The version of the following full text has not yet been defined or was untraceable and may differ from the publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/18961

Please be advised that this information was generated on 2017-07-22 and may be subject to change.
AN ALGORITHM CONCERNING ONE DIMENSIONAL RINGS OF CONSTANTS IN POLYNOMIAL RINGS

Arno van den Essen, Andrzej Nowicki

Report No. 0106 (March 2001)
An algorithm concerning one dimensional rings of constants in polynomial rings

Arno van den Essen Andrzej Nowicki*

Abstract

Let B be a one dimensional k-subalgebra of the polynomial ring $k[X] := k[X_1, \ldots, X_n]$, where k is a field of characteristic zero. We describe an algorithm which decides if there exists a k-derivation D on $k[X]$ such that $B = k[X]^D$ (=the kernel of the derivation D). In case B is a ring of constants the algorithm also gives such a derivation.

1 Introduction

Rings of constants appear in various problems. For example the Cancellation Problem asks if the ring of constants of a locally nilpotent derivation on a polynomial ring having a slice is a polynomial ring, Hilbert’s fourteenth problem asks if the ring of constants of a derivation on a polynomial ring over a field k is a finitely generated k-algebra and the Jacobian Problem asks if the ring of constants associated to a Jacobian derivation of the form $\frac{\partial}{\partial F_n}$ is a polynomial ring generated by F_1, \ldots, F_{n-1}, when $\det JF \in k^*$ (for more details we refer to [6]).

In [8] the second author gives a criterion to decide if a finitely generated k-subalgebra of an affine k-domain can be realized as the ring of constants of some k-derivation. In this paper we discuss an effective counterpart of this result. More precisely we consider one dimensional k-subalgebras of a polynomial ring in n variables over a field of characteristic zero and give an algorithm to decide if such rings appear as the ring of constants of a k-derivation and in case they do the algorithm gives an explicit derivation whose ring of constants is the given subalgebra. The algorithm is based on the aforementioned result of [8] and an algorithm given in [3] to compute the integral closure of an extension of affine k-domains.

*Supported by KBN Grant 2 PO3A 017 16
2 Preliminaries

Throughout this paper k denotes a field of characteristic zero and $k[X] := k[X_1, \ldots, X_n]$ is the polynomial ring in n variables over k. Starting point of our algorithm is the following result of the second author ([8], Theorem 5.4).

Theorem 2.1 Let A be a finitely generated k-domain and B a k-subalgebra of A. The following conditions are equivalent:
1) There exists a k-derivation D of A such that $B = AD$.
2) The ring B is integrally closed in A and $Q(B) \cap A = B$ ($Q(B)$ denotes the quotient field of B).

So to get an effective algorithm to decide if $B = AD$ for some k-derivation D of A, we must first of all be able to decide if B equals its integral closure in A, which we denote by \overline{B}^A. Therefore we make use of the following result of Brennan and Vasconcelos given in [3].

Theorem 2.2 Let $A = k[X]/\mathfrak{p}$ be an affine domain over k and let B be a finitely generated k-subalgebra of A. Write x_i instead of $X_i + \mathfrak{p}$. In [3] an algorithm is given which produces elements f_1, \ldots, f_s in $k[x_1, \ldots, x_n]$ such that $\overline{B}^A = k[f_1, \ldots, f_s]$.

According to Theorem 2.1 we must be able to compute $Q(B) \cap A$. In general this intersection need not be a finitely generated k-algebra: in case $A = k[X]$ this was exactly the question of Hilbert’s fourteenth problem. Even if we assume that B is integrally closed in $k[X]$ the intersection need not be finitely generated over k: for example the locally nilpotent derivations D defined in [4] and [7] give rise to k-subalgebras of $k[X]$ of the form $B = k[X]^D$ which are integrally closed in $k[X]$ but for which $Q(B) \cap k[X]$ is not finitely generated over k. Therefore in this paper we will restrict to the situation that $A := k[X]$ and B is a finitely generated k-subalgebra of dimension one. This enables us to compute $Q(B) \cap A$. In fact we have

Proposition 2.3 Let B be a finitely generated k-subalgebra of $A := k[X]$ of dimension one. If B is integrally closed in A, then
1) $B = k[f]$ for some $f \notin k$.
2) $Q(B) \cap A = B$.
3) The algebraic closure of $Q(B)$ in $Q(A)$ equals $Q(B)$.

Proof. The first statement follows from Zaks’ theorem (see [9] or [6], Theorem 1.2.26). So B is a polynomial ring in one variable over k, hence a principal ideal domain. Since obviously A is a torsion free B-module it follows from [2], Chap.I, §2, no.4, Prop. 3 iii) that A is a flat B-module. Furthermore, since B is a UFD and $A^* \cap B = k^* = B^*$ it follows from a result of Bass (see [1] or [6], Proposition D.1.7) that $Q(B) \cap A = B$, which proves 2). Finally to prove 3) let $x = a_1/a_2$ be algebraic over $Q(B)$, where
Then there exists a non-zero element $b \in B$ such that bx is integral over B. In particular bx is integral over A and hence belongs to A (since $A = k[X]$ is integrally closed). Since, as observed, bx is integral over B and B is integrally closed in A it follows that $bx \in B$. So $x \in Q(B)$ \(\square\)

Corollary 2.4 Let B be a finitely generated k-subalgebra of dimension one of $A := k[X]$. Then B is the ring of constants of some k-derivation D of A if and only if $B^A = B$.

Proof. Follows directly from Theorem 2.1 and Proposition 2.3 \(\square\)

The algorithm which we will give in the next section not only decides if B is a ring of constants of some k-derivation of A, it also gives an explicit derivation D on A such that $B = A^D$ (in case B is a ring of constants). In order to find such a D we need some preliminaries (which can already be found in [8]).

Lemma 2.5 Let $D = \partial_1 + X_2 \partial_2 + X_2 X_3 \partial_3 + \ldots + X_2 \ldots X_n \partial_n$ on $k(X)$. Then $k(X)^D = k$.

A proof of this result, which is due to Derksen, can be found in [5].

We will apply this result as follows: let $K \subset L$ be fields of characteristic zero and let s_1, \ldots, s_m be a transcendence basis of L over K. So $K(S) := K(s_1, \ldots, s_m) \subset L$ is algebraic and the K-derivation

$$D := \frac{\partial}{\partial s_1} + s_2 \frac{\partial}{\partial s_2} + s_2 s_3 \frac{\partial}{\partial s_3} + \ldots + s_2 \ldots s_m \frac{\partial}{\partial s_m}$$

on $K(S)$ can be extended uniquely to a derivation on L, which we also denote by D.

Proposition 2.6 If K is algebraically closed in L, then $L^D = K$.

Proof. Let $h \in L$ satisfy $D(h) = 0$. Since h is algebraic over $K(S)$ there exists a minimal $n \geq 1$ such that

$$(*) \quad h^n + a_{n-1} h^{n-1} + \ldots + a_1 h + a_0 = 0, \quad a_i \in K(S).$$

Applying D and using that $D(h) = 0$ we get that

$$D(a_{n-1}) h^{n-1} + \ldots + D(a_1) h + D(a_0) = 0.$$

From the minimality of n it follows that $D(a_i) = 0$ for all i i.e. $a_i \in K(S)^D = K$ (by Lemma 2.5). So $(*)$ shows that h is algebraic over K. Since by hypothesis K is algebraically closed in L it follows that $h \in K$. So $L^D = K$ \(\square\)
3 The Algorithm

Throughout this section B will be a finitely generated k-subalgebra of dimension one of $A = k[X]$ given by $B = k[f_1, \ldots, f_s]$, where $f_i \in k[X] \setminus k$ for all i.

Now we will describe an algorithm which decides if $B = A^D$ for some k-derivation D on A and if it is, gives such a derivation.

Algorithm

Step 1 Compute B^A according Theorem 2.2.

Step 2 Check if all generators of B^A belong to $k[f_1, \ldots, f_s]$; this can be done using the algebra membership algorithm (see for example [6], Proposition C.2.3).

If not, B is not a ring of constants (by Corollary 2.4).

If yes, B is a ring of constants (by Corollary 2.4).

Step 3 Since $f_1 \notin k$ if $f_1x_i \neq 0$ for some i. Let’s assume $i = 1$ (for simplicity) and write $f := f_1$. Put

$$D_0 := \partial_2 + X_3\partial_3 + X_3X_4\partial_4 + \ldots + X_3\ldots X_n\partial_n$$

on $k(X_1, \ldots, X_n)$ and

$$D := -D_0(f)\partial_1 + fX_1D_0 \in \text{Der}_k[k[X]]$$

Then $k[X]^D = B$.

Proof of correctness. Extend D to $k(X)$ and denote this extension again by D. Observe that $DF = 0$ and that $k(f) \subseteq Q(B)$ is algebraic (since $\dim B = 1$). So $D = 0$ on $Q(B)$. Furthermore $S := \{X_2, \ldots, X_n\}$ is a transcendence basis of $k(X)$ over $Q(B)$ (since $fX_1 \neq 0$). So on $Q(B)(S)$ the derivation $\frac{1}{fX_1}D$ equals the $Q(B)$-derivation which sends X_2 to 1, X_3 to X_3, X_4 to X_3X_4, \ldots, X_n to $X_3\ldots X_n$. Since $Q(B)$ is algebraically closed in $k(X)$ (by Proposition 2.3) it follows from Proposition 2.6 that $k(X)^D = Q(B)$. Hence

$$k[X]^D = k(X)^D \cap k[X] = Q(B) \cap k[X] = B$$

(by Proposition 2.3) □

Acknowledgement

The second author wants to thank the University of Toruń for its great hospitality during his stay in February 2001, when this work was initiated.

References

Authors addresses:
Arno van den Essen, Dep. of Math., Univ. of Nijmegen, The Netherlands. Email: essen@sci.kun.nl
Andrzej Nowicki, Fac. of Math. and Informatics, N. Copernicus Univ., 87-100, Toruń, Poland. Email: anow@mat.uni.torun.pl