THE CANCELLATION PROBLEM
IN DIMENSION FOUR

Harm Derksen, Arno van den Essen, Peter van Rossum

Report No. 0022 (October 2000)
The Cancellation Problem in Dimension Four

Harm Derksen* Arno van den Essen Peter van Rossum

Abstract

This paper proves that the Cancellation Problem has an affirmative answer over a Dedekind containing the rational numbers in dimension three. As a consequence, the Cancellation Problem turns out to have an affirmative answer for a large class of locally nilpotent derivations in dimension four, including the triangular ones.

1 Introduction

Let k be a field of characteristic zero and let V be an algebraic variety over k. The Cancellation Problem asks if $V \times k \cong k^n$ implies that $V \cong k^{n-1}$. This problem was first posed by Zariski in 1942. See [Kra89] for an overview of the Cancellation Problem.

Algebraically, the Cancellation Problem amounts to asking if $A[T] \cong k[X_1, \ldots, X_n]$ implies that $A \cong k[X_1, \ldots, X_{n-1}]$ for an affine k-domain A. One can also phrase this in terms of locally nilpotent derivations. The question is whether the kernel of a locally nilpotent derivation on $k[X_1, \ldots, X_n]$ with a slice is isomorphic to $k[X_1, \ldots, X_{n-1}]$. For more information on locally nilpotent derivations and their application to problems related to the Cancellation Problem, such as the Embedding Conjecture, Hilbert’s Fourteenth Problem, and the Jacobian Conjecture, see [Ren68], [AM75], [Ess93], [Now94], [DF99], [Fre00] and [Ess00].

The structure of this paper is as follows. Section 2 contains an overview of locally nilpotent derivations and their relationship to the Cancellation Problem. Section 3 uses a technique from Quillen to show that local coordinates (and partial local coordinate systems) over a Hermite domain are coordinates (and partial coordinate systems). Together with a result from Sathaye on the recognition of a polynomial ring in two variables over a discrete valuation ring containing \mathbb{Q}, this result is used to prove that the Cancellation Problem has an affirmative answer over a Dedekind domain containing \mathbb{Q} for $n = 3$. As a consequence, the Cancellation Problem turns out to have an affirmative answer for a large class of derivations (or varieties) for $n = 4$ over a field, including the triangular derivations.

*Partially supported by NSF, grant 9970165
2 Preliminaries

In this paper all rings will be commutative and have a unit element.

Let \(A \) be a ring. A derivation on \(A \) is a map \(D : A \to A \) satisfying \(D(a + b) = D(a) + D(b) \) and \(D(ab) = aD(b) + D(a)b \) for all \(a, b \in A \). If \(R \) is a ring and \(A \) is an \(R \)-algebra via \(f : R \to A \), then \(A \) is called an \(R \)-derivation if \(D(f(r)) = 0 \) for all \(r \in R \). A derivation \(D \) is called locally nilpotent if for all \(a \in A \) there is an \(n \in \mathbb{N} \) such that \(D^n(a) = 0 \). The kernel of \(D \) is denoted by \(A^D \). If \(s \in A \) is such that \(D(s) = 1 \), then \(s \) is called a slice of \(D \).

The following proposition (see [Wri81]) is well-known.

\[\text{Proposition 2.1.} \text{ Let } A \text{ be a } \mathbb{Q} \text{-algebra and let } D \text{ be a locally nilpotent derivation on } A. \text{ Assume that } s \in A \text{ is a slice of } D. \text{ Then } A = A^D[s] \text{ and } s \text{ is algebraically independent over } A^D. \text{ Furthermore, } D = d/ds. \]

In the applications, \(A \) will invariably be a polynomial ring \(R[X] := R[X_1, \ldots, X_n] \) over a ring \(R \). An \(R \)-derivation \(D \) on \(R \) is called triangular if \(D(X_i) \in R[X_{i+1}, \ldots, X_n] \) for all \(i \). Such a derivation is automatically locally nilpotent. An element \(s \in R[X] \) is called a coordinate if there is a polynomial automorphism \(F \) of \(R[X] \) with \(s \) as one of its components. More generally, a sequence \((s_1, \ldots, s_k) \) of elements of \(R[X] \) with \(1 \leq k \leq n \) is called a partial coordinate system if there are polynomials \(f_{k+1}, \ldots, f_n \in R[X] \) such that \((s_1, \ldots, s_k, f_{k+1}, \ldots, f_n) \) is a polynomial automorphism of \(R[X] \).

Proposition 2.1 implies the following.

\[\text{Corollary 2.2.} \text{ Let } R \text{ be a ring and let } n \geq 2. \text{ Let } D \text{ be a locally nilpotent } R\text{-derivation on } R[X] := R[X_1, \ldots, X_n] \text{ and let } s \in R[X] \text{ be a slice of } D. \text{ Then } s \text{ is a coordinate if and only if } R[X]^D \cong R^{[n-1]}. \]

This gives the following reformulation of the Cancellation Problem in terms of locally nilpotent derivations.

\[\text{Problem 2.3 (Cancellation Problem).} \text{ Let } k \text{ be a field of characteristic zero and let } n \geq 2. \text{ Let } D \text{ be a locally nilpotent } k\text{-derivation on } k[X] := k[X_1, \ldots, X_n] \text{ and assume that } D \text{ has a slice } s \in k[X]. \text{ Is then } k[X]^D \cong k^{[n-1]}, \text{ i.e., is } s \text{ a coordinate in } k[X] ? \]

More generally, one can ask the following question.

\[\text{Problem 2.4 (Generalized Cancellation Problem).} \text{ Let } k \text{ be a field of characteristic zero, let } R \text{ be an affine } k\text{-domain, and let } n \geq 2. \text{ Let } D \text{ be a locally nilpotent } R\text{-derivation on } R[X] := R[X_1, \ldots, X_n] \text{ and assume that } D \text{ has a slice } s \in R[X]. \text{ Is then } R[X]^D \cong R^{[n-1]}, \text{ i.e., is } s \text{ a coordinate in } R[X] ? \]

In dimension two, matters were settled for the field case by Rentschler in [Ren68], who proved the following.

\[\text{Theorem 2.5.} \text{ Let } k \text{ be a field of characteristic zero. Let } D \text{ be a locally nilpotent } k\text{-derivation on } k[X] := k[X_1, X_2]. \text{ Then } k[X]^D \cong k^{[1]}. \]

2
Nowadays even stronger results have been obtained by Bhadwadekar and Dutta ([BD97]) and Berson, Van den Essen, and Maubach ([BEM99]). The field k in the theorem can in fact be replaced by an arbitrary \mathbb{Q}-algebra R.

In dimension three, the Cancellation Problem was proved by Fujita (see [Fuj79]) for an algebraically closed field. See also [MS80] and [Miy85]. It was remarked by Daigle in [Dai97] that a straightforward use of [Kam75] then proves the general case.

Theorem 2.6. Let k be a field of characteristic zero and let D be a locally nilpotent k-derivation on $k[X] := k[X_1, X_2, X_3]$. Assume that D has a slice. Then $k[X]^D \cong k^{[2]}$.

This paper now proves the Generalized Cancellation Problem for $n=3$ in case R is a Dedekind domain over \mathbb{Q}. As a consequence, the Cancellation Problem turns out to have an affirmative answer for locally nilpotent derivations of the form

$$D := a(X_1, X_2, X_3, X_4)\partial_1 + b(X_1, X_2, X_3, X_4)\partial_2 + c(X_1, X_2, X_3, X_4)\partial_3 + d(X_4)\partial_4$$

for $n = 4$, where ∂_i denotes $\partial/\partial X_i$. In particular, the Cancellation Problem turns out to have an affirmative answer for triangular derivations for $n = 4$. This is especially interesting since [Asa99] (implicitly) and [ER00] (explicitly) give a candidate counterexample to the Cancellation Problem for $n = 5$ which is triangular, namely $D := (2X_1^2 - 3)\partial_1 + (4X_2^4 - 8X_4)\partial_2 + (5X_3^4 - 10)\partial_3 + X_5\partial_4$.

3 Local Coordinates

Let R be a domain, $n \in \mathbb{N}$, and $R[X] := R[X_1, \ldots, X_n]$ the polynomial ring in n variables over R. This section shows that a polynomial in $R[X]$ is a coordinate if and only if it is a coordinate when considered as an element of $R_m[X]$, for all maximal ideals m of R, provided that R is Hermite, and similarly for partial coordinate systems. Recall that R is called **Hermite** if every unimodular row (r_1, \ldots, r_k) can be extended to an invertible square matrix over R.

The ideas present in this section can in fact already be found in [Qui76]. The abstract notion of Quillen Induction is essentially taken from [BCW77] and the results from that paper can also be used to derive the main result of this section.

Definition 3.1. Define $\text{Loc}(R) := \{R_r \mid r \in R \setminus \{0\}\}$.

Proposition 3.2 (Quillen Induction). Let $P \subseteq \text{Loc}(R)$. Write $P(L)$ instead of $L \in P$ for $L \in \text{Loc}(R)$. In that case, L is said to have property P. Assume that

(a) for all $m \in \text{Max}(R)$: there exists an $r \in R \setminus m$ such that $P(R_r)$;

(b) for all $r, s, t \in R \setminus \{0\}$: if $rR_t + sR_t = R_t$, $P(R_r)$, and $P(R_s)$, then $P(R_t)$.

Then $P(L)$ for all $L \in \text{Loc}(R)$. In particular $P(R)$.
Proof. Let S be the collection of all $r \in R \setminus \{0\}$ such that $P(R_r)$ together with 0. This is an ideal of R. It is not empty because 0 is in S, closed under addition because of (b) (for $r, s \in S$ take $t := r + s$), and closed under multiplication with elements of R also because of (b) (for $\tilde{r} \in R$ and $\tilde{s} \in S$, take $r := \tilde{s}, s := \tilde{s}$, and $t := \tilde{r}\tilde{s}$).

Suppose that $S \neq R$. Then S is contained in some maximal ideal of R, say m. By (a) there is an $r \in R \setminus m$ such that $P(R_r)$. But then $r \in S \subseteq m$, which contradicts $r \not\in m$. So $S = R$ and therefore $P(L)$ for all $L \in \text{Loc}(R)$.

Definition 3.3. An element H of $\text{End}_R(R[X])$ is called nice if it is of the form $H = (X_1 + \text{h.o.t.}, \ldots, X_n + \text{h.o.t.})$. Here h.o.t. stands for higher order terms, i.e., terms of degree 2 or greater, and $\text{End}_R(R[X])$ has been identified with $R[X]^n$. A coordinate $h \in R[X]$ is called nice if there is a nice $H \in \text{Aut}_R(R[X])$ which has h as its first component. Similarly, a partial coordinate system $(h_1, \ldots, h_k) \in R[X]^k$ is called nice if there is a nice $H \in \text{Aut}_R(R[X])$ which has (h_1, \ldots, h_k) as its first k components.

Lemma 3.4. A partial coordinate system $(h_1, \ldots, h_k) \in R[X]^k$ is nice if and only if it is of the form $(X_1 + \text{h.o.t.}, \ldots, X_k + \text{h.o.t.})$. In particular, a coordinate $h \in R[X]$ is nice if and only if it is of the form $X_1 + \text{h.o.t.}$.

Proof. By linear algebra, looking at the linear part of a polynomial automorphism without constant parts with h_1, \ldots, h_k as its first k components.

Definition 3.5. Let $H \in \text{End}_R(R[X])$ be nice. Then $T^H \in \text{End}_{R[T]}(R[T][X])$ is defined by

$$T^H := T^{-1} H[X_1 := TX_1, \ldots, X_n := TX_n].$$

(This is defined over $R[T]$ and not just over $R[T, T^{-1}]$ because H is nice.) If $r \in R$, then $T^H[T := r] \in \text{End}_R(R[X])$ is denoted by rH.

One can easily see that $(\det JH)[X := TX] = \det J^T H$ and that H is invertible if and only if $^T H$ is. Here JH denotes the Jacobian matrix $(\partial H_i/\partial X_j),_{ij}$ of H. Even better, if $r \in R \setminus \{0\}$, then $\det J^r H \in R^\ast$ if and only if $\det JH \in R^\ast$ and rH is invertible if and only if H is.

The map T^H is called the clearing map because of the following: if K is the quotient field of R and $H \in \text{End}_K(K[X])$ is of the form $H = X + \text{h.o.t.}$, then there is an $r \in R \setminus \{0\}$ such that $^rH \in \text{End}_R(R[X])$. So, the denominators of H are cleared. See Chapter 1 of [Ess00].

Lemma 3.6. Let $r, s \in R \setminus \{0\}$ be such that $r R + s R = R$ and let $H \in \text{Aut}_{R_r}(R_{r_s}[X])$ be nice. Then there are nice $H_1 \in \text{Aut}_{R_r}(R_r[X])$ and $H_2 \in \text{Aut}_{R_s}(R_s[X])$ such that $H = H_1 H_2$.

Proof. Note that

$$T^H = H_{(1)} + T^H_{(2)} + T^2 H_{(3)} + \cdots + T^{d-1} H_{(d)}$$

4
where each \(H_{(i)} \) is the homogeneous part of degree \(i \) of \(H \) and \(d \) is the degree of \(H \). Hence

\[
1-TH = H_{(1)} + (1-T)H_{(2)} + (1-T)^2H_{(3)} + \cdots + (1-T)^{d-1}H_{(d)} \\
= H_{(1)} + H_{(2)} + H_{(3)} + \cdots + H_{(d)} + T(h.o.t.) \\
= H + T(h.o.t.),
\]

where, as before, h.o.t. stands for some terms of \(X \)-degree at least two. As a consequence

\[
H^{-1} \circ 1-TH = H^{-1} \circ (H + T(h.o.t.)) \\
= X + T(h.o.t).
\]

Now let \(k \in \mathbb{N} \) be sufficiently large. From \(rR + sR = R \) it follows that \(r^kR + s^kR = R \). Take \(v, w \in R \) with \(r^kv + s^kw = 1 \). If \(k \) is sufficiently large, then \(s^k wH \) and \(s^k w(H^{-1}) \) are elements of \(\text{End}_{R_r}(R_r[X]) \). They are also each others inverse and hence they are in fact elements of \(\text{Aut}_{R_r}(R_r[X]) \).

Take \(H_1 := s^k wH \) and compute \(H^{-1} H_1 \). This gives

\[
H^{-1} H_1 = H^{-1} \circ T [T := s^k w] \\
= H^{-1} \circ 1-T [T := r^k v] \\
= (X + T(h.o.t.))[T := r^k v] \\
= X + r^k v(h.o.t.)
\]

and similarly

\[
H_1^{-1} H = X + r^k v(h.o.t.).
\]

For \(k \) sufficiently large, \(H_2 := H_1^{-1} H \) and its inverse apparently are elements of \(\text{Aut}_{R_r}(R_r[X]) \). So now \(H = H_1 H_2 \) with \(H_1 \) and \(H_2 \) are both of the required form.

Lemma 3.7. Let \(r, s \in R \) be such that \(rR + sR = R \). Take \(t \in R_{rs} \) such that \(t \in R_r \cap R_s \). Then \(t \in R \).

Proof. Write \(t = v/r^k = w/s^l \) with \(v, w \in R \) and \(k, l \in \mathbb{N} \). Because \(rR + sR = R \), also \(r^kR + s^l R = R \). Write \(r^k x + s^l y = 1 \) for some \(x, y \in R \). Then \(t = (r^k x + s^l y)t = vx + wy \in R \).

Lemma 3.8 (Patching Lemma). Let \(r, s \in R \) with \(rR + sR = R \). Let \(k \in \{1, \ldots, n\} \) and let \(h_1, \ldots, h_k \in R[X] \) be polynomials of the form \(h_i = X_i + h.o.t. \). Assume that there is a nice \(F \in \text{Aut}_{R_r}(R_r[X]) \) with first \(k \) components equal to \(h_1, \ldots, h_k \) and that there is a nice \(G \in \text{Aut}_{R_r}(R_r[X]) \) with first \(k \) components equal to \(h_1, \ldots, h_k \). Then there is a nice \(H \in \text{Aut}_R(R[X]) \) with first \(k \) components equal to \(h_1, \ldots, h_k \).
Proof. Consider the polynomial map $F^{-1}G \in \text{Aut}_{R} \{R_{e}[X]\}$ and note that it is fact an $R_{er}[X_{1},\ldots,X_{k}]-\text{automorphism}$ of $R_{er}[X] = R_{er}[X_{1},\ldots,X_{k}][X_{k+1},\ldots,X_{n}]$. Now apply Lemma 3.6 to the ring $R[X_{1},\ldots,X_{k}]$ and write $F^{-1}G = H_{1}H_{2}$ with $H_{1} \in \text{Aut}_{R_{e}[X_{1},\ldots,X_{k}]}(R_{e}[X])$ and $H_{2} \in \text{Aut}_{R_{e}[X_{1},\ldots,X_{k}]}(R_{e}[X])$, where both H_{i} are of the form $X + \text{h.o.t.}$. Considered as automorphisms over respectively R_{e} and R_{a}, the first k components of H_{1} and H_{2} of course equal X_{1},\ldots,X_{k}. Hence $H := KHH_{2}^{-1}$ is a nice polynomial automorphism (over R_{es}, a priori) whose first k components equal h_{1},\ldots,h_{k}. It is defined over R_{r} (because $H = KH_{1}$ and F and H_{1} are defined over R_{e}) and it is defined over R_{e} (because $H = GH_{2}^{-1}$ and G and H_{2} are defined over R_{e}). Hence, applying Lemma 3.7 to every one of its coefficients, it is in fact defined over R_{r}.

Theorem 3.9. Let $k \in \{1,\ldots,n\}$ and let $h_{1},\ldots,h_{k} \in R[X]$ be polynomials of the form $h_{i} = X_{i} + \text{h.o.t.}$. Assume that for every maximal ideal m of R, (h_{1},\ldots,h_{k}) is a nice partial coordinate system when considered as an element of $R_{m}[X]^{k}$. Then (h_{1},\ldots,h_{k}) is a nice partial coordinate system.

Proof. Let $P \subseteq \text{Loc}(R)$ be the collection of all $R_{r}, r \in R \setminus \{0\}$, such that (h_{1},\ldots,h_{k}) is a nice partial coordinate system over R_{r}. Now check the two conditions for Quillen Induction.

(a) Let m be a maximal ideal of R. It is assumed that (h_{1},\ldots,h_{k}) is a nice partial coordinate system over R_{m}. Using Lemma 3.4, choose $F \in \text{Aut}_{R_{e}}(R_{m}[X])$ nice with first k components equal to h_{1},\ldots,h_{k}. There are only finitely many elements of R appearing in the denominator of a coefficient of a component of F and its inverse. Denote the product of these denominators by r. None of these denominators is an element of m and, because m is prime, r is not an element of m either. Furthermore, obviously, $P(R_{r})$.

(b) Let $r,s,t \in R \setminus \{0\}$ be such that $rR_{t} + sR_{t} = R_{t}$ and assume $P(R_{r})$ and $P(R_{s})$. Then $P(R_{t})$ follows by applying the Patching Lemma (Lemma 3.8) to the ring R_{t}.

So, using Quillen Induction (Proposition 3.2), $P(R)$, which means that (h_{1},\ldots,h_{k}) is a nice partial coordinate system over R.\)

Corollary 3.10. Assume that R is Hermite. Let $k \in \{1,\ldots,n\}$ and $h_{1},\ldots,h_{k} \in R[X]$. Assume that (h_{1},\ldots,h_{k}) is a partial coordinate system when considered as an element of $R_{m}[X]^{k}$, for every maximal ideal m of R. Then (h_{1},\ldots,h_{k}) is a partial coordinate system.

Proof. First of all note that it is possible to assume that the h_{i} have no constant part. Write $h_{i} = r_{i1}X_{1} + \cdots + r_{in}X_{n} + \text{h.o.t.}$ for all i, with $r_{ij} \in R$.

Consider a maximal ideal m of R. Then (h_{1},\ldots,h_{k}) is a partial coordinate system over R_{m}, which means that there are $f_{k+1},\ldots,f_{n} \in R_{m}[X]$ such that $F := (h_{1},\ldots,h_{k},f_{k+1},\ldots,f_{n}) \in \text{Aut}_{R_{m}}(R_{m}[X])$. The f_{i} can be chosen in such a way
that they have no constant part. Then det \(JF \in R_m[X]^* \) and hence substituting \(X_1 := 0, \ldots, X_n := 0 \) gives

\[
\begin{vmatrix}
 r_{11} & \cdots & r_{1n} \\
 \vdots & \ddots & \vdots \\
 r_{k1} & \cdots & r_{kn}
\end{vmatrix}
= \det J(F[X] := 0) = (\det JF)[X := 0] \in R_m^*.
\]

In particular, the matrix \((r_{ij})_{ij}\) represents a surjective \(R_m\)-module homomorphism from \(R^n_m\) to \(R^k_m\).

Because this holds for every maximal ideal of \(R\), it follows that the matrix \((r_{ij})_{ij}\) represents a surjective \(R\)-module homomorphism from \(R^n\) to \(R^k\). Now \(R\) is Hermite, which implies that the matrix \((r_{ij})_{ij}\) can be extended to an invertible square matrix \(M\) over \(R\) (see [Lam78], Corollary 4.5). Viewing this matrix \(M\) as a polynomial automorphism of \(R[X]\) and applying its inverse to the polynomials \(h_i\), it follows that one can assume that \((h_1, \ldots, h_k)\) is of the form \((X_1 + \text{h.o.t.}, \ldots, X_k + \text{h.o.t.})\). By Lemma 3.4, \((h_1, \ldots, h_k)\) then is a nice coordinate system in \(R_m[X]\), for every \(m \in \text{Max}(R)\). Now apply Theorem 3.9.

The condition that \(R\) be Hermite in the previous corollary is necessary. For let \(R\) be any non-Hermite ring; say \((a_1, \ldots, a_n)\) is a unimodular row over \(R\) that cannot be extended to an invertible square matrix. Then \(h := a_1X_1 + \cdots + a_nX_n \in R[X_1, \ldots, X_n]\) is not a coordinate (if it were, the coefficients of the linear part of an automorphism with \(h\) as its first component would form an invertible square matrix over \(R\) extending \((a_1, \ldots, a_n)\)). However, localising in a maximal ideal \(m\) of \(R\), \((a_1, \ldots, a_n)\) is extendible to an invertible square matrix over \(R_m\) (since \(R_m\) is local) and so \(h\) is a coordinate over \(R_m\).

\[\text{4 Main Result}\]

In [Sat83], Sathaye proved the following characterization of a polynomial ring in two variables over an discrete valuation ring containing \(\mathbb{Q}\).

Theorem 4.1. Let \(R\) be a discrete valuation ring containing \(\mathbb{Q}\). Denote the unique maximal ideal of \(R\) by \(m\), write \(K\) for the quotient field \(Q(R)\) of \(R\), and write \(k\) for the residue field \(R/m\) of \(R\). Let \(A\) be a finitely generated affine \(R\)-domain and assume that \(K \otimes_R A \cong K^2]\) and that \(k \otimes_R A \cong k^2\). Then \(A \cong R^2\).

In order to use this result, a lemma is needed on the behaviour of the kernel of a locally nilpotent derivation with a slice under tensoring.

Lemma 4.2. Let \(s \in R[X] := R[X_1, \ldots, X_n]\) and let \(A\) be an \(R\)-algebra via the map \(\varphi: R \to A\). Denote the induced map \(R[X] \to A[X]\) by \(\varphi\). Then

\[
A \otimes_R R[X]/(sR[X]) \cong A[X]/(\varphi(s)A[X])
\]
In particular, if D is a locally nilpotent R-derivation on $R[X]$ and s is a slice of D, then

$$A \otimes_R R[X]^D \cong A[X]^D,$$

where \tilde{D} denotes the extension of D to $A[X]$.

Proof. The following diagram is a commutative diagram of R-modules and R-module homomorphism in which the horizontal sequences are exact.

\[
\begin{array}{cccccccc}
\quad & sR[X] & \longrightarrow & R[X] & \longrightarrow & R[X]/sR[X] & \longrightarrow & 0 \\
\downarrow & & & & & & & \\
A \otimes_R sR[X] & \longrightarrow & A \otimes_R A[X] & \longrightarrow & A \otimes_R R[X]/sR[X] & \longrightarrow & 0 \\
\downarrow & & & & & & & \\
\quad & \varphi_\#(s)A[X] & \longrightarrow & A[X] & \longrightarrow & A[X]/(\varphi_\#(s)A[X]) & \longrightarrow & 0 \\
\end{array}
\]

The map $A \otimes_R sR[X] \to \varphi_\#(s)A[X]$ is surjective: take an element $\varphi_\#(s)f \in A[X]$ with $f \in A[X]$. Write $f = \sum c_\alpha X_1^{\alpha_1} \cdots X_n^{\alpha_n}$ with each $c_\alpha \in A$. Then $\varphi_\#(s)f$ is the image of $\sum c_\alpha \otimes sX_1^{\alpha_1} \cdots X_n^{\alpha_n}$. Also, the map $A \otimes_R R[X] \to A[X]$ is an isomorphism. Hence, by the Five Lemma, the map $A \otimes_R R[X]/sR[X] \to A[X]/(\varphi_\#(s)A[X])$ is an isomorphism. A priori this is an isomorphism of R-modules. However, since it is an A-module homomorphism, it is even an isomorphism of A-modules.

The second claim follows from the first one using Theorem 2.1.

Note that this lemma is false if D does not have slice. For instance, let K be some field, $R := K[Y]$, and consider $A := K$ as an R-module by sending elements of K to themselves and Y to 0. Let D be the locally nilpotent derivation $Y \partial_X$ on $R[X]$. Then $R[X]^D = R$, so $A \otimes_R R[X]^D = A = K$. However, the extension \tilde{D} of D to $A[X]$ is 0 and hence $A[X]^\tilde{D} = A[X]$.

Lemma 4.3. Let R be a discrete valuation ring containing \mathbb{Q} and let D be a locally nilpotent R-derivation on $R[X,Y,Z]$ with a slice $s \in R[X,Y,Z]$. Then $R[X,Y,Z]^D \cong R^{[2]}$.

Proof. Let k be the residue field of R and let K be the quotient field of R. Denote the extension of D to $K \otimes_R R[X,Y,Z] \cong K[X,Y,Z]$ by \tilde{D}. By Lemma 4.2 and Theorem 2.6 it follows that

$$K \otimes_R R[X,Y,Z]^D \cong K[X,Y,Z]^\tilde{D} \cong K^{[2]}.$$

In exactly the same way it follows that

$$k \otimes_R R[X,Y,Z]^D \cong k^{[2]}.$$

Hence, by Theorem 4.1, $R[X,Y,Z]^D \cong R^{[2]}$.

8
Theorem 4.4. Let R be a Dedekind domain containing \mathbb{Q} and let D be a locally nilpotent R-derivation on $R[X,Y,Z]$ with a slice. Then $R[X,Y,Z]^D \cong R^{[2]}$.

Proof. Let $s \in R[X,Y,Z]$ be a slice of D. Note that a unimodular row of length 2 is always extendible to an invertible square matrix and by Bass’ Cancellation Theorem for Stably Free Modules ([Bas68], Theorem V.3.2; see also [Wei00], Theorem 1.3) every unimodular row of length at least 3 over a Noetherian ring of dimension one is extendible. In particular, R is Hermite. By Corollary 3.10 it is enough to show that s is a coordinate in $R_m[X,Y,Z]$ for every maximal ideal m of R.

So let m be a maximal ideal of R. Then R_m is a discrete valuation ring. Because R contains \mathbb{Q}, R_m contains \mathbb{Q} as well. Now Lemma 4.3 implies that $R_m[X,Y,Z]^D \cong R_m^{[2]}$. In other words, s is a coordinate in $R_m[X,Y,Z]$.

Corollary 4.5. Let k be a field of characteristic zero and let D be a locally nilpotent k-derivation on $k[X,Y,Z,W]$ of the form

$$D := a(X,Y,Z,W)\partial_X + b(X,Y,Z,W)\partial_Y + c(X,Y,Z,W)\partial_Z + d(W)\partial_W.$$

Assume that D has a slice. Then $k[X,Y,Z,W]^D \cong k^{[3]}$.

Proof. If $d(W) \neq 0$, then $d(W) \in k^*$, since D is locally nilpotent. So $d^{-1}W$ is a slice of D. This slice is also a coordinate and hence $k[X]^D \cong k^{[3]}$. Otherwise, if $d(W) = 0$, apply Theorem 4.4 with $R = k[W]$.

References

Harm Derksen <hderksen@math.lsa.umich.edu>
Department of Mathematics
University of Michigan
525 East University
Ann Arbor, MI 48109-1109
U.S.A.

Arno van den Essen <essen@sci.kun.nl>
Peter van Rossum <petervr@sci.kun.nl>
Department of Mathematics
University of Nijmegen
Toernooiwal 1
6542 VW Nijmegen
The Netherlands