pm}\gamma' + \text{jets}$ and diboson samples provide coverage of dilepton invariant masses down to 0.5 GeV for $Z^{\pm}\gamma' \to e^+e^-/\mu^+\mu^-$, and 3.8 GeV for $Z^{\pm}\gamma' \to \tau^+\tau^-$. POWHEG-BOX v1 and v2 [78–80] interfaced to PYTHIA 6.428 with the PERUGIA2012 tune [81] were used to simulate $t\bar{t}$ and single-top production at NLO in the matrix element. POWHEG-BOX v2 was also used with PYTHIA 8.186 to simulate Higgs boson production. MG5_aMC@NLO v2.2.2 with single-top production at NLO in the matrix element. MG5_aMC@NLO v2.2.2 with $t\bar{t}$ production. OPENLOOPS [75], and merged with the SHERPA parton shower program, the PDF sets, and the cross section calculations used for normalization. Further details about the generator settings used for the above described processes can also be found in Refs. [82–85].

To simulate the effects of additional pp collisions, referred to as pileup, additional interactions were generated using the soft QCD processes of PYTHIA 8.186 with the A2 tune [99] and the MSTW2008LO PDF set [100], and were overlaid onto each simulated hard-scatter event. The MC samples were reweighted to match the pileup distribution observed in the data.

All MC samples underwent ATLAS detector simulation [101] based on GEANT4 [102]. The SUSY signal samples employed a fast simulation that parameterizes the response of the calorimeter [103]; the SM background samples used full GEANT4 simulation. EVTGEN v1.2.0 [104] was employed to model the decay of bottom and charm hadrons in all samples except those generated by SHERPA, which uses its internal modeling.

IV. EVENT RECONSTRUCTION

Candidate events are required to have at least one pp interaction vertex reconstructed with a minimum of two associated tracks with $p_T > 400$ MeV. The vertex with the highest $\sum p_T^2$ of the associated tracks is selected as the primary vertex of the event.

This analysis defines two categories of identified leptons and jets, referred to as preselected and signal, where signal leptons and jets are a subset of preselected leptons and jets, respectively.

Preselected electrons are reconstructed with $p_T > 4.5$ GeV and within the pseudorapidity range of $|\eta| < 2.47$. Furthermore, they are required to pass the likelihood-based VeryLoose identification, which is similar to the likelihood-based Loose identification defined in Ref. [105] but has a higher electron identification efficiency. The likelihood-based electron identification criteria are based on calorimeter shower shape and inner detector track information. Preselected muons are identified using the Medium criterion defined in Ref. [106] and required to satisfy $p_T > 4$ GeV and $|\eta| < 2.5$. The longitudinal impact parameter z_0 relative to the primary vertex must satisfy $|z_0 \sin \theta| < 0.5$ mm for both the electrons and muons.

Preselected jets are reconstructed from calorimeter topological clusters [107] in the region $|\eta| < 4.5$ using the anti-k_t algorithm [108,109] with radius parameter $R = 0.4$. The jets are required to have $p_T > 20$ GeV after being calibrated in accord with Ref. [110] and having the expected energy contribution from pileup subtracted according to the jet area [111]. In order to suppress jets due to pileup, jets with $p_T < 60$ GeV and $|\eta| < 2.4$ are required to satisfy the Medium working point of the jet vertex tagger [111], which uses information from the tracks associated with the jet. To reject events with detector noise or noncollision backgrounds, events are rejected if they fail basic quality criteria [112].

Jets that contain a b-hadron, referred to as b-jets, are identified within $|\eta| < 2.5$ using the MV2c10 algorithm [113,114]. The working point is chosen so that b-jets from simulated $t\bar{t}$ events are identified with an 85% efficiency, with rejection factors of 3 for charm-quark jets and 34 for light-quark and gluon jets.

The following procedure is used to resolve ambiguities between the reconstructed leptons and jets. It employs the distance measure $\Delta R_\gamma = \sqrt{(\Delta y)^2 + (\Delta \phi)^2}$, where y is the rapidity. Electrons that share an inner detector track with a muon candidate are discarded to remove bremsstrahlung from muons followed by a photon conversion into electron pairs. Non-b-tagged jets that are separated from the remaining electrons by $\Delta R_\gamma < 0.2$ are removed. Jets that lie $\Delta R_\gamma < 0.4$ from a muon candidate and contain fewer than three tracks with $p_T > 500$ MeV are removed to suppress muon bremsstrahlung. Electrons or muons that lie $\Delta R_\gamma < 0.4$ from surviving jet candidates are removed to suppress bottom and charm hadron decays.

Additional requirements on leptons that survive preselection are optimized for signal efficiency and background rejection. Signal electrons must satisfy the Tight identification criterion [115], and be compatible with originating from the primary vertex, with the significance of the transverse impact parameter defined relative to the beam position satisfying $|d_0|/\sigma(d_0) < 5$. From the remaining preselected muons, signal muons must satisfy $|d_0|/\sigma(d_0) < 3$.

The GradientLoose and FixedCutTightTrackOnly isolation criteria, as detailed in Ref. [106], are imposed on signal electrons and muons, respectively, to reduce contributions from fake/nonprompt leptons arising from jets...
misidentified as leptons, photon conversions, or semileptonic decays of heavy-flavor hadrons. These isolation requirements are either based on the presence of additional tracks or based on clusters of calorimeter energy depositions inside a small cone around the lepton candidate. Contributions from any other preselected leptons are excluded in order to preserve efficiencies for signals with small dilepton invariant mass.

After all lepton selection criteria are applied, the efficiency for reconstructing and identifying signal electrons within the detector acceptance in the Higgsino and slepton signal samples range from 15% for \(p_T = 4.5 \text{ GeV} \) to over 70% for \(p_T > 30 \text{ GeV} \). The corresponding efficiency for signal muons ranges from approximately 50% at \(p_T = 4 \text{ GeV} \) to over 85% for \(p_T > 30 \text{ GeV} \). Of the total predicted background, the fraction due to fake/nonprompt electrons in an event sample with opposite-sign, different-flavor leptons falls from approximately 80% at \(p_T = 4.5 \text{ GeV} \) to less than 5% for \(p_T > 30 \text{ GeV} \), while the fraction of fake/nonprompt muons in the same sample falls from 80% at \(p_T = 4 \text{ GeV} \) to less than 8% for \(p_T > 30 \text{ GeV} \).

From the sample of preselected jets, signal jets are selected if they satisfy \(p_T > 30 \text{ GeV} \) and \(|\eta| < 2.8\), except for \(b \)-tagged jets where the preselected jet requirement of \(p_T > 20 \text{ GeV} \) is maintained to maximize the rejection of the \(t\bar{t} \) background.

Small corrections are applied to reconstructed electrons, muons, and \(b \)-tagged jets in the simulated samples to match the reconstruction efficiencies in data. The corrections for \(b \)-tagged jets account for the differences in \(b \)-jet identification efficiencies as well as misidentification rates of \(c \)-, and light-flavor/gluon initiated jets between data and simulated samples. The corrections for low-momentum leptons are obtained from \(J/\gamma \rightarrow ee/\mu\mu \) events with the same tag-and-probe methods as used for higher-\(p_T \) electrons [105] and muons [106].

The missing transverse momentum \(p_T^{\text{miss}} \), with magnitude \(E_T^{\text{miss}} \), is defined as the negative vector sum of the transverse momenta of all reconstructed objects (electrons, muons and jets) and an additional soft term. The soft term is constructed from all tracks that are not associated with any object, but that are associated with the primary vertex. In this way, \(E_T^{\text{miss}} \) is adjusted for the best calibration of the jets and the other identified physics objects above, while maintaining pileup independence in the soft term [116].

V. SIGNAL REGION SELECTION

Table II summarizes the event selection criteria for all signal regions (SRs). A candidate event is required to contain exactly two preselected same-flavor opposite-charge leptons (\(e^+e^- \) or \(\mu^+\mu^- \)), both of which must also be signal leptons. In the SUSY signals considered, the highest sensitivity from this selection arises from two leptons produced either by the \(\chi^0_2 \) decay via an off-shell Z boson, or by the slepton decays. The lepton with the higher (lower) \(p_T \) of each pair is referred to as the leading (subleading) lepton and is denoted by \(\ell^+_1 (\ell^-_2) \). The leading lepton is required to have \(p_T^{\ell_1^+} > 5 \text{ GeV} \), which suppresses background due to fake/nonprompt leptons. The \(p_T \) threshold for the subleading lepton remains at 4.5 \text{ GeV} for electrons and 4 \text{ GeV} for muons to retain signal acceptance. Requiring the separation \(\Delta R_{\ell\ell} \) between the two leptons to be greater than 0.05 suppresses nearly collinear lepton pairs originating from photon conversions or muons giving rise to spurious pairs of tracks with shared hits. The invariant mass \(m_{\ell\ell} \) of the lepton pair is required to be greater than 1 \text{ GeV} for the same reason. The dilepton invariant mass is further required to be outside of the [3.0, 3.2] \text{ GeV} window to suppress contributions from \(J/\gamma \) decays, and less than 60 \text{ GeV} to suppress contributions from on-shell Z boson decays. No veto is implemented around other resonances such as \(\Upsilon \), or \(\eta \) states, which are expected to contribute far less to the SRs.

The reconstructed \(E_T^{\text{miss}} \) is required to be greater than 200 \text{ GeV}, where the efficiency of the triggers used in the analysis exceeds 95%. For signal events to pass this \(E_T^{\text{miss}} \) requirement, the two \(\chi_1^0 \) momenta must align by recoiling against hadronic initial-state radiation. This motivates the requirements on the leading jet (denoted by \(j_1 \)) of \(p_T^{j_1} > 100 \text{ GeV} \) and \(\Delta\phi(j_1, P_T^{\text{miss}}) > 2.0 \), where \(\Delta\phi(j_1, P_T^{\text{miss}}) \) is the azimuthal separation between \(j_1 \) and \(P_T^{\text{miss}} \). In addition, a minimum azimuthal separation requirement \(\min(\Delta\phi(\text{any jet}, P_T^{\text{miss}})) > 0.4 \) between any signal jet in the event and \(P_T^{\text{miss}} \) reduces the effect of jet-energy mismeasurement on \(E_T^{\text{miss}} \).

The leading sources of irreducible background are \(t\bar{t} \), single-top, \(WW/WZ + \text{jets} \) (hereafter referred to as \(WW/WZ \), and \(Z^{(*)}/\gamma^* (\rightarrow \tau\tau) + \text{jets} \). The dominant source of reducible background arises from processes where one or more leptons are fake/nonprompt, such as in \(W + \text{jets} \) production.

Events containing \(b \)-tagged jets are rejected to reduce the \(t\bar{t} \) and single-top background. The \(Z^{(*)}/\gamma^* (\rightarrow \tau\tau) + \text{jets} \) background is suppressed using the \(m_{\tau\tau} \) variable [16,31,37], defined by \(m_{\tau\tau} = \text{sign}(m_{\ell_1\ell_2})\sqrt{|m_{\ell_1\ell_2}|} \), which is the signed square root of \(m_{\ell_1\ell_2} = 2p_{\ell_1} \cdot p_{\ell_2}(1 + \xi_1)(1 + \xi_2) \), where \(p_{\ell_1} \) and \(p_{\ell_2} \) are the lepton four-momenta, while the parameters \(\xi_1 \) and \(\xi_2 \) are determined by solving \(p_T^{\text{miss}} = \xi_1 p_{\ell_1} + \xi_2 p_{\ell_2} \). The definition of \(m_{\tau\tau} \) approximates the invariant mass of a leptonically decaying \(\tau \)-lepton pair if both \(\tau \)-leptons are sufficiently boosted so that the daughter neutrinos from each \(\tau \) decay are collinear with the visible lepton momentum. The \(m_{\tau\tau} \) variable can take negative values in events where one of the lepton momenta has a smaller magnitude than \(E_T^{\text{miss}} \) and points in the hemisphere.
TABLE II. Summary of event selection criteria. The binning scheme used to define the final signal regions is shown in Table III. Signal leptons and signal jets are used when applying all requirements.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Common requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of leptons</td>
<td>=2</td>
</tr>
<tr>
<td>Lepton charge and flavor</td>
<td>e^+e^- or $\mu^+\mu^-$</td>
</tr>
<tr>
<td>Leading lepton $p_T^{\ell_1}$</td>
<td>>5 (5) GeV for electron (muon)</td>
</tr>
<tr>
<td>Subleading lepton $p_T^{\ell_2}$</td>
<td>>4.5 (4) GeV for electron (muon)</td>
</tr>
<tr>
<td>$\Delta R_{\ell\ell}$</td>
<td>>0.05</td>
</tr>
<tr>
<td>$m_{\ell\ell}$</td>
<td>$\in [1,60]$ GeV excluding [3.0, 3.2] GeV</td>
</tr>
<tr>
<td>E_{T}^{miss}</td>
<td>>200 GeV</td>
</tr>
<tr>
<td>Number of jets</td>
<td>\geq1</td>
</tr>
<tr>
<td>Leading jet p_T</td>
<td>>100 GeV</td>
</tr>
<tr>
<td>$\Delta \phi (j_1, p_T^{\text{miss}})$</td>
<td>>2.0</td>
</tr>
<tr>
<td>$\min (\Delta \phi (\text{any jet}, p_T^{\text{miss}}))$</td>
<td>>0.4</td>
</tr>
<tr>
<td>Number of b-tagged jets</td>
<td>= 0</td>
</tr>
<tr>
<td>$m_{\tau\tau}$</td>
<td><0 or >160 GeV</td>
</tr>
</tbody>
</table>

Electroweakino SRs

<table>
<thead>
<tr>
<th>Variable</th>
<th>Common requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta R_{\ell\ell}$</td>
<td><2</td>
</tr>
<tr>
<td>$m_{\ell\ell}$</td>
<td><70 GeV</td>
</tr>
<tr>
<td>$E_{T}^{\text{miss}}/H_T^{\text{lep}}$</td>
<td>> max (5, 15 − 2 $m_{\ell\ell}^{\text{min}}$/cT)</td>
</tr>
</tbody>
</table>

Slepton SRs

<table>
<thead>
<tr>
<th>Variable</th>
<th>Common requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_{T}^{\text{miss}}/H_T^{\text{lep}}$</td>
<td>> max (3, 15 − 2 $m_{\ell\ell}^{\text{min}}$/cT − 100)</td>
</tr>
</tbody>
</table>

where m_{τ} is the hypothesized mass of the invisible particles, and the transverse vector \mathbf{q}_T with magnitude q_T is chosen to minimize the larger of the two transverse masses, defined by

$$m_{\ell\ell}(\mathbf{p}_T, \mathbf{q}_T, m_{\tau}) = \sqrt{m_{\tau}^2 + m_{\ell\ell}^2 + 2\sqrt{p_T^2 + m_{\ell\ell}^2} - \mathbf{p}_T \cdot \mathbf{q}_T}.$$

For events arising from signals with slepton mass $m(\tilde{\tau})$ and LSP mass $m(\tilde{\chi}_1^0)$, the values of $m_{\ell\ell}^{\text{min}}$ are bounded from above by $m(\tilde{\tau})$ when m_{τ} is equal to $m(\tilde{\chi}_1^0)$, i.e. $m_{\ell\ell}^{\text{min}} \leq m(\tilde{\tau})$ for $m_{\tau} = m(\tilde{\chi}_1^0)$. The transverse mass with $m_{\tau} = 100$ GeV, denoted $m_{\ell\ell}^{100}$, is used to define the binning of the slepton SRs as further described below. The chosen value of 100 GeV is based on the expected LSP masses of the signals targeted by this analysis. The distribution of $m_{\ell\ell}^{100}$ does not vary significantly for signals where $m(\tilde{\chi}_1^0) \neq 100$ GeV.

The scalar sum of the lepton transverse momenta $H_T^{\text{lep}} = p_T^{\ell_1} + p_T^{\ell_2}$ is smaller in compressed-scenario SUSY signal events than in background events such as SM production of WW or WZ. The ratio $E_{T}^{\text{miss}}/H_T^{\text{lep}}$ provides signal-to-background discrimination which improves for smaller mass splittings in the signals and is therefore used as a sensitive variable in both the electroweakino and slepton SRs. The minimum value of the $E_{T}^{\text{miss}}/H_T^{\text{lep}}$ requirement is adjusted event by event.

opposite to the p_T^{miss} vector. Events with $0 < m_{\tau\tau} < 160$ GeV are rejected. After the common and electroweakino SR selections in Table II are applied, this veto retains 75% of the Higgsino signal with $m(\tilde{\chi}_2^0) = 110$ GeV and $m(\tilde{\chi}_1^0) = 100$ GeV, while 87% of the $Z(\ell\ell) \rightarrow \tau\tau$ + jets background is rejected.

After applying the common selection requirements above, two sets of SRs are constructed to separately target the production of electroweakinos and sleptons.

In electroweakino production, the two leptons originating from $Z^* \rightarrow \ell^+\ell^-$ are both soft, and their invariant mass is small. Because of the recoil of the SUSY particle system against a jet from initial-state radiation, the angular separation $\Delta R_{\ell\ell}$ between the two leptons is required to be smaller than 2.0. The transverse mass of the leading lepton and E_{T}^{miss}, defined as

$$m_{\ell\ell}^{T} = \sqrt{2(E_{T}^{\ell_1}E_{T}^{\text{miss}} - \mathbf{p}_T^{\ell_1} \cdot \mathbf{p}_T^{\text{miss}})},$$

is required to be smaller than 70 GeV to reduce the background from $t\bar{t}$, WW/WZ, and W + jets. The dilepton invariant mass $m_{\ell\ell}^{T}$ is correlated with $\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0)$, illustrated in Fig. 2, and is used to define the binning of the electroweakino SRs as further described below.

In slepton pair production, the event topology can be used to infer the slepton mass given the LSP mass. The transverse mass [39,40] is defined by

$$m_{\ell\ell}^{T_2}(\mathbf{p}_T^{\ell_1}, \mathbf{p}_T^{\ell_2}, \mathbf{p}_T^{\text{miss}}) = \min \{\max (m_{\ell\ell}(\mathbf{p}_T^{\ell_1}, \mathbf{q}_T, m_{\tau}), m_{\ell\ell}(\mathbf{p}_T^{\ell_2}, \mathbf{p}_T^{\text{miss}} - \mathbf{q}_T, m_{\tau}))\},$$

where m_{τ} is the hypothesized mass of the invisible particles, and the transverse vector \mathbf{q}_T with magnitude q_T is chosen to minimize the larger of the two transverse masses, defined by

$$m_{\ell\ell}(\mathbf{p}_T, \mathbf{q}_T, m_{\tau}) = \sqrt{m_{\tau}^2 + m_{\ell\ell}^2 + 2\sqrt{p_T^2 + m_{\ell\ell}^2} - \mathbf{p}_T \cdot \mathbf{q}_T}.$$

For events arising from signals with slepton mass $m(\tilde{\tau})$ and LSP mass $m(\tilde{\chi}_1^0)$, the values of $m_{\ell\ell}^{T_2}$ are bounded from above by $m(\tilde{\tau})$ when m_{τ} is equal to $m(\tilde{\chi}_1^0)$, i.e. $m_{\ell\ell}^{T_2} \leq m(\tilde{\tau})$ for $m_{\tau} = m(\tilde{\chi}_1^0)$. The transverse mass with $m_{\tau} = 100$ GeV, denoted $m_{\ell\ell}^{T_2}$, is used to define the binning of the slepton SRs as further described below. The chosen value of 100 GeV is based on the expected LSP masses of the signals targeted by this analysis. The distribution of $m_{\ell\ell}^{T_2}$ does not vary significantly for signals where $m(\tilde{\chi}_1^0) \neq 100$ GeV.

The scalar sum of the lepton transverse momenta $H_T^{\text{lep}} = p_T^{\ell_1} + p_T^{\ell_2}$ is smaller in compressed-scenario SUSY signal events than in background events such as SM production of WW or WZ. The ratio $E_{T}^{\text{miss}}/H_T^{\text{lep}}$ provides signal-to-background discrimination which improves for smaller mass splittings in the signals and is therefore used as a sensitive variable in both the electroweakino and slepton SRs. The minimum value of the $E_{T}^{\text{miss}}/H_T^{\text{lep}}$ requirement is adjusted event by event.
Inclusive SR signals, only the exclusive SR model-dependent limits on the electroweakino (slepton) 12 exclusive regions and 6 inclusive regions. When setting TABLE III. Signal region binning for the electroweakino and slepton SRs. Each SR is defined by the lepton flavor (ee, μμ, or ℓℓ for both) and a range of m_{ℓℓ} (for electroweakino SRs) or m_{T2} (for slepton SRs) in GeV. The inclusive bins are used to set model-independent limits, while the exclusive bins are used to derive exclusion limits on signal models.

<table>
<thead>
<tr>
<th>m_{T2} [GeV]</th>
<th>0</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
<th>700</th>
<th>800</th>
<th>900</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_{T2} [GeV]</td>
<td>0</td>
<td>100</td>
<td>200</td>
<td>300</td>
<td>400</td>
<td>500</td>
<td>600</td>
<td>700</td>
<td>800</td>
<td>900</td>
<td>1000</td>
</tr>
</tbody>
</table>

FIG. 3. Distributions of E_T^{miss}/H_T^{lep} for the electroweakino (left) and slepton (right) SRs, after applying all signal region selection criteria except those on E_T^{miss}/H_T^{lep}, m_{ℓℓ}, and m_{T2}. The solid red line indicates the requirement applied in the signal region; events in the region below the red line are rejected. Representative benchmark signals for the Higgsino (left) and slepton (right) simplified models are shown as circles. Both signal and background are normalized to their expected yields in 36.1 fb^{-1}. The total background includes the MC prediction for all the processes listed in Table I and a data-driven estimate for fake/nonprompt leptons discussed further in Sec. VI. According to the size of the mass splitting inferred from the event kinematics. For the electroweakino SRs, this is achieved with m_{ℓℓ} as E_T^{miss}/H_T^{lep} > max[5, 15 − 2m_{ℓℓ}/(1 GeV)]. For the slepton SRs, m_{T2} = 100 GeV is used as E_T^{miss}/H_T^{lep} > max[3, 15 − 2m_{T2}/(1 GeV) − 100]. Figure 3 illustrates the E_T^{miss}/H_T^{lep} requirement for electroweakino and slepton SRs. Table III defines the binning of the SRs. The electroweakino SRs are divided into seven nonoverlapping ranges of m_{ℓℓ}, which are further divided by lepton flavor (ee, μμ), and referred to as exclusive regions. Seven inclusive regions are also defined, characterized by overlapping ranges of m_{ℓℓ}. For the slepton SRs, m_{T2} is used to define 12 exclusive regions and 6 inclusive regions. When setting model-dependent limits on the electroweakino (slepton) signals, only the exclusive SRee-m_{ℓℓ} and SRμμ-m_{ℓℓ} regions (SRee-m_{T2} and SRμμ-m_{T2} regions) are statistically combined in a simultaneous fit. When setting model-independent upper limits on new physics signals, only the inclusive SRℓℓ-m_{ℓℓ} and SRell-m_{T2} regions are considered. The details of these statistical procedures are given in Sec. VIII.

After all selection criteria are applied, the Higgsino model with m(χ^0_1) = 110 GeV and m(χ^0_2) = 100 GeV has an acceptance times efficiency of 6.5 × 10^{-5} in SRell-m_{ℓℓ} [1, 60]. The acceptance times efficiency in SRell-m_{T2} [100, ∞] for the slepton model, with m(χ) = 110 GeV and m(χ^0_1) = 100 GeV, is 3.3 × 10^{-3}.

VI. BACKGROUND ESTIMATION

A common strategy is used to determine the SM background in all SRs. The dominant sources of irreducible background events that contain two prompt leptons, missing transverse momentum and jets are t¯tt, tW, WW/WZ, and Z^{(*)}/γ^{(*)} (→ ττ) + jets, which are estimated using MC simulation. The main reducible backgrounds are from events containing fake/nonprompt leptons. These processes are estimated collectively with a data-driven method. While
The fake/nonprompt lepton background tends to be dominant at low values of \(m_{\ell\ell} \) and \(m_{T2}^{100} \), the irreducible \(\tilde{t}, tW \), \(WW/WZ \) processes are more important at the upper end of the distributions.

A. Irreducible background

The MC simulations of \(\tilde{t}, tW \) and \(Z^{(*)}/\gamma^* (\rightarrow \tau \tau) + \text{jets} \) background processes are normalized in a simultaneous fit to the observed data counts in control regions (CRs) using statistical procedures detailed in Sec. VIII. The CRs are designed to be statistically disjoint from the SRs, to be enriched in a particular background process, to have minimal contamination from the signals considered, and to exhibit kinematic properties similar to the SRs. The event rates in the SRs are then predicted by extrapolating from the CRs using the simulated MC distributions. This extrapolation is validated using events in dedicated validation regions (VRs), which are not used to constrain the fit and are orthogonal in selection to the CRs and SRs. The definitions of these regions are summarized in Table IV.

The \(\tilde{t} \) and \(tW \), diboson \(WW/WZ \), and \(Z^{(*)}/\gamma^* (\rightarrow \tau \tau) + \text{jets} \) processes containing two prompt leptons all yield same-flavor lepton pairs (ee and \(\mu\mu \)) at the same rate as for different-flavor pairs (\(e\mu \) and \(\mu e \), where the first lepton is the leading lepton). To enhance the statistical constraining power of the respective CRs, all possible flavor assignments (\(ee, \mu\mu, e\mu, \) and \(\mu e \)) are selected when defining the CRs.

Two single-bin CRs are considered, which have all the selections in Table II applied unless stated otherwise in Table IV. A sample enriched in top quarks with 71% purity, CR-top, is defined by selecting events with at least one \(b \)-tagged jet. This CR has 1100 observed events and is used to constrain the normalization of the \(\tilde{t} \) and \(tW \) processes with dilepton final states. A sample enriched

<table>
<thead>
<tr>
<th>Region</th>
<th>Leptons</th>
<th>(E_{T}^{miss} / H_{T}^{lep})</th>
<th>Additional requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR-top</td>
<td>(e^+e^-, \mu^+\mu^-), (e^+\mu^-, \mu^+e^-)</td>
<td>>5</td>
<td>(\geq 1) (b)-tagged jet(s)</td>
</tr>
<tr>
<td>CR-tau</td>
<td>(e^+e^-, \mu^+\mu^-), (e^+\mu^-, \mu^+e^-)</td>
<td>(</td>
<td>m_{T2}^{100}</td>
</tr>
<tr>
<td>VR-VV</td>
<td>(e^+e^-, \mu^+\mu^-), (e^+\mu^-, \mu^+e^-)</td>
<td><3</td>
<td>(m_{T2}^{100})</td>
</tr>
<tr>
<td>VR-SS</td>
<td>(e^+e^-, \mu^+\mu^-), (e^+\mu^-, \mu^+e^-)</td>
<td>>5</td>
<td>(\Delta R_{\ell\ell} < 2, m_{T}^{100} < 70 \text{ GeV})</td>
</tr>
<tr>
<td>VRDF-(m_{T2}^{100})</td>
<td>(e^+\mu^-, \mu^+e^-)</td>
<td>(> \max (5, 15 - 2 \frac{m_{T2}^{100}}{1 \text{ GeV}}))</td>
<td></td>
</tr>
<tr>
<td>VRDF-(m_{T2}^{100})</td>
<td>(e^+\mu^-, \mu^+e^-)</td>
<td>(> \max (3, 15 - 2 \frac{m_{T2}^{100}}{1 \text{ GeV}} - 100))</td>
<td></td>
</tr>
</tbody>
</table>

FIG. 4. Examples of kinematic distributions after the background-only fit showing the data as well as the expected background in control regions CR-tau (left) and CR-top (right). The full event selection of the corresponding regions is applied, except for the requirement that is imposed on the variable being plotted. This requirement is indicated by blue arrows in the distributions. The first (last) bin includes underflow (overflow). Background processes containing fewer than two prompt leptons are categorized as “Fake/nonprompt.” The category “Others” contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table I. The uncertainty bands plotted include all statistical and systematic uncertainties.
in the \(Z^{(*)}/\gamma^* (\rightarrow \tau\tau) + \text{jets}\) processes with 83% purity, CR-tau, is constructed by selecting events satisfying \(60 < m_{\tau\tau} < 120 \text{ GeV}\). This CR has 68 observed events and the variable \(E_T^{\text{miss}}/H_T^{\text{lep}}\) is required to have a value between 4 and 8 to reduce potential contamination from signal events. Figure 4 shows the background composition of the CR-tau and CR-top regions. The signal contamination in both regions is typically below 3% and is at most 11%.

It is difficult to select a sample of diboson events pure enough to be used to constrain their contribution to the SRs. The diboson background is therefore estimated with MC simulation. A diboson VR, denoted by VR-\(\text{VV}\), is constructed by requiring \(E_T^{\text{miss}}/H_T^{\text{lep}} < 3.0\). This sample consists of approximately 40% diboson events, 20% fake/nonprompt lepton events, 25% \(t\bar{t}\) and single-top events, and smaller contributions from \(Z^{(*)}/\gamma^* \rightarrow \tau\tau\) and other processes. The signal contamination in VR-\(\text{VV}\) is at most 9%. This region is used to test the modeling of the diboson background and the associated systematic uncertainties.

Additional VRs are constructed from events with different-flavor (\(e\mu\) and \(\mu\mu\)) leptons. These VRs, VRDF-\(m_{\tau\tau}^{100}\) and VRDF-\(m_{\tau\tau}^{100}\), are defined using the same selection criteria as the electroweakino and slepton SRs, respectively, and are used to validate the extrapolation of background in the fitting procedure within the same kinematic regime as the SRs. The electroweakino signal contamination in VRDF-\(m_{\tau\tau}^{100}\) is always below 8%, while the slepton signal contamination in VRDF-\(m_{\tau\tau}^{100}\) is always negligible.

For each VR, the level of agreement between the kinematic distributions of data and predicted events is checked. The VRDF-\(m_{\tau\tau}^{100}\) and VRDF-\(m_{\tau\tau}^{100}\) regions are also presented binned in \(m_{\tau\tau}^{100}\) and \(m_{\tau\tau}^{100}\), respectively, using the same intervals as the exclusive SRs in Table III to ensure that these VRs consist of events with the same kinematic selection as the SRs.

B. Reducible background

Two sources of reducible background are considered: processes where fake/nonprompt leptons are amongst the two selected signal leptons, and those where the reconstructed \(E_T^{\text{miss}}\) values are instrumental in origin.

The fake/nonprompt lepton background arises from jets misidentified as leptons, photon conversions, or semileptonic decays of heavy-flavor hadrons. Studies based on simulated samples indicate that the last of these is the dominant component in the SRs. Since MC simulation is not expected to model these processes accurately, the data-driven fake factor method [117] is employed.

The fake factor procedure first defines a tight set of criteria, labeled ID, corresponding to the requirements applied to signal leptons used in the analysis. Second, a loose set of criteria, labeled anti-ID, has one or more of the identification, isolation, or \(|d_0|/\sigma(d_0)\) requirements inverted relative to signal leptons to obtain an orthogonal sample enriched in fake/nonprompt leptons. The ratio of ID to anti-ID leptons defines the fake factor.

The fake factors are measured in events collected with prescaled single-lepton triggers. These single-lepton triggers have lepton identification requirements looser than those used in the anti-ID lepton selection, and have \(p_T\) thresholds ranging from 4 to 20 GeV. This sample, referred to as the measurement region, is dominated by multijet events with fake/nonprompt leptons. Both the electron and muon fake factors are measured in this region as a function of reconstructed lepton \(p_T\). The muon fake factors are also found to have a dependence on the number of \(b\)-tagged jets in the event. The fake factors used in CR-top are therefore computed in events with \(>0\) \(b\)-tagged jets, while all other regions use fake factors computed using events with zero \(b\)-tagged jets.

To obtain the fake/nonprompt lepton prediction in a particular region, these fake factors are applied to events satisfying the corresponding selection requirements, except with an anti-ID lepton replacing an ID lepton. MC studies indicate that the leptons in the anti-ID region arise from processes similar to those for fake/nonprompt leptons passing the signal selection requirements in the SR. The contributions from prompt leptons that pass the ID and anti-ID requirements in the measurement region, and that pass the anti-ID requirements in the region under study, are subtracted using MC simulation. The yields from this procedure are cross-checked in VRs, named VR-SS, which have similar kinematic selections as the SRs, but are enriched in fake/nonprompt leptons by requiring two leptons with the same electric charge. As the subleading lepton is found to be the fake/nonprompt lepton in most cases, the VR-SS are divided into \(ee + \mu\mu\) and \(\mu\mu + e\mu\), where the left (right) lepton of each pair denotes the leading (subleading) lepton. The fraction of events in which both leptons are fake/nonprompt is found to be small by considering the rate of anti-ID leptons replacing a leading lepton. The fraction of events in which both leptons are fake/nonprompt is found to be small by considering the rate of anti-ID leptons in data. The electroweakino signal contamination in VR-SS is typically negligible, and always below 7%, while the slepton signal contamination in VR-SS is always negligible.

Background processes with no invisible particles can satisfy the \(E_T^{\text{miss}} > 200 \text{ GeV}\) requirement when the momenta of visible leptons or jets are mismeasured by the detector. Contributions of these events in the SRs arising from processes such as Drell–Yan dilepton production are studied with MC simulation and are found to be negligible. This estimate is cross-checked with a data-driven method using independent event samples defined by relaxed or inverted selection criteria. A lower \(E_T^{\text{miss}}\) requirement is used to accept a higher rate of \(Z^{(*)}/\gamma^* \rightarrow \ell^+\ell^-\) events.
events, while relaxed requirements on the kinematics of the leading jet, \(m_{\tau\tau}, E_T^{\text{miss}}/H_T^{\text{lep}} \), and lepton isolation minimize the impact of any signal contamination. The results from the data-driven method are consistent with the estimates based on MC simulation.

VII. SYSTEMATIC UNCERTAINITIES

The sources of systematic uncertainty affecting the background and signal predictions consist of uncertainties due to experimental sources, which include those from the fake factor method, and uncertainties arising from the theoretical modeling in simulated samples. The largest sources of experimental systematic uncertainty is the fake/nonprompt background prediction from the fake factor procedure. In this method, systematic uncertainties arise from the size of the samples used to measure the fake factors, which are uncorrelated between events with respect to the \(p_T \) and flavor of the anti-ID lepton, but otherwise correlated across the different CRs and SRs. Additional uncertainties are assigned to account for differences in the event and lepton kinematics between

FIG. 5. The relative systematic uncertainties in the background prediction in the exclusive electroweakino (left) and slepton (right) SRs. The individual uncertainties can be correlated and do not necessarily add up in quadrature to the total uncertainty.

FIG. 6. Comparison of observed and expected event yields in the validation regions after the background-only fit. Background processes containing fewer than two prompt leptons are categorized as “Fake/nonprompt.” The category “Others” contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table I. Uncertainties in the background estimates include both the statistical and systematic uncertainties, where \(\sigma_{\text{tot}} \) denotes the total uncertainty.
the measurement region and SRs. The differences between the fake factor prediction and observed data in the VR-SS regions are used to assign additional systematic uncertainties. These uncertainties are considered correlated across the different SRs, but uncorrelated as regards the flavor of the anti-ID lepton in the event. Uncertainties originating from the MC-based subtraction of prompt leptons in the fake factor measurement region are found to be negligible.

Further significant experimental systematic uncertainties are related to the jet energy scale and resolution, flavor-tagging, and the reweighting procedure applied to simulated events to match pileup conditions observed in data. Uncertainties in the lepton reconstruction and identification efficiencies, together with energy/momentum scale and resolution also contribute, but are found to be small. The systematic uncertainties for low-momentum leptons are derived using the same procedure as for higher-\(p_T\) electrons [105] and muons [106].

In addition to the experimental uncertainties, several sources of theoretical modeling uncertainty affect the simulated samples of the dominant SM backgrounds, i.e. \(t\bar{t}, tW, Z^{(*)}/\gamma^{(*)} (\rightarrow \tau\tau) + \text{jets},\) and diboson processes. The effects of the QCD renormalization and factorization scale uncertainties are evaluated by independently varying the corresponding event generator parameters up and down by a factor of 2. The impact of the uncertainty of the strong coupling constant \(\alpha_s\) on the acceptance is also considered. The effects of PDF uncertainties are evaluated by reweighting the simulated samples to the CT14 [118] and MMHT2014 [119] PDF sets and taking the envelope of the predicted yields. The theoretical modeling uncertainties are evaluated in each of the CRs and SRs and their effect is correlated for events across all regions. For the dileptonic

![FIG. 7. Kinematic distributions after the background-only fit showing the data and the expected background in the different-flavor validation region VRDF-m_{100} (top left), the diboson validation region VR-VV (top right), and the same-sign validation region VR-SS inclusive of lepton flavor (bottom). Similar levels of agreement are observed in other kinematic distributions for VR-SS and VR-VV. Background processes containing fewer than two prompt leptons are categorized as “Fake/nonprompt.” The category “Others” contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table I. The last bin includes overflow. The uncertainty bands plotted include all statistical and systematic uncertainties. Orange arrows in the data/SM panel indicate values that are beyond the y axis range.]

052010-12
diboson background, the uncertainties of the normalization and shape in the SRs are dominated by the QCD scale variations. The normalization uncertainties of the top quark and \(Z^{(*)}/ \gamma^*(\to \tau\tau) + \text{jets} \) contributions are constrained by the simultaneous fit, and only the shape uncertainties relating the CRs to the SRs affect the results.

Figure 5 shows the relative size of the various classes of uncertainty in the background predictions in the exclusive electroweakino and slepton SRs. The uncertainties related to the fake factor method are displayed separately from the remaining experimental uncertainties due to their relatively large contribution. The breakdown also includes the uncertainties in the normalization factors of the \(Z^{(*)}/ \gamma^*(\to \tau\tau) + \text{jets} \) and the combined \(t\bar{t} \) and \(tW \) backgrounds as obtained from CR-tau and CR-top, respectively.

The theoretical modeling uncertainties in the expected yields for SUSY signal models are estimated by varying by a factor of 2 the MG5_aMC@NLO parameters corresponding to the renormalization, factorization and CKKW-L matching scales, as well as the PYTHIA8 shower tune parameters. The overall uncertainties in the signal acceptance range from about 20% to 40% and depend on the SUSY particle mass splitting and the production process. Uncertainties in the signal acceptance due to PDF uncertainties are evaluated following the PDF4LHC15 recommendations [120] and amount to 15% at most for large \(\tilde{\chi}_0^0 \) or \(\tilde{\ell} \) masses. Uncertainties in the shape of the \(m_{\ell\ell} \) or \(m_{T2}^{100} \) signal distributions due to the sources above are found to be small, and are neglected.
TABLE V. Left to right: The first two columns present observed (N_{obs}) and expected (N_{exp}) event yields in the inclusive signal regions. The latter are obtained by the background-only fit of the control regions, and the errors include both statistical and systematic uncertainties. The next two columns show the observed 95% C.L. upper limits on the visible cross section (⟨σ⟩_{obs}^{95}) and on the number of signal events (S_{obs}^{95}). The fifth column (S_{exp}^{95}) shows what the 95% C.L. upper limit on the number of signal events would be, given an observed number of events equal to the expected number (and ±1σ deviations from the expectation) of background events. The last column indicates the discovery p-value (p(s = 0)), which is capped at 0.5.

<table>
<thead>
<tr>
<th>Signal Region</th>
<th>N_{obs}</th>
<th>N_{exp}</th>
<th>⟨σ⟩_{obs}^{95} [fb]</th>
<th>S_{obs}^{95}</th>
<th>S_{exp}^{95}</th>
<th>p(s = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRℓℓ-m_{eff} [1, 3]</td>
<td>1</td>
<td>1.7 ± 0.9</td>
<td>0.10</td>
<td>3.8</td>
<td>4.3^{+1.7}_{-0.7}</td>
<td>0.50</td>
</tr>
<tr>
<td>SRℓℓ-m_{eff} [1, 5]</td>
<td>4</td>
<td>3.1 ± 1.2</td>
<td>0.18</td>
<td>6.6</td>
<td>5.6^{+2.3}_{-1.0}</td>
<td>0.32</td>
</tr>
<tr>
<td>SRℓℓ-m_{eff} [1, 10]</td>
<td>12</td>
<td>8.9 ± 2.5</td>
<td>0.34</td>
<td>12.3</td>
<td>9.6^{+3.2}_{-1.9}</td>
<td>0.21</td>
</tr>
<tr>
<td>SRℓℓ-m_{eff} [1, 20]</td>
<td>34</td>
<td>29 ± 6</td>
<td>0.61</td>
<td>22</td>
<td>17^{+7}_{-6}</td>
<td>0.25</td>
</tr>
<tr>
<td>SRℓℓ-m_{eff} [1, 30]</td>
<td>40</td>
<td>38 ± 6</td>
<td>0.59</td>
<td>21</td>
<td>20^{+9}_{-5}</td>
<td>0.38</td>
</tr>
<tr>
<td>SRℓℓ-m_{eff} [1, 40]</td>
<td>48</td>
<td>41 ± 7</td>
<td>0.72</td>
<td>26</td>
<td>20^{+8}_{-5}</td>
<td>0.20</td>
</tr>
<tr>
<td>SRℓℓ-m_{eff} [1, 60]</td>
<td>52</td>
<td>43 ± 7</td>
<td>0.80</td>
<td>29</td>
<td>24^{+5}_{-10}</td>
<td>0.18</td>
</tr>
<tr>
<td>SRℓℓ-m_{eff} [100, 102]</td>
<td>8</td>
<td>12.4 ± 3.1</td>
<td>0.18</td>
<td>7</td>
<td>9^{+4}_{-2}</td>
<td>0.50</td>
</tr>
<tr>
<td>SRℓℓ-m_{eff} [100, 105]</td>
<td>34</td>
<td>38 ± 7</td>
<td>0.49</td>
<td>18</td>
<td>23^{+7}_{-2}</td>
<td>0.50</td>
</tr>
<tr>
<td>SRℓℓ-m_{eff} [100, 110]</td>
<td>131</td>
<td>129 ± 18</td>
<td>1.3</td>
<td>48</td>
<td>47^{+13}_{-15}</td>
<td>0.37</td>
</tr>
<tr>
<td>SRℓℓ-m_{eff} [100, 120]</td>
<td>215</td>
<td>232 ± 29</td>
<td>1.4</td>
<td>52</td>
<td>62^{+15}_{-21}</td>
<td>0.50</td>
</tr>
<tr>
<td>SRℓℓ-m_{eff} [100, 130]</td>
<td>257</td>
<td>271 ± 32</td>
<td>1.7</td>
<td>61</td>
<td>69^{+17}_{-22}</td>
<td>0.50</td>
</tr>
<tr>
<td>SRℓℓ-m_{eff} [100, ∞]</td>
<td>277</td>
<td>289 ± 33</td>
<td>1.8</td>
<td>66</td>
<td>72^{+24}_{-17}</td>
<td>0.50</td>
</tr>
</tbody>
</table>

VIII. RESULTS AND INTERPRETATION

The HISTFITTER package [121] is used to implement the statistical interpretation based on a profile likelihood method [122]. Systematic uncertainties are treated as nuisance parameters in the likelihood.

To determine the SM background predictions independent of the SRs, only the CRs are used to constrain the fit parameters by likelihood maximization assuming no signal events in the CRs; this is referred to as the background-only fit. The normalizations, μ_{Z/γ}/γ → ττ and μ_{top}, respectively for the Z/γ/γ → ττ and jets + jets MC samples and the combined t̄t and tW MC samples are extracted in a simultaneous fit to the data events in CR-tau and CR-top, as defined in Sec. VI. The normalization parameters, as obtained from the background-only fit, are μ_{Z/γ}/γ → ττ = 0.72 ± 0.13 and μ_{top} = 1.02 ± 0.09, whose uncertainties include statistical and systematic contributions combined.

The accuracy of the background predictions is tested in the VRs described in Sec. VI. As illustrated in Fig. 6, the background predictions in the VRs are in good agreement with the observed data yields (deviations < 1.5σ). Figure 7 shows distributions of the data and the expected backgrounds for a selection of VRs and kinematic variables including the m_{eff} distribution in VR-VV and the m_{T2}^{100} distribution in VR-SS. Data and background predictions are compatible within uncertainties.

Figure 8 shows kinematic distributions of the data and the expected backgrounds for the inclusive SRs. No significant excesses of the data above the expected background are observed.

The observed and predicted event yields from the background-only fit are used to set model-independent upper limits on processes beyond the SM by including one inclusive SR at a time in a simultaneous fit with the CRs. Using the CL_s prescription [123], a hypothesis test is performed to set upper limits at the 95% confidence level (C.L.) on the observed (expected) number of signal events S_{obs}^{95} (S_{exp}^{95}) in each SR. Dividing S_{obs}^{95} by the integrated luminosity of 36.1 fb^{-1} defines the upper limits on the visible cross sections ⟨σ⟩_{obs}^{95}. These results are shown in Table V. To quantify the probability under the background-only hypothesis to produce event yields greater than or equal to the observed data the discovery p-values are given as well.

In the absence of any significant deviations from the SM expectation in the inclusive SRs, the results are interpreted as constraints on the SUSY models discussed in Sec. III using the exclusive electroweak and slepton SRs. The background-only fit is extended to allow for a signal model...
TABLE VI. Observed event yields and exclusion fit results with the signal strength parameter set to zero for the exclusive electroweakino and slepton signal regions. Background processes containing fewer than two prompt leptons are categorized as “Fake/nonprompt.” The category “Others” contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table I. Uncertainties in the fitted background estimates combine statistical and systematic uncertainties.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fitted SM events</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>4</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0.01^{+0.11}_{-0.06}</td>
<td>0.6^{+0.7}_{-0.6}</td>
<td>2.4 ± 1.0</td>
<td>8.3 ± 1.6</td>
<td>4.0 ± 1.0</td>
<td>2.4 ± 0.6</td>
<td>1.4 ± 0.5</td>
</tr>
<tr>
<td>Fake/nonprompt leptons</td>
<td>0.00^{+0.09}_{-0.08}</td>
<td>0.02^{+0.12}_{-0.02}</td>
<td>1.4 ± 0.9</td>
<td>4.0 ± 1.5</td>
<td>1.6 ± 0.9</td>
<td>0.7 ± 0.6</td>
<td>0.02^{+0.11}_{-0.02}</td>
</tr>
<tr>
<td>Diboson</td>
<td>0.007^{+0.007}_{-0.008}</td>
<td>0.28^{+0.29}_{-0.28}</td>
<td>0.51 ± 0.28</td>
<td>1.9 ± 0.6</td>
<td>1.36 ± 0.31</td>
<td>0.72 ± 0.22</td>
<td>0.80 ± 0.28</td>
</tr>
<tr>
<td>Z(→ ττ) + jets</td>
<td>0.000^{+0.000}_{-0.000}</td>
<td>0.3^{+0.3}_{-0.3}</td>
<td>0.31^{+0.14}_{-0.11}</td>
<td>0.44 ± 0.29</td>
<td>0.63 ± 0.35</td>
<td>0.7 ± 0.4</td>
<td>0.6 ± 0.4</td>
</tr>
<tr>
<td>τt, single top</td>
<td>0.002^{+0.015}_{-0.002}</td>
<td>0.12 ± 0.11</td>
<td>0.25 ± 0.16</td>
<td>0.21 ± 0.12</td>
<td>0.05^{+0.06}_{-0.05}</td>
<td>0.0018^{+0.003}_{-0.0018}</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>0.012^{+0.013}_{-0.012}</td>
<td>0.12 ± 0.11</td>
<td>0.25 ± 0.16</td>
<td>0.21 ± 0.12</td>
<td>0.05^{+0.06}_{-0.05}</td>
<td>0.0018^{+0.003}_{-0.0018}</td>
<td></td>
</tr>
<tr>
<td>Observed events</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>12</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Fitted SM events</td>
<td>1.1 ± 0.6</td>
<td>1.3 ± 0.6</td>
<td>4.9 ± 1.3</td>
<td>13.1 ± 2.2</td>
<td>4.2 ± 1.0</td>
<td>1.4 ± 0.6</td>
<td>1.6 ± 0.6</td>
</tr>
<tr>
<td>Fake/nonprompt leptons</td>
<td>0.00^{+0.33}_{-0.04}</td>
<td>0.4^{+0.5}_{-0.4}</td>
<td>3.0 ± 1.3</td>
<td>7.3 ± 2.1</td>
<td>0.4^{+0.8}_{-0.4}</td>
<td>0.03^{+0.10}_{-0.05}</td>
<td>0.01^{+0.05}_{-0.05}</td>
</tr>
<tr>
<td>Diboson</td>
<td>0.9 ± 0.5</td>
<td>0.7 ± 0.4</td>
<td>1.3 ± 0.6</td>
<td>1.4 ± 0.5</td>
<td>1.9 ± 0.4</td>
<td>0.9 ± 0.5</td>
<td>0.97 ± 0.28</td>
</tr>
<tr>
<td>Z(→ ττ) + jets</td>
<td>0.18^{+0.25}_{-0.18}</td>
<td>0.13 ± 0.12</td>
<td>0.3^{+0.5}_{-0.5}</td>
<td>2.4 ± 0.8</td>
<td>0.7 ± 0.4</td>
<td>0.001^{+0.001}_{-0.001}</td>
<td>0.05^{+0.006}_{-0.006}</td>
</tr>
<tr>
<td>τt, single top</td>
<td>0.01^{+0.10}_{-0.01}</td>
<td>0.12 ± 0.13</td>
<td>0.19 ± 0.13</td>
<td>1.4 ± 0.6</td>
<td>0.8 ± 0.4</td>
<td>0.37 ± 0.21</td>
<td>0.51 ± 0.33</td>
</tr>
<tr>
<td>Others</td>
<td>0.047 ± 0.030</td>
<td>0.07 ± 0.09</td>
<td>0.13 ± 0.12</td>
<td>0.07 ± 0.5</td>
<td>0.35 ± 0.20</td>
<td>0.09 ± 0.07</td>
<td>0.020 ± 0.020</td>
</tr>
<tr>
<td>Observed events</td>
<td>3</td>
<td>10</td>
<td>37</td>
<td>42</td>
<td>10</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Fitted SM events</td>
<td>3.5 ± 1.2</td>
<td>11.0 ± 2.0</td>
<td>33 ± 4</td>
<td>42 ± 4</td>
<td>15.7 ± 2.0</td>
<td>7.5 ± 1.11</td>
<td></td>
</tr>
<tr>
<td>Fake/nonprompt leptons</td>
<td>2.9 ± 1.2</td>
<td>6.8 ± 2.0</td>
<td>13 ± 4</td>
<td>14 ± 4</td>
<td>1.9 ± 1.2</td>
<td>0.01^{+0.10}_{-0.01}</td>
<td></td>
</tr>
<tr>
<td>Diboson</td>
<td>0.33 ± 0.23</td>
<td>2.3 ± 0.6</td>
<td>8.5 ± 1.6</td>
<td>12.7 ± 2.4</td>
<td>7.4 ± 1.4</td>
<td>4.3 ± 0.9</td>
<td></td>
</tr>
<tr>
<td>Z(→ ττ) + jets</td>
<td>0.13^{+0.13}_{-0.13}</td>
<td>0.6 ± 0.4</td>
<td>4.1 ± 1.8</td>
<td>2.9 ± 1.0</td>
<td>0.000^{+0.006}_{-0.006}</td>
<td>0.000^{+0.006}_{-0.006}</td>
<td></td>
</tr>
<tr>
<td>τt, single top</td>
<td>0.08 ± 0.08</td>
<td>1.2 ± 0.5</td>
<td>6.5 ± 1.6</td>
<td>10.7 ± 2.4</td>
<td>6.3 ± 1.4</td>
<td>3.2 ± 0.9</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>0.011^{+0.012}_{-0.011}</td>
<td>0.17 ± 0.11</td>
<td>0.8 ± 0.4</td>
<td>1.3 ± 0.7</td>
<td>0.14 ± 0.09</td>
<td>0.06 ± 0.04</td>
<td></td>
</tr>
<tr>
<td>Observed events</td>
<td>100, 102 GeV</td>
<td>102, 105 GeV</td>
<td>105, 110 GeV</td>
<td>110, 120 GeV</td>
<td>120, 130 GeV</td>
<td>130, ∞ GeV</td>
<td></td>
</tr>
<tr>
<td>Fitted SM events</td>
<td>6.8 ± 1.5</td>
<td>15.0 ± 2.1</td>
<td>57 ± 5</td>
<td>53 ± 4</td>
<td>24.9 ± 2.9</td>
<td>11.0 ± 1.4</td>
<td></td>
</tr>
<tr>
<td>Fake/nonprompt leptons</td>
<td>5.1 ± 1.5</td>
<td>8.2 ± 2.1</td>
<td>26 ± 5</td>
<td>18 ± 4</td>
<td>1.2 ± 0.8</td>
<td>0.02^{+0.17}_{-0.02}</td>
<td></td>
</tr>
<tr>
<td>Diboson</td>
<td>0.89 ± 0.22</td>
<td>4.1 ± 0.9</td>
<td>14.3 ± 2.2</td>
<td>18.0 ± 2.7</td>
<td>12.9 ± 2.2</td>
<td>5.9 ± 1.11</td>
<td></td>
</tr>
<tr>
<td>Z(→ ττ) + jets</td>
<td>0.31 ± 0.23</td>
<td>1.0^{+1.3}_{-0.1}</td>
<td>6.6 ± 1.7</td>
<td>1.6^{+1.8}_{-0.16}</td>
<td>0.03^{+0.25}_{-0.02}</td>
<td>0.02^{+0.24}_{-0.02}</td>
<td></td>
</tr>
<tr>
<td>τt, single top</td>
<td>0.43 ± 0.22</td>
<td>1.4 ± 0.5</td>
<td>8.3 ± 2.2</td>
<td>12.4 ± 2.9</td>
<td>10.5 ± 2.6</td>
<td>5.0 ± 1.3</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>0.020^{+0.024}_{-0.020}</td>
<td>0.24 ± 0.15</td>
<td>1.8 ± 1.0</td>
<td>2.4 ± 1.3</td>
<td>0.35 ± 0.23</td>
<td>0.11 ± 0.07</td>
<td></td>
</tr>
</tbody>
</table>
with a corresponding signal strength parameter in a simultaneous fit of all CRs and relevant SRs; this is referred to as the exclusion fit. When an electroweakino signal is assumed, the 14 exclusive SRs and relevant SRs are considered. By statistically combining these SRs, the signal shape of the $m_{\ell\ell}$ spectrum can be exploited to improve the sensitivity.

When a slepton signal is assumed, the 12 exclusive SRs and relevant SRs are used for the fit.

Table VI summarizes the fitted and observed event yields in the exclusive electroweakino and slepton SRs using an exclusion fit configuration where the signal strength parameter is fixed to zero. The predicted yields differ slightly from those obtained in the background-only fit, as expected, because inclusion of the SRs to the fit further constrains the background contributions in the absence of signal. Figure 9 illustrates the compatibility of the fitted and observed event yields in these regions. No significant differences between the fitted background and the observed event yields are found in the exclusive SRs.

Hypothesis tests are then performed to set limits on simplified model scenarios using the CL$_s$ prescription. Figure 10 (top) shows the 95% C.L. limits on the Higgsino simplified model, based on an exclusion fit that exploits the shape of the $m_{\ell\ell}$ spectrum using the exclusive electroweakino SRs. The exclusion limits are projected into the next-to-lightest neutralino mass $\Delta m(\tilde{\chi}^0_2, \tilde{\chi}^0_1)$ versus $m(\tilde{\chi}^0_2)$ plane, where $\tilde{\chi}^0_2$ are excluded up to masses of ~ 145 GeV for $\Delta m(\tilde{\chi}^0_2, \tilde{\chi}^0_1)$ between 5 and 10 GeV, and down to $\Delta m(\tilde{\chi}^0_2, \tilde{\chi}^0_1) \sim 2.5$ GeV for $m(\tilde{\chi}^0_2) \sim 100$ GeV. The 95% C.L. limits of the wino-bino simplified model are shown in Fig. 10 (bottom), where $\tilde{\chi}^0_2$ neutralino is excluded up to masses of ~ 175 GeV for $\Delta m(\tilde{\chi}^0_2, \tilde{\chi}^0_1) \sim 10$ GeV, and down to $\Delta m(\tilde{\chi}^0_2, \tilde{\chi}^0_1) \sim 2$ GeV for $m(\tilde{\chi}^0_2) \sim 100$ GeV.

Figure 11 shows the 95% C.L. exclusion bounds on the production cross sections for the NUHM2 scenario as a function of the universal gaugino mass $m_{1/2}$. The NUHM2 fit exploits the shape of the $m_{\ell\ell}$ spectrum using the exclusive electroweakino SRs. At $m_{1/2} = 350$ GeV, which exploits the shape of the $m_{\ell\ell}$ spectrum using the exclusive electroweakino SRs. The exclusion limits are projected into the next-to-lightest neutralino mass $\Delta m(\tilde{\chi}^0_2, \tilde{\chi}^0_1)$ versus $m(\tilde{\chi}^0_2)$ plane, where $\tilde{\chi}^0_2$ are excluded up to masses of ~ 145 GeV for $\Delta m(\tilde{\chi}^0_2, \tilde{\chi}^0_1)$ between 5 and 10 GeV, and down to $\Delta m(\tilde{\chi}^0_2, \tilde{\chi}^0_1) \sim 2.5$ GeV for $m(\tilde{\chi}^0_2) \sim 100$ GeV. The 95% C.L. limits of the wino-bino simplified model are shown in Fig. 10 (bottom), where $\tilde{\chi}^0_2$ neutralino is excluded up to masses of ~ 175 GeV for $\Delta m(\tilde{\chi}^0_2, \tilde{\chi}^0_1) \sim 10$ GeV, and down to $\Delta m(\tilde{\chi}^0_2, \tilde{\chi}^0_1) \sim 2$ GeV for $m(\tilde{\chi}^0_2) \sim 100$ GeV.

Finally, Fig. 12 shows the 95% C.L. exclusion bounds on the production cross sections for the NUHM2 scenario as a function of the universal gaugino mass $m_{1/2}$. The NUHM2 fit exploits the shape of the $m_{\ell\ell}$ spectrum using the exclusive electroweakino SRs. At $m_{1/2} = 350$ GeV, which

FIG. 9. Comparison of observed and expected event yields after the exclusion fit with the signal strength parameter set to zero in the exclusive signal regions. Background processes containing fewer than two prompt leptons are categorized as “Fake/nonprompt.” The category “Others” contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table I. Uncertainties in the background estimates include both the statistical and systematic uncertainties, where σ_{stat} denotes the total uncertainty.
corresponds to a mass splitting $\Delta m(\tilde{\chi}_0^2, \tilde{\chi}_1^0)$ of approximately 45 GeV, the signal cross section is constrained to be less than five times the predicted value in the NUHM2 scenario at 95% C.L. For $m_{1/2} = 800$ GeV, corresponding to a mass splitting of approximately 15 GeV, the 95% C.L. cross section upper limit is twice the NUHM2 prediction.

In these interpretations, sensitivity is lost when the mass splitting between the produced SUSY particle and the LSP becomes less than a few GeV due to the reduced acceptance and reconstruction efficiency of the soft leptons. Meanwhile, sensitivity decreases for larger mass splittings above approximately 20 to 30 GeV due to the $m_{1/2}$ or $m_{1/2}$ shapes of the signal becoming increasingly similar to those of the SM backgrounds.

FIG. 10. Expected 95% C.L. exclusion sensitivity (blue dashed line) with $\pm 1\sigma_{\text{exp}}$ (yellow band) from experimental systematic uncertainties and observed limits (red solid line) with $\pm 1\sigma_{\text{theory}}$ (dotted red line) from signal cross section uncertainties for simplified models of direct Higgsino (top) and wino (bottom) production. A fit of signals to the $m_{1/2}$ spectrum is used to derive the limit, which is projected into the $\Delta m(\tilde{\chi}_1^0, \tilde{\chi}_2^0)$ vs. $m(\tilde{\chi}_1^0)$ plane. For Higgsino production, the chargino $\tilde{\chi}_1^0$ mass is assumed to be halfway between the two lightest neutralino masses, while $m(\tilde{\chi}_1^0) = m(\tilde{\chi}_2^0)$ is assumed for the wino-bino model. The gray regions denote the lower chargino mass limit from LEP [20]. The blue region in the lower plot indicates the limit from the $2\ell + 3\ell'$ combination of ATLAS Run 1 [41].

 corresponds to a mass splitting $\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0)$ of approximately 45 GeV, the signal cross section is constrained to be less than five times the predicted value in the NUHM2 scenario at 95% C.L. For $m_{1/2} = 800$ GeV, corresponding to a mass splitting of approximately 15 GeV, the 95% C.L. cross section upper limit is twice the NUHM2 prediction.

In these interpretations, sensitivity is lost when the mass splitting between the produced SUSY particle and the LSP becomes less than a few GeV due to the reduced acceptance and reconstruction efficiency of the soft leptons. Meanwhile, sensitivity decreases for larger mass splittings above approximately 20 to 30 GeV due to the $m_{1/2}$ or $m_{1/2}$ shapes of the signal becoming increasingly similar to those of the SM backgrounds.

FIG. 11. Expected 95% C.L. exclusion sensitivity (blue dashed line) with $\pm 1\sigma_{\text{exp}}$ (yellow band) from experimental systematic uncertainties and observed limits (red solid line) with $\pm 1\sigma_{\text{theory}}$ (dotted red line) from signal cross section uncertainties for simplified models of direct slepton production. A fit of slepton signals to the m_{100} spectrum is used to derive the limit, which is projected into the $\Delta m(\tilde{\chi}_1^0, \tilde{\chi}_2^0)$ vs. $m(\tilde{\chi}_1^0)$ plane. Slepton $\tilde{\ell}$ refers to the scalar partners of left- and right-handed electrons and muons, which are assumed to be fourfold mass degenerate $m(\tilde{\ell}_R) = m(\tilde{\ell}_L) = m(\tilde{\ell}_R)$. The gray region is the \tilde{e}_R limit from LEP [20,24], while the blue region is the fourfold mass degenerate slepton limit from ATLAS Run 1 [41].

FIG. 12. Observed and expected 95% C.L. cross section upper limits as a function of the universal gaugino mass $m_{1/2}$ for the NUHM2 model. The green and yellow bands around the expected limit indicate the $\pm 1\sigma$ and $\pm 2\sigma$ uncertainties, respectively. The expected signal production cross sections as well as the associated uncertainty are indicated with the blue solid and dashed lines. A fit of signals to the $m_{1/2}$ spectrum is used to derive this limit.
IX. CONCLUSION

A search for the electroweak production of supersymmetric states with low-momentum visible decay products is performed using LHC proton-proton collision data collected by the ATLAS detector at $\sqrt{s} = 13$ TeV, corresponding to an integrated luminosity of 36.1 fb^{-1}. Events with significant missing transverse momentum and same-flavor opposite-charge lepton pairs are selected, with the minimum p_T of the electrons (muons) being 4.5 (4) GeV. The dilepton invariant mass and transverse mass are the main discriminating variables used to construct signal regions. No excess over the Standard Model expectation is observed.

The results are interpreted using simplified models of R-parity-conserving supersymmetry, where the produced states have small mass splittings with the lightest neutralino $\tilde{\chi}^0_1$. For the Higgsino simplified model, exclusion limits at 95% C.L. are set on the $\tilde{\chi}^0_2$ neutralino up to masses of ~ 145 GeV and down to mass splittings $\Delta m(\tilde{\chi}^0_2, \tilde{\chi}^0_1) \sim 2.5$ GeV. In the wino-bino model, these limits on the $\tilde{\chi}^0_2$ extend to masses of up to ~ 175 GeV and down to mass splittings of approximately 2 GeV. Direct pair production of sleptons, assuming the scalar partners of the left- and right-handed electrons and muons are mass degenerate, is excluded for slepton masses up to masses of ~ 190 GeV and down to mass splittings $\Delta m(\tilde{\ell}, \tilde{\chi}^0_1) \sim 1$ GeV. These results extend previous constraints from the LEP experiments. In addition, an interpretation of the results in the NUHM2 scenario is provided, where the cross section upper limit ranges between 11 and 3.5 pb for $m_{1/2}$ values of 350 to 800 GeV.

ACKNOWLEDGMENTS

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSE, GIF and Minerv, Israel; BRF, Norway; ERC,平方根 Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [124].

SEARCH FOR ELECTROWEAK PRODUCTION OF ... PHYS. REV. D 97, 052010 (2018)

[27] L3 Collaboration, Search for charginos with a small mass difference with the lightest supersymmetric particle at $\sqrt{s} = 189$ GeV, Phys. Lett. B 482, 31 (2000).

[40] A. Barr, C. Lester, and P. Stephens, A variable for measuring masses at hadron colliders when missing energy is expected; m_{T2}: the truth behind the glamour, J. Phys. G 29, 2343 (2003).

SEARCH FOR ELECTROWEAK PRODUCTION OF …

PHYS. REV. D 97, 052010 (2018)
M. AABOU et al.
PHYS. REV. D 97, 052010 (2018)

5 LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
6 High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
7 Department of Physics, University of Arizona, Tucson, Arizona, USA
8 Department of Physics, The University of Texas at Arlington, Arlington, Texas, USA
9 Physics Department, National and Kapodistrian University of Athens, Athens, Greece
10 Physics Department, National Technical University of Athens, Zografou, Greece
11 Department of Physics, The University of Texas at Austin, Austin, Texas, USA
12 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
13 Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain
14 Institute of Physics, University of Belgrade, Belgrade, Serbia
15 Department for Physics and Technology, University of Bergen, Bergen, Norway
16 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
17 Department of Physics, Humboldt University, Berlin, Germany
18 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
19 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
20a Department of Physics, Bogazici University, Istanbul, Turkey
20b Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
20c Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
20d Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
21 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
22a INFN Sezione di Bologna, Italy
22b Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
22c Physikalisches Institut, University of Bonn, Bonn, Germany
23 Department of Physics, Boston University, Boston, Massachusetts, USA
24 Department of Physics, Brandeis University, Waltham, Massachusetts, USA
25 Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
26 Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
26a Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil
26b Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
27 Physics Department, Brookhaven National Laboratory, Upton, New York, USA
28a Transilvania University of Brasov, Brasov, Romania
28b Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
28c Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi, Romania
28d National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca, Romania
28e University Politehnica Bucharest, Bucharest, Romania
28f West University in Timisoara, Timisoara, Romania
29 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
30 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
31 Department of Physics, Carleton University, Ottawa, Ontario, Canada
32 CERN, Geneva, Switzerland
33 Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
34a Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
34b Departamento de Física, Universidad Técnica Federico Santa Maria, Valparaíso, Chile
35 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
35a Department of Physics, Nanjing University, Jiangsu, China
35b Physics Department, Tsinghua University, Beijing 100084, China
35c University of Chinese Academy of Science (UCAS), Beijing, China
36 Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Anhui, China
36a School of Physics, Shandong University, Shandong, China
36b School of Physics and Astronomy, Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology, Tsung-Dao Lee Institute, Shanghai Jiao Tong University, China
36c Tsung-Dao Lee Institute, Shanghai, China
37 Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
38 Nevis Laboratory, Columbia University, Irvington, New York, USA
SEARCH FOR ELECTROWEAK PRODUCTION OF …

PHYS. REV. D 97, 052010 (2018)

pp Also at Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain.

qq Also at School of Physics, Sun Yat-sen University, Guangzhou, China.

rr Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria.

ss Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia.

tt Also at National Research Nuclear University MEPhI, Moscow, Russia.

uu Also at Department of Physics, Stanford University, Stanford, CA, USA.

vv Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.

ww Also at Giresun University, Faculty of Engineering, Turkey.

xx Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.

yy Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia.