Hybrid I/O Automata

N. Lynch, R. Segala, F.W. Vaandrager, H.B. Weinberg

Computing Science Institute/

CSI-R9907 April 1999
Hybrid I/O Automata

Nancy Lynch† Roberto Segala‡ Frits Vaandrager§ H.B. Weinberg∥

† MIT Laboratory for Computer Science
Cambridge, MA 02139, USA, {lynch,hbw}@theory.lcs.mit.edu

‡ Dipartimento di Matematica, Università di Bologna
Piazza di Porta San Donato 5, 40127 Bologna, Italy, segala@cs.unibo.it

§ Computing Science Institute, University of Nijmegen
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands, fvaan@cs.kun.nl

Abstract
We propose a new hybrid automaton model that is capable of describing both continuous and discrete behavior. The model, which extends the timed automaton model of [33, 42] and the phase transition system models of [36, 2], allows communication among components using both shared variables and shared actions. The main contributions of this paper are: (1) a definition of hybrid automata and of an implementation relation based on hybrid traces, (2) a definition of a simulation between hybrid automata and a proof that existence of a simulation implies the implementation relation, (3) a definition of composition and hiding operations on hybrid automata and a proof that these operations respect the implementation relation, (4) a definition of hybrid I/O automata, which specialize hybrid automata by an additional distinction between input and output, and a proof that the results on simulation relations, composition and hiding carry over to this new setting, and (5) a definition of receptiveness for hybrid I/O automata and a proof that, assuming certain compatibility conditions, receptiveness is preserved by composition.

AMS Subject Classification (1991): 68Q05, 68Q60, 93A25, 93C83.
Keywords & Phrases: Hybrid Systems, I/O Automata, Hybrid Automata, Simulation Relations, Compositionality, I/O Behaviors, Receptiveness.

*A preliminary version of this paper appeared as [29].
†Supported by NSF Grant 9225124-CCR, U.S. Dept. of Transportation Contract DTR95G-0001-YR.8,
‡The research which led to this paper was initiated while the author was employed at CWI, Amsterdam, The Netherlands. The work was also supported by the HCM network EXPRESS and Esprit Project 26270, Verification of Hybrid Systems (VHS).
§Research partially supported by a National Science Foundation Graduate Fellowship.
Contents

1 Introduction 3

2 Mathematical Preliminaries 6
 2.1 Functions ... 6
 2.2 Sequences .. 6
 2.3 Time ... 6

3 Hybrid Automata and Their Behavior 7
 3.1 Variables, Valuations and Trajectories 7
 3.2 Hybrid Automata ... 8
 3.3 Hybrid Executions .. 10
 3.4 Hybrid Traces .. 12

4 Simulation Relations 12

5 Composition and Hiding 14

6 Hybrid I/O Automata 18
 6.1 Hybrid I/O Automata .. 19
 6.2 Hybrid Executions and Hybrid Traces 20
 6.3 Simulation Relations ... 21
 6.4 Composition and Hiding .. 21

7 Reduced HIOAs 24

8 Receptiveness 25
 8.1 I/O Behaviors ... 26
 8.2 Games and Strategies ... 28
 8.3 Composition of Strategies 31
 8.4 Receptiveness and Compositionality 37
 8.5 Strong Compatibility versus Compatibility 39
1 Introduction

In recent years, there has been a fast growing interest in hybrid systems [17, 39, 9, 6, 35, 18, 41, 44] — systems that contain both discrete and continuous components, typically computers interacting with the physical world. Because of the rapid development of processor and circuit technology, hybrid systems are becoming common in many application domains, including avionics, process control, robotics and consumer electronics. Motivated by a desire to formally specify and verify real-life applications, we are generalizing existing methods from computer science to the setting of hybrid systems. We are applying our results in a number of projects in the areas of personal rapid transit [34, 27, 47, 45, 46, 28, 23, 24], intelligent vehicle highway systems [15, 26], avionics [25], automotive control [16], and consumer electronics [8].

Within the theory of reactive systems, which has been developed in computer science during the last 20 years, it is common to represent both a system and its properties as abstract machines (see, for instance [30, 7, 22]). A system is then defined to be correct iff the abstract machine for the system implements the abstract machine for the specification in the sense that the set of behaviors of the first is included in that of the second. A major reason why this approach has been successful is that it supports stepwise refinement: systems can be specified in a uniform way at many levels of abstraction, from a description of their highest-level properties to a description of their implementation in terms of circuitry, and the various specifications can be related formally using the implementation relation. In this paper we generalize this and related ideas from the theory of reactive systems to the setting of hybrid systems. More specifically, we propose answers to the following four questions:

1. What system model do we use?
2. What implementation relation do we use?
3. How do we compose systems?
4. What does it mean for a system to be receptive?

System model. Our new hybrid automaton (HA) model is based on infinite state machines and contains no finiteness restrictions. The model allows both discrete state jumps, described by a set of labelled transitions, and continuous state changes, described by a set of trajectories. To describe the external interface of a system, the state variables are partitioned into external and internal variables, and the transition labels (or actions) are partitioned into external and internal actions. In this way we can both model communication via shared variables, and communication via shared actions. The model allows us to answer questions 2 and 3. In order to answer question 4, we define hybrid I/O automata (HIOA), which specialize hybrid
automata by an additional distinction between input and output. More structure will have to be added in order to deal with applications. HA’s are inspired by the timed automata of [33, 42], the phase transition system models of [36, 2, 20], and the hybrid control systems of [10, 11]. The main difference between HA’s and timed automata is that, as in phase transition and hybrid control systems, trajectories are primitive in our model and not a derived notion. In the work on phase transition systems the main emphasis thus far has been on temporal logics and model checking, whereas in the work on hybrid control systems questions related to control and synthesis have been studied. Questions 2–4 have not been addressed and perhaps for this reason the external interface is not an integral part of phase transition systems and hybrid control systems. Questions 2–4 have been address by Alur and Henzinger [4, 5] in their work on reactive modules. In fact, our notions of input, output and internal variables correspond to their notions of external, interface and private module variables, respectively. In reactive modules all communication takes place via shared variables, and there are no shared actions. In the terminology of reactive modules, the only await dependencies that we allow in the HIOA model are dependencies of internal variables from input and output variables. In this way circular dependencies between variables are avoided when we compose HIOA’s in parallel.

Implementation relation. The implementation relation that we propose is simply inclusion of the sets of hybrid traces. A hybrid trace records occurrences of external actions, and the evolution of external variables during an execution of a system. Thus HA B implements HA A if every behavior of B is allowed by A. In this case, B is typically more deterministic than A, both at the discrete and the continuous level. For instance, A might produce an output at an arbitrary time before noon, whereas B produces an output sometime between 10 and 11AM. Or A might allow any smooth trajectory for output variable y with $y \in [0, 2]$, whereas B only allows trajectories with $y = 1$.

Within computer science, simulation relations provide a major technical tool to prove inclusion of behaviors between systems (see [31] for an overview). In this paper we propose a definition of a simulation between HA’s and show that existence of a simulation implies the implementation relation.

Composition. Within computer science various notions of composition have been proposed for models based on transition systems. One popular approach is to use the product construction from classical automata theory and to synchronize on common transition labels (“actions”) [19, 30]. In other approaches there are no transition labels to synchronize on, and communication between system components is achieved via shared variables [37, 22, 4]. Shared action and shared variable communication are equally expressive, and the relationships between the two mechanisms are well understood: it depends on the application which of the two is more convenient to use [21, 13]. In control theory studies of dynamic feedback, communication between components is typically achieved via a connection map, which specifies how outputs and inputs of components are wired [43]. This communication mechanism can be expressed
naturally using shared variables. Since we find it convenient to use communication via shared actions in the applications that we work on, our model supports both shared action and shared variable communication. Whereas shared actions always correspond to discrete transitions, shared variables can be used equally well for communication of continuously varying signals and for communications of discrete variations of signals. By requiring that each output variable/action is controlled by at most one automaton, and that internal variables/actions of one automaton cannot be shared by the variables/actions of any other automaton, we avoid circular dependencies between variables in the composition.

We prove that our composition operator respects the implementation relation: if A_1 implements A_2 then A_1 composed with B implements A_2 composed with B. Such a result is essential for compositional design and verification of systems.

Receptiveness. The class of HA's is very general and allows for systems with bizarre timing behavior. We can describe systems in which time cannot advance at all or in which time advances in successively smaller increments but never beyond a certain bound, so-called Zeno behavior. We do not want to accept such systems as valid implementations of any specification since, clearly, they will have no physical realization. Therefore we only accept *receptive* HA's as implementations, i.e., HA's in which time can advance to infinity independently of the input provided by the environment. Inspired by earlier work of [14, 1, 42] on (timed) discrete event systems, we define receptivity in terms of a game between system and environment in which the goal of the system is to construct an infinite, non-Zeno execution, and the goal of the environment is to prevent this. It is interesting to compare our games with the games of Nerode and Yakhis [38]. Since the purpose of the latter games is the extraction of digital control to meet performance specifications, the environment player may choose all disturbances. Irrespective of the disturbances the system should realize a given performance specification. The purpose of our games is to show that regardless of the input provided by its environment, an HA can exhibit proper behavior. Therefore, in our games the system resolves all non-determinism due to internal disturbances (which express implementation freedom), even though the environment may choose all the input signals.

In order to define receptivity, we need to specialize the HA model by adding a distinction between input and output. We prove that all our theorems on simulation relations, composition and hiding carry over to the resulting HIOA model. The main technical result that we prove about receptivity is that, assuming certain compatibility conditions, receptiveness is preserved by composition.

Receptivity for hybrid systems is also studied in [5]. A similar definition of receptivity is proposed, and shown to be preserved by parallel composition. However, in [5] no circular dependencies ("feedback loops") are allowed between the continuous variables of different components, a drastic restriction which very much simplifies the analysis.
2 Mathematical Preliminaries

2.1 Functions

With $\text{dom}(f)$ and $\text{range}(f)$ we denote the domain and range, respectively, of a function f. If f is a function and S a set, then we write $f \downarrow S$ for the restriction of f to S, i.e., the function g with $\text{dom}(g) = \text{dom}(f) \cap S$ satisfying $g(c) = f(c)$ for each $c \in \text{dom}(g)$. We say that two functions f and g are compatible if $f \downarrow \text{dom}(g) = g \downarrow \text{dom}(f)$. If f and g are compatible functions then we write $f \cup g$ for the function h with $\text{dom}(h) = \text{dom}(f) \cup \text{dom}(g)$ satisfying, for each $c \in \text{dom}(h)$, if $c \in \text{dom}(f)$ then $h(c) = f(c)$ else $h(c) = g(c)$. More generally, if F is a set of pairwise compatible functions then we write $\bigcup F$ for the unique function g with $\text{dom}(g) = \bigcup \{\text{dom}(f) \mid f \in F\}$ satisfying, for each $f \in F$ and $c \in \text{dom}(f)$, $g(c) = f(c)$. If f is a function whose range is a set of functions, and S is a set, then we write $f \downarrow S$ for the restriction of the functions in $\text{range}(f)$ to S, i.e., the function g with $\text{dom}(g) = \text{dom}(f)$ defined by $g(c) \triangleq f(c) \downarrow S$. The restriction operation \downarrow is extended to sets of functions by pointwise extension. Also, if f is a function whose range consists of a set of functions that all have an element d in their domain, then $f \downarrow d$ is the function with domain $\text{dom}(f)$ defined by $f \downarrow d(c) \triangleq f(c)(d)$.

2.2 Sequences

Let S be any set. The sets of finite and infinite sequences of elements of S are denoted by S^* and S^ω, respectively. Concatenation of a finite sequence with a finite or infinite sequence is denoted by juxtaposition; λ denotes the empty sequence and the sequence containing one element $c \in S$ is denoted c. If σ is a nonempty sequence then $\text{head}(\sigma)$ returns the first element of σ, and $\text{tail}(\sigma)$ returns σ with its first element removed. Moreover, if σ is finite, then $\text{last}(\sigma)$ returns the last element of σ, and $\text{init}(\sigma)$ returns σ with its last element removed.

2.3 Time

Throughout this paper, we fix a time axis \mathbb{T}, which is a compact subgroup of $(\mathbb{R}, +)$, the real numbers with addition. The reader may find it convenient to think of \mathbb{T} as the set \mathbb{R} of real numbers, but also the set \mathbb{Z} of integers and the singleton set $\{0\}$ are examples of allowed time axes. An interval J is a nonempty, convex subset of \mathbb{T}. We denote intervals as usual: $[t_1, t_2] = \{t \in \mathbb{T} \mid t_1 \leq t \leq t_2\}$, etc. An interval J is right-open (left-open) if it does not have a maximum (minimum) element, and right-closed (left-closed) otherwise. We write $\max J$ and $\min J$ for the maximum and minimum elements, respectively, of an interval J (if they exist), and $\inf J$ and $\sup J$ for the infimum and supremum, respectively, of J in $\mathbb{T} \cup \{-\infty, \infty\}$. For $K \subseteq \mathbb{T}$ and $t \in \mathbb{T}$, we define $K + t \triangleq \{t' + t \mid t' \in K\}$. Similarly, for a function f with domain K, we define $f + t$ to be the function with domain $K + t$ satisfying, for each $t' \in K + t$, $(f + t)(t') = f(t' - t)$.
3 Hybrid Automata and Their Behavior

In this section we introduce hybrid automata and define an implementation relation between these automata.

3.1 Variables, Valuations and Trajectories

We assume a universal set V of variables. To each variable v we associate a set of values $\text{type}(v)$, referred to as the type of the variable. A valuation of a set of variables V is a function that associates to each variable $v \in V$ a value in $\text{type}(v)$. We write $\text{val}(V)$ for the set of valuations of V. Often, valuations will be referred to as states.

We also assume, for each variable $v \in V$, a dynamic type $\text{dtype}(v)$, which is a set of (partial) functions from T to $\text{type}(v)$. A function f is time-invariant if $f \circ t \in \text{dtype}(v)$ and each $t \in T$, also $f \circ t \in \text{dtype}(v)$. Intuitively, the dynamic type $\text{dtype}(v)$ gives the collection of allowed trajectories for v. For instance, if $T = \mathbb{R}$ and v has type \mathbb{R}, then $\text{dtype}(v)$ can be the set of continuous or smooth functions, the set of integrable functions, or the set of measurable locally essentially bounded functions [43]. If $\text{dtype}(v)$ is the set of constant functions then v is called a discrete variable, as in [36].

Let V be a set of variables. A trajectory over V is a (total) function $\tau : J \rightarrow \text{val}(V)$, where J is a left-closed interval of T with left endpoint equal to 0, such that for each $v \in V$ there is an $f \in \text{dtype}(v)$ with $\tau \downarrow v = f \downarrow \text{dom}(\tau)$. We write $\text{trajs}(V)$ for the set of all trajectories over V. A trajectory τ is closed if its domain is a (finite) closed interval and full if its domain equals $T^{\geq 0} \triangleq \{ t \in T \mid t \geq 0 \}$. For T a set of trajectories, closed(T) and full(T) denote the subsets of closed and full trajectories in T, respectively. If τ is a trajectory then $\tau.ltime$, the limit time of τ, is the supremum of $\text{dom}(\tau)$. Similarly, define $\tau.lstate$, the first state of τ, to be $\tau(0)$, and if τ is closed, define $\tau.lstate$, the last state of τ, to be $\tau(\tau.ltime)$. A trajectory τ is finite if its domain is a finite interval. A trajectory with domain $[0,0]$ is called a point trajectory. If s is a state then define $\varphi(s)$ to be the point trajectory that maps 0 to s.

For τ a trajectory and $t \in T^{\geq 0}$, let $\tau \leq t \triangleq \tau \upharpoonright [0,t]$ and $\tau < t \triangleq \tau \upharpoonright [0,t)$. Note that $\tau < 0$ has an empty domain and is thus not a trajectory. By convention, $\tau \leq \infty \triangleq \tau \triangleq \tau < \infty$. Similarly we define, for τ a trajectory, J a left-closed interval, and $t = \min J \in \text{dom}(\tau)$, the curtailment of τ to J to be the trajectory $\tau \upharpoonright J \triangleq (\tau \upharpoonright J) - t$.

If τ and τ' are trajectories, τ is finite, and τ is closed implies $\tau.lstate = \tau'.lstate$ then the concatenation of τ and τ' is the function $\tau \odot \tau' \triangleq \tau \cup (\tau' + \tau.ltime)$. Note that $\tau \odot \tau'$ need not be a trajectory since it may not respect the dynamic types. More generally, if $\tau_0 \tau_1 \tau_2 \cdots$ is an infinite sequence of finite trajectories such that for all i, τ_i is closed implies $\tau_i.lstate = \tau_{i+1}.lstate$, then the infinite concatenation of this sequence is the function $\tau_0 \tau_1 \tau_2 \cdots \triangleq \bigcup \{ \tau_i + \sum_{j<i} \tau_j.ltime \mid i \in \mathbb{N} \}$.

Trajectory τ is a prefix of trajectory τ', notation $\tau \leq \tau'$, if $\tau = \tau' \upharpoonright \text{dom}(\tau)$. Note that $\tau \leq \tau'$ iff either $\tau = \tau'$ or $\tau' = \tau \odot \tau''$, for some τ''. For T a set of trajectories over V, $\text{pref}(T)$
denotes the prefix-closure of T: $\text{pref}(T) \overset{\triangle}{=} \{ \tau \in \text{trajs}(V) \mid \exists \tau' \in T : \tau \leq \tau' \}$. We say that T is prefix closed if $T = \text{pref}(T)$. A trajectory in T is maximal if it is not a prefix of any other trajectory in T. We write $\text{max}(T)$ for the subset of maximal trajectories in T.

3.2 Hybrid Automata

A hybrid automaton (HA) $A = (W, X, E, H, \Theta, D, T)$ consists of the following components:

- Two disjoint sets W and X of variables, the external and internal variables, respectively. We write $V \overset{\triangle}{=} W \cup X$, let $s, \tau, ..$ range over $\text{val}(V)$ and $\tau, ..$ over $\text{trajs}(V)$.
- Two disjoint sets E and H of external and internal actions, respectively. We assume that E contains a special element e, the environment action, which represents the occurrence of a discrete transition outside the system. We write $A \overset{\triangle}{=} E \cup H$ and let $a, ..$ range over A.
- A nonempty set $\Theta \subseteq \text{val}(V)$ of start states.
- A set $D \subseteq \text{val}(V) \times A \times \text{val}(V)$ of discrete transitions satisfying:

 D (Existence of stuttering transitions)

 $\forall s \in \text{val}(V) : s \overset{a}{\rightarrow}_A s$.

 We use $s \overset{a}{\rightarrow}_A s'$ as shorthand for $(s, a, s') \in D$. We drop the subscript A, and write $s \overset{a}{\rightarrow} s'$, whenever it is clear from the context.
- A set T of trajectories over V satisfying:

 T_1 (Existence of point trajectories)

 $\forall s \in \text{val}(V) : \not\exists \tau(s) \in T$.

 T_2 (Closure under curtailment)

 $\forall \tau \in T \forall J \text{ left-closed subinterval of } \text{dom}(\tau) : \tau \cup J \in T$.

 T_3 (Completeness)

 $\forall \tau \in \text{trajs}(V) : (\forall t \in T_{\geq} : \tau \leq t \in T) \Rightarrow \tau \in T$.

Axioms T_1-T_3 state some natural conditions on the set of trajectories that we need to set up our theory: existence of point trajectories, closure under subintervals, and the fact that a full trajectory is in T iff all its prefixes are in T. (Actually axiom T_3 does not say “iff”, but the missing direction follows easily from T_2.) We call a transition $s \overset{a}{\rightarrow} s$ a stuttering transition for consistency with the existing literature on shared memory models [21, 22].
Notation In the sequel, the components of a HA A will often be denoted by W_A, X_A, E_A, etc. The components of a HA A_i will be denoted by W_i, X_i, E_i, etc. We sometimes omit these subscripts, where no confusion is likely.

Example 3.1 (Timed automata) A timed automaton T in the sense of Lynch and Vwandrager [42, 33, 32] can be represented as a hybrid automaton A without external variables. Specifically, the external actions of A are the visible actions of T plus the environment action e, the only internal action of A is i, and the only internal variable of A is x, where the domain of x is the set of states of T. If, for simplicity we identify the action τ of T with the action i of A, and each state s of T with the state of A in which x has value s, then the discrete transitions of A are all the discrete transitions of A plus stuttering transitions for each state, and the trajectories of A are all the trajectories of T.

Example 3.2 (Hybrid Systems) A hybrid system $S = (Loc, Var, Lab, Edg, Act, Inv)$ in the sense of Alur et al [2] can be represented as a hybrid automaton $A = (W, X, E, H, \Theta, D, T)$ with

- W equal to the set Var of real-valued variables. In the approach of [2] the time domain equals the set \mathbb{R} of real numbers. Since in the model of [2] there is no notion of dynamic type, we define the dynamic type of all variables in W to be maximal, i.e., the set of functions from \mathbb{R} to \mathbb{R}.
- $X = \{loc\}$, where loc a discrete internal variable whose type is the set Loc of locations. As usual $V = W \cup X$.
- E equal to the set Lab of synchronization labels. The stutter label $\tau \in Lab$ is identified with the environment action e.
- $H = \emptyset$: there are no internal actions.
- $\Theta = \{s \in val(V) \mid \forall l \in Loc : s(loc) = l \Rightarrow s \mid W \in Inv(l)\}$. Hybrid systems do not have a component that describes initial states. However, since a run of a hybrid system may only visit a state s if the valuation of its real valued variables is contained in the invariant set $Inv(s(loc))$, we need to constrain the set of initial states of A. Formally, the definition of a hybrid system does not exclude the trivial case that Θ is empty; of course our translation only applies if $\Theta \neq \emptyset$.
- $D = \{(s,a,s') \in \Theta \times E \times \Theta \mid \exists \mu : (s(loc),a,\mu,s'(loc)) \in Edg \land (s \mid W,s' \mid W) \in \mu\} \cup \{(s,e,s) \mid s \in val(V)\}$. Each discrete transition of S corresponds to a set of transitions of A. Apart from the stutter transitions which we need to make axiom D hold, we only consider discrete transitions between states in Θ, since these are the only transitions that can occur in runs.

9
• \(\mathcal{T} = \{ \phi(s) \mid s \in \text{val}(V) \} \cup \{ \tau \in \text{trajs}(V) \mid \text{range}(\tau) \subseteq \Theta \wedge \exists f \in \text{Act}(\tau(0)(\text{loc})): \tau \downarrow W \leq f \} \).

\(\mathcal{T} \) includes all point trajectories to make axiom T1 hold, and furthermore all trajectories that only visit states in \(\Theta \) and correspond to an activity in \(\text{Act} \).

Axioms D, T1 and T3 are guaranteed by construction; axiom T2 is guaranteed by the time-invariance property imposed on the activities of a hybrid system.

Concrete examples of hybrid automata can be found in numerous papers that deal with realistic applications [34, 27, 47, 45, 46, 28, 23, 24, 15, 26, 25, 16, 8].

3.3 Hybrid Executions

A (hybrid) execution fragment of a HA \(\mathcal{A} \) is a finite or infinite alternating sequence \(\alpha = \tau_0 a_1 \tau_1 a_2 \tau_2 \cdots \), where

1. Each \(\tau_i \) is a trajectory in \(\mathcal{T} \) and each \(a_i \) is an action in \(\mathcal{A} \).
2. If \(\alpha \) is a finite sequence then it ends with a trajectory.
3. If \(\tau_i \) is not the last trajectory in \(\alpha \) then \(\text{dom}(\tau_i) \) is closed and \(\tau_i.lstate \xrightarrow{a_i} \tau_{i+1}.fstate \).

Thus a hybrid execution fragment is essentially an alternating sequence of trajectories and discrete transitions that span between these trajectories. It records all the instantaneous, discrete state changes that occur during a specific evolution of a system, as well as the state changes that occur within trajectories while time advances. When HAs are used to model real-world systems the values of the state variables will typically change continuously within a trajectory, but this continuity is not imposed by the above definition. We write \(h\text{-frg}(\mathcal{A}) \) for the set of all hybrid execution fragments of \(\mathcal{A} \).

Given an execution fragment \(\alpha = \tau_0 a_1 \tau_1 a_2 \tau_2 \cdots \), we say that an occurrence of an action \(a_i \) in \(\alpha \) is stuttering if \(a_i \) equals \(e \) and its neighbor trajectories can be concatenated, i.e., \(\tau_{i-1}.lstate = \tau_i.fstate \) and \(\tau_{i-1} \cap \tau_i \in \mathcal{T} \). We define the stuttering-free version of \(\alpha \) to be the execution fragment \(\alpha' \) of \(\mathcal{A} \) obtained from \(\alpha \) by removing all occurrences of stuttering \(e \) actions, and concatenating all adjacent trajectories. We say that two execution fragments are stuttering equivalent if their stuttering-free versions are the same.

We define the limit time of \(\alpha \), denoted by \(\alpha.ltime \), to be \(\sum_i \tau_i.ltime \). Further, we define the first state of \(\alpha \), \(\alpha.fstate \), to be \(\tau_0.fstate \). We distinguish several sorts of execution fragments: \(\alpha \) is defined to be

• an execution if the first state of \(\alpha \) is a start state,
• closed if \(\alpha \) is a finite sequence and the domain of its final trajectory is a closed interval,
• admissible if \(\alpha.ltime = \infty \),
• \textit{Zeno} if α is neither closed nor admissible, and

• a \textit{sentence} if α is a finite execution that ends with a point trajectory.

If α is a closed execution fragment then we define the \textit{last state} of α, notation $\alpha.lstate$, to be $\last(\alpha).lstate$. A state of A is \textit{reachable} if it is the last state of some closed execution of A.

A finite execution fragment α and an execution fragment α' of A can be \textit{concatenated} if $\last(\alpha) \sim \head(\alpha')$ is defined and a trajectory of A. (Note that \last and \head are ordinary sequence operations and they return trajectories.) In this case, the \textit{concatenation} $\alpha \sim \alpha'$ is the execution fragment $\init(\alpha) (\last(\alpha) \sim \head(\alpha')) \tail(\alpha')$.

Let α, α' be execution fragments. We say that α is a \textit{prefix} of α', notation $\alpha \leq \alpha'$, if either $\alpha = \alpha'$ or there exists some execution fragment α'' such that $\alpha \sim \alpha'' = \alpha'$.

\textbf{Example 3.3 (Hybrid executions and timed automata)} Consider a timed automaton T and its corresponding hybrid automaton A built according to Example 3.1. If we again identify τ and ι, and each state s of T with the state of A in which x has value s, then each timed execution fragment of T according to [33, 42] is also a stuttering-free hybrid execution fragment of A. This construction can be inverted, and indeed there is a one-to-one correspondence between the timed execution fragments of T and the stuttering-free hybrid execution fragments of A. Thus, all the concepts that are defined on timed automata based on timed execution fragments have corresponding concepts within hybrid automata. The corresponding concepts do not distinguish between stuttering equivalent hybrid execution fragments.

\textbf{Example 3.4 (Hybrid executions and hybrid systems)} Consider a hybrid system S and its corresponding hybrid automaton A built according to Example 3.2. There is a close correspondence between runs of S and hybrid executions of A. There does not exist a one-to-one relation however:

1. A run does not include information about the actions (synchronization labels) that occur during the evolution of a hybrid system.

2. A run is essentially a sequence $(\tau_0, t_0)(\tau_1, t_1) \cdots$ of pairs of an infinite trajectory and a time point. Intuitively, the system first follows trajectory τ_0 until time t_0, then trajectory τ_1 until time t_1, etc. This means that a run contains irrelevant information which cannot be incorporated in a hybrid execution: the part of τ_0 after time t_0, the part of τ_1 after time t_1, etc.

3. Since a run may only contain right closed trajectories, a hybrid execution that ends with a right-open trajectory needs to be encoded via the introduction of an infinite number of trajectories interleaved with stuttering steps.
3.4 Hybrid Traces

Suppose $\alpha = \tau_0 a_1 \tau_1 a_2 \tau_2 \cdots$ is a hybrid execution fragment. In order to define the hybrid trace of α, we first restrict the trajectories in α to the external variables, and rename all internal and environment actions to i:

$$\gamma = (\tau_0 \downarrow W) \text{vis}(a_1) (\tau_1 \downarrow W) \text{vis}(a_2) (\tau_2 \downarrow W) \cdots,$$

where, for a an action, $\text{vis}(a)$ is defined to be equal to i if $a \in H \cup \{e\}$, and equal to a otherwise. An occurrence of i in γ is called inert if the trajectory that precedes i can be concatenated with the trajectory that follows it (after hiding of internal variables), and the result is again a trajectory. The hybrid trace of α, written $\text{htrace}(\alpha)$, is defined to be the sequence obtained from γ by removing all inert i's and concatenating the surrounding trajectories.

Lemma 3.5 Let α_1 and α_2 be two stuttering equivalent hybrid execution fragments of A. Then $\text{htrace}(\alpha_1) = \text{htrace}(\alpha_2)$.

Proof: Simple consequence of the fact that stuttering e actions become inert i's. \[\blacksquare\]

The hybrid traces of a hybrid automaton A are the hybrid traces that arise from all the closed and admissible hybrid executions of A. We write $h\text{-}\text{traces}(A)$ for the set of hybrid traces of A.

Example 3.6 (Hybrid traces and timed automata) Consider again a timed automaton T and its corresponding hybrid automaton A built according to Example 3.1. Let $\beta = \tau_0 a_1 \tau_1 \cdots$ be a hybrid trace of A. Since A does not have any external variables, each trajectory of β associates the empty valuation with each time point in its domain. Thus, a hybrid trace β of A can be represented by a pair consisting of a sequence of actions paired with their time of occurrence (timed actions), and of the value $\beta.\text{time}$. This structure is called a timed trace in [33, 42]. Formally, the time of occurrence of an action is the sum of the suprema of the trajectories preceding the chosen occurrence. It is easy to observe that the transformation above can be reversed: there is a one-to-one correspondence between the timed traces of T and the hybrid traces of A. \[\blacksquare\]

Hybrid automata A_1 and A_2 are comparable if they have the same external interface, i.e., $W_1 = W_2$ and $E_1 = E_2$. If A_1 and A_2 are comparable then we say that A_1 implements A_2, notation $A_1 \leq A_2$, if the hybrid traces of A_1 are included in those of A_2, i.e., $h\text{-}\text{traces}(A_1) \subseteq h\text{-}\text{traces}(A_2)$.

4 Simulation Relations

Let A and B be comparable HAs. A simulation from A to B is a relation $R \subseteq \text{val}(V_A) \times \text{val}(V_B)$ satisfying the following conditions, for all states r and s of A and B, respectively:
1. If \(r \in \Theta_A \) then there exists \(s \in \Theta_B \) such that \(r R s \).

2. If \(r R s \) and \(r \not\leq_A r' \) then \(B \) has a closed execution fragment \(\alpha \) with \(s = \alpha.fstate \),
 \(htrace(\varphi(r) \circ \varphi(r')) = htrace(\alpha) \) and \(r' R \alpha.lstate \).

3. If \(r R s \) and \(\tau \) is a closed trajectory of \(A \) with \(r = \tau.fstate \) then \(B \) has a closed execution
 fragment \(\alpha \) with \(s = \alpha.fstate \), \(htrace(\tau) = htrace(\alpha) \) and \(\tau.lstate R \alpha.lstate \).

Lemma 4.1 If \(R \) is a simulation from \(A \) to \(B \) and \(r R s \), then \(r \mid W_A = s \mid W_B \).

Proof: By axiom T1, \(\varphi(r) \) is a trajectory of \(A \). By Property 3 of \(R \), \(B \) has a closed execution
fragment \(\alpha \) with \(s = \alpha.fstate \) and \(htrace(\varphi(r)) = htrace(\alpha) \). Thus, \(r \mid W_A = \alpha.fstate \mid W_B \).
That is, \(r \mid W_A = s \mid W_B \).

Theorem 4.2 If \(A \) and \(B \) are comparable and there is a simulation from \(A \) to \(B \), then \(A \leq B \).

Proof: Suppose that \(\beta \) is a hybrid trace of \(A \). We prove that \(\beta \) is also a hybrid trace of \(B \).

Let \(\alpha = \tau_0 \alpha_1 \alpha_2 \tau_2 \cdots \) be an execution of \(A \) such that \(\beta = htrace(\alpha) \). We can assume
without loss of generality that all the trajectories of \(\alpha \) are closed, since otherwise we can use axioms T2 and D
to break the last trajectory of \(\alpha \) into infinitely many closed trajectories
interleaved with environment actions. Let \(R \) be a simulation from \(A \) to \(B \). We define inductively
a collection of closed execution fragments \(\alpha_0, \alpha_1, \ldots \) of \(B \) such that for each \(i \),

1. \(\tau_i.lstate R \alpha_i.lstate \),
2. \(\alpha_0 \circ \alpha_1 \circ \cdots \circ \alpha_i \) is an execution of \(B \), and
3. \(htrace(\alpha_0 \circ \alpha_1 \circ \cdots \circ \alpha_i) = htrace(\tau_0 \alpha_1 \circ \cdots \alpha_i \tau_i) \).

Thus, \(\lim_{i \to \infty} \alpha_0 \circ \alpha_1 \circ \cdots \circ \alpha_i \) is an execution of \(B \) with trace \(\beta \).

There is a start state \(s_0 \) of \(B \) such that \(\tau_0.fstate R s_0 \) and a closed execution \(\alpha'_0 \) of \(B \) with
first state \(s_0 \) and such that \(htrace(\alpha'_0) = htrace(\tau_0) \) and \(\tau_0.lstate R \alpha'_0.lstate \). We let \(\alpha_0 = \alpha'_0 \).

Assume by induction that Properties 1-3 hold for each \(j \leq i \). Since \(R \) is a simulation
relation from \(A \) to \(B \), there is a closed execution fragment \(\alpha'_{i+1} \) of \(B \) such that

a. \(\alpha'_{i+1}.fstate = \alpha_i.lstate \),

b. \(htrace(\alpha'_{i+1}) = htrace(\varphi(\tau_i.lstate) \alpha_{i+1} \varphi(\tau_{i+1}.fstate)) \),

c. \(\tau_{i+1}.fstate R \alpha'_{i+1}.lstate \),

d. \(\alpha'_{i+1} \) contains only point trajectories and at least one action (this is implied by Item b
 and the fact that one can always append a stuttering step to an execution fragment),
and, based on Item c above, a closed execution fragment α''_{i+1} of B such that

e. $\alpha''_{i+1},lstate = \alpha'_{i+1},lstate$,

f. $htrace(\alpha''_{i+1}) = htrace(\tau_{i+1})$,

g. $\tau_{i+1},lstate \neq \alpha''_{i+1},lstate$.

From Items d and e, α''_{i+1} can be concatenated to α'_{i+1}. Define α_{i+1} to be $\alpha'_{i+1} \sim \alpha''_{i+1}$. We need to show that Properties 1-3 are valid for $j = i + 1$. Property 1 follows immediately from Item g, Property 2 follows from Items a and d, and Property 3 follows from the induction hypothesis together with Items b and f.

5 Composition and Hiding

In this section we introduce the operations of composition and hiding for hybrid automata, and prove that hybrid trace inclusion is preserved by these operations.

The composition operation allows an automaton representing a complex system to be constructed by composing automata representing individual system components. The composition identifies actions and variables with the same name in different component automata. Common variables are shared among the component automata, and when any component automaton performs a step involving an action a, so do all component automata that have a in their signatures. We define composition as a partial, binary operation on hybrid automata. First, the operation is only defined if the initial conditions of both argument automata are consistent. Second, since internal actions of an automaton A_1 are intended to be unobservable by any other automaton A_2, we do not allow A_1 to be composed with A_2 unless the internal actions of A_1 are disjoint from the actions of A_2. Third, we require disjointness of the internal variables of A_1 and the variables of A_2.

Formally, we say that hybrid automata A_1 and A_2 are compatible if

1. there exists a valuation s for $V = V_1 \cup V_2$ such that $s \models V_1 \in \Theta_1$ and $s \models V_2 \in \Theta_2$, and
2. for $i \neq j$, $X_i \cap V_j = H_i \cap A_j = \emptyset$.

If A_1 and A_2 are compatible then their composition $A_1 \parallel A_2$ is defined to be the structure $A = (W, X, E, H, \Theta, D, T)$ given by

- $W = W_1 \cup W_2$, $X = X_1 \cup X_2$, $E = E_1 \cup E_2$, $H = H_1 \cup H_2$
- $\Theta = \{ s \in val(V) \mid s \models V_1 \in \Theta_1 \land s \models V_2 \in \Theta_2 \}$

14
• Let $A = A_1 \cup A_2$. Define, for $i \in \{1, 2\}$, the projection function $\pi_i : A \to A_i$ by $\pi_i(a) = a$ if $a \in A_i$ and $\pi_i(a) = e$ otherwise. Then $\mathcal{D} \subseteq \text{val}(V) \times A \times \text{val}(V)$ is given by

$$(s, a, s') \in \mathcal{D} \iff s \uparrow V_1 \xrightarrow{\pi_1(a)} s' \uparrow V_1 \land s \uparrow V_2 \xrightarrow{\pi_2(a)} s' \uparrow V_2$$

• $T \subseteq \text{trajs}(V)$ is given by $\tau \in T \iff \tau \downarrow V_1 \in T_1 \land \tau \downarrow V_2 \in T_2$

Notation We extend the projection notation π_i ($i = 1, 2$) to states, trajectories and hybrid execution fragments in the obvious way. We further extend the projection notation to hybrid traces as follows. Let $\beta = \tau_0\alpha_1\tau_1\alpha_2\tau_2 \cdots$ be a hybrid trace of $A = A_1 \parallel A_2$. Then $\pi_i(\beta)$ is the sequence obtained from $\pi_i(\tau_0) \pi_i(\alpha_1) \pi_i(\tau_1) \pi_i(\alpha_2) \pi_i(\tau_2) \cdots$ by removing all inert i’s and concatenating the surrounding trajectories.

Sometimes we use β to denote a *potential hybrid trace*, i.e., a sequence of alternate trajectories over W_A and actions from $(E_A \setminus \{e\}) \cup \{i\}$ without inert i’s. The notion of projection extends to potential hybrid traces in the obvious way.

Proposition 5.1 $A_1 \parallel A_2$ is a hybrid automaton.

Proof: Let A denote $A_1 \parallel A_2$ as above. We need to show that A satisfies the properties of a hybrid automaton (cf. Section 3.2). Disjointness of W and X, disjointness of E and H, and non-emptiness of Θ follow from compatibility. We verify the D and T properties one by one.

D Let $s \in \text{val}(V)$ and let $i \in \{1, 2\}$. From D applied to A_i, $s \uparrow V_i \xrightarrow{\pi_i,s} s \uparrow V_i$. Thus, $s \xrightarrow{\pi_i,s}$.

T1 Let $s \in \text{val}(V)$, and let $i \in \{1, 2\}$. From the definition of composition, $\pi_i(s) \in \text{val}(V_i)$, and from $T1$ applied to A_i, $\pi_i(\psi(s)) = \varphi(\pi_i(s)) \in T_i$. This implies that $\varphi(s) \in T$.

T2 Let $\tau \in T$, let J be a left-closed subinterval of $\text{dom}(\tau)$ and let $i \in \{1, 2\}$. From $T2$ applied to A_i, $\pi_i(\tau \uplus J) = \pi_i(\tau) \uplus J \in T_i$. From the definition of the composition operator, $\tau \uplus J \in T$.

T3 Assume that, for each $t \in T^\geq 0$, $\tau \leq t \in T$. Then, for each $i = 1, 2$ and $t \in T^\geq 0$, $\pi_i(\tau \leq t) = \pi_i(\tau) \leq t \in T_i$, and from $T3$ applied to A_i, $\pi_i(\tau) \in T_i$. Therefore, $\tau \in T$.

Lemma 5.2 Let $A = A_1 \parallel A_2$ and let α be a hybrid execution of A. Then,

1. α is closed iff $\pi_1(\alpha)$ is closed and $\pi_2(\alpha)$ is closed;
2. α is admissible iff $\pi_1(\alpha)$ is admissible and $\pi_2(\alpha)$ is admissible;
3. α is Zeno iff $\pi_1(\alpha)$ is Zeno and $\pi_2(\alpha)$ is Zeno.
Proof: Simple application of the definitions. ■

Lemma 5.3 Let $A = A_1 || A_2$, and let α be a hybrid execution of A. Then, for $i = 1, 2$, $\pi_i(htrace(\alpha)) = htrace(\pi_i(\alpha))$.

Proof: Let $\alpha = \tau_0 a_1 \tau_1 a_2 \tau_2 \cdots$. From the definitions of a hybrid trace and of π_i, $\pi_i(htrace(\alpha))$ is the sequence obtained from $\pi_i(\tau_0 \downarrow W_A \ visi(\vis_A(a_1)) \pi_i(\tau_1 \downarrow W_A) \cdots$ by removing all inert i’s and concatenating the surrounding trajectories, while $htrace(\pi_i(\alpha))$ is the sequence obtained from $(\pi_i(\tau_0) \downarrow W_i \ visi(\pi_i(a_1)) \pi_i(\tau_1) \downarrow W_i \cdots$ by removing all inert i’s and concatenating the surrounding trajectories. Observe that $\pi_i(\tau_j \downarrow W_A = \tau_j \downarrow W_i = \pi_i(\tau_j) \downarrow W_i$ for each $j \geq 0$, and that $visi(\vis_A(a_j)) = visi(\pi_i(a_j))$ for each $j \geq 1$. Therefore, $\pi_i(htrace(\alpha)) = htrace(\pi_i(\alpha))$. ■

Lemma 5.4 Let $A = A_1 || A_2$. Then $htraces(A)$ is the set of potential hybrid traces of A whose projections are hybrid traces of A_1 and A_2, respectively. That is, $htraces(A) = \{ \beta \mid \pi_i(\beta) \in htraces(A_i), i = 1, 2 \}$.

Proof: Let β be a hybrid trace of A, and let $\alpha = \tau_0 a_1 \tau_1 \cdots$ be a hybrid execution of A such that $\beta = htrace(\alpha)$. Let $i \in \{1, 2\}$. From Lemma 5.3, $\pi_i(\beta) = htrace(\pi_i(\alpha))$. Since $\pi_i(\alpha)$ is a hybrid execution of A_i, $\pi_i(\beta)$ is a hybrid trace of A_i.

Conversely, let β be a potential hybrid trace of A, i.e., a sequence of alternate trajectories over W_A and actions from $(E_A - \{e\}) \cup \{\} \setminus i$ without inert i’s, so that $\pi_i(\beta)$ is a hybrid trace of A_i, $i = 1, 2$. Then there are hybrid executions a_1 and a_2 of A_1 and A_2, respectively, such that, for $i = 1, 2$, $htrace(\alpha_i) = \pi_i(\beta)$. Inserting environment actions appropriately in α_1 and α_2, we obtain two new hybrid executions $\alpha'_1 = \tau^1_0 a^1_1 \tau^1_1 a^1_2 \tau^1_2 \cdots$ and $\alpha'_2 = \tau^2_0 a^2_1 \tau^2_1 a^2_2 \tau^2_2 \cdots$ of A_1 and A_2, respectively, such that, for $i = 1, 2$,

a. $htrace(\alpha'_i) = \pi_i(\beta)$

b. for each $j \geq 0$, $\tau_j^{\alpha_i}.ltime = \tau_j^{\alpha'_i}.ltime$

c. for each $j \geq 1$, either $a^i_j = a^{\alpha_i}_j$, or $a^i_j = e$ or $a^{\alpha_i}_j = e$

Observe that an immediate consequence of Properties (a) and (b) is that for $i = 1, 2$ and $j \geq 0$,

d. $htrace(\tau^i_0 a^i_1 \tau^i_1 a^i_2 \tau^i_2 \cdots a^i_{j-1} \tau^i_j) \leq \pi_i(\beta)$

e. $(\tau^1_0 a^1_1 \tau^1_1 a^1_2 \tau^1_2 \cdots a^1_{j-1} \tau^1_j).ltime = (\tau^2_0 a^2_1 \tau^2_1 a^2_2 \tau^2_2 \cdots a^2_{j-1} \tau^2_j).ltime$

We now build inductively a collection τ_0, τ_1, \ldots of trajectories of A and a collection a_1, a_2, \ldots of actions of A such that, for each $i \in \{1, 2\}$ and each $j \geq 0$,
1. \(\tau_0a_1\tau_1a_2\tau_2\cdots a_j\tau_j \) is a hybrid execution of \(A \)

2. \(\pi_i(\tau_0a_1\tau_1a_2\tau_2\cdots a_j\tau_j) = \tau_0^i a_1^i \tau_1^i a_2^i \tau_2^i \cdots a_j^i \tau_j^i \)

3. \(htrace(\tau_0a_1\tau_1a_2\tau_2\cdots a_j\tau_j) \leq \beta \)

Then \(\tau_0a_1\tau_1\cdots \) is a hybrid execution of \(A \) whose hybrid trace is \(\beta \). That is, \(\beta \) is a hybrid trace of \(A \).

For \(j = 0 \), since \(htrace(\tau_0) \leq \beta \), \(i = 1, 2 \), and since \(\tau_0^i.Ltime = \tau_0^2.Ltime \), we derive that for each \(w \in W_1 \cap W_2 \) and each \(t \leq \tau_0^i.Ltime, \tau_0^i(t)(w) = \tau_0^2(t)(w) \). Thus, for each \(t \leq \tau_0^i.Ltime \) the valuations \(\tau_0^i(t) \) and \(\tau_0^2(t) \) are compatible, and a trajectory \(\tau_0 \) with domain \([0, \tau_0^i.Ltime]\) can be defined as \(\tau_0(t) = \tau_0^i(t) \cup \tau_0^2(t) \). Then, \(\pi_i(\tau_0) = \tau_0^i, i = 1, 2 \), which means that \(\tau_0 \) is a trajectory of \(A \). This shows Properties 1 and 2. We are left to show that \(htrace(\tau_0) \leq \beta \). Suppose for the sake of contradiction that \(htrace(\tau_0) \not\leq \beta \). Express \(\beta \) as \(\tau_0^i \tau_1^i \cdots \). Then, either \(\tau_0.Ltime > \tau_0^i.Ltime \), or \(\tau_0.Ltime \leq \tau_0^i.Ltime \) and \(\tau_0 \not\in W_A \not\leq \tau_0^i \). In the first case either \(\pi_1(\beta) \) or \(\pi_2(\beta) \) would have a discrete action before \(\tau_0.Ltime \), which is impossible since \(\tau_0.Ltime = \tau_0^i.Ltime = \tau_0^2.Ltime \); in the second case, either \(\pi_1(\tau_0) \not\leq \tau_0^i \) or \(\pi_2(\tau_0) \not\leq \tau_0^2 \), which is impossible by definition of \(\tau_0 \).

For the inductive step, suppose that Properties 1, 2, and 3 hold for \(j \). Define \(a_{j+1} \) to be \(a_{j+1}^i \), if \(a_{j+1}^i \neq e \), and be \(a_{j+1}^2 \), otherwise. Recall that, for \(i \in \{1, 2\} \), \(htrace(\tau_0^i a_1^i \tau_1^i a_2^i \tau_2^i \cdots a_j^i \tau_j^i) \leq \pi_i(\beta) \). Since, by Item e, \(\tau_0^i a_1^i \tau_1^i a_2^i \tau_2^i \cdots a_{j+1}^i \tau_{j+1}^i) .Ltime = (\tau_0^2 a_1^2 \tau_1^2 a_2^2 \tau_2^2 \cdots a_{j+1}^2 \tau_{j+1}^2) .Ltime \), and since, by Item b, \(\tau_{j+1}^i.Ltime = \tau_{j+1}^2.Ltime \), we derive that for each \(w \in W_1 \cap W_2 \) and each \(t \leq \tau_{j+1}^i.Ltime \), \(\tau_{j+1}^i(t)(w) = \tau_{j+1}^2(t)(w) \). Thus, for each \(t \leq \tau_{j+1}^i.Ltime \) the valuations \(\tau_{j+1}^i(t) \) and \(\tau_{j+1}^2(t) \) are compatible, and a trajectory \(\tau_{j+1} \) with domain \([0, \tau_{j+1}^i.Ltime]\) can be defined as \(\tau_{j+1}(t) = \tau_{j+1}^i(t) \cup \tau_{j+1}^2(t) \). Then, \(\pi_i(\tau_{j+1}) = \tau_{j+1}^i, i = 1, 2 \), which means that \(\tau_{j+1} \) is a trajectory of \(A \). Furthermore, from Property 2 and the definition of \(a_{j+1} \), for each \(i \in \{1, 2\} \), \(\pi_i(\tau_{j+1}.Lstate), \pi_i(a_{j+1}), \pi_i(\tau_{j+1}.fstate) \) is a discrete transition of \(A_i \). This proves Properties 1 and 2. We are left to show that \(htrace(\tau_0a_1\tau_1a_2\tau_2\cdots a_{j+1}\tau_{j+1}) \leq \beta \).

Since by induction, \(htrace(\tau_0a_1\tau_1a_2\tau_2\cdots a_j\tau_j) \leq \beta \), we can express \(\beta \) as \(\beta_1 \sqcap \beta_2 \), where \(\beta_1 = htrace(\tau_0a_1\tau_1a_2\tau_2\cdots a_j\tau_j) \). Thus, for \(i \in \{1, 2\} \), \(\pi_i(\beta_2) = htrace(\pi_i(\tau_{j+1}.Lstate)a_{j+1}^i \tau_{j+1}^i \cdots , \) and the problem is reduced to showing that \(htrace(\pi_i(\tau_{j+1}.Lstate)a_{j+1}^i \tau_{j+1}^i \cdots) \leq \beta_2 \). We distinguish two cases.

- \(vis_A(a_{j+1}) \) is an inert \(i \)

 In this case, for \(i \in \{1, 2\} \), \(\pi_i(\beta_2) = htrace(\tau_{j+1}^i \cdots) \), and the problem is reduced to showing that \(htrace(\tau_{j+1}) \leq \beta_2 \). Let \(\beta_3 = \beta_2 \).

- \(vis_A(a_{j+1}) \) is not an inert \(i \)

 Observe that either \(vis_A(a_{j+1}^i) \) or \(vis_A(a_{j+1}^2) \) is not an inert \(i \). Thus, \(\beta_2 \) can be expressed as \(\phi(\beta_2.fstate) vis_A(a_{j+1}) \phi(\beta_3.fstate) \sqcap \beta_3 \). Therefore, for \(i \in \{1, 2\} \), \(\pi_i(\beta_3) = htrace(\tau_{j+1}^i \cdots) \), and the problem is reduced to showing that \(htrace(\tau_{j+1}) \leq \beta_3 \).
Suppose for the sake of contradiction that $h\text{trace}(\tau_{j+1}) \not\subseteq \beta$. Express β as $\tau'_0\tau'_1 \cdots$. Then, either $\tau_{j+1}.time > \tau'_0.time$, or $\tau_{j+1}.time \leq \tau'_0.time$ and $W_A \not\subseteq \tau'_0$. In the first case either $\pi_1(\beta_3)$ or $\pi_2(\beta_3)$ would have a discrete action before time $\tau_{j+1}.time$, which is impossible since $\tau_{j+1}.time = \tau'_1.time = \tau_{j+1}.time$; in the second case, either $\pi_1(\tau_{j+1}) \not\subseteq \tau'_1$ or $\pi_2(\tau_{j+1}) \not\subseteq \tau'_1$, which is impossible by definition of τ_{j+1}.

Theorem 5.5 Suppose A_1, A_2 and B are HAs with $A_1 \leq A_2$, and each of A_1 and A_2 is compatible with B. Then $A_1 \parallel B \leq A_2 \parallel B$.

Proof: Let $\beta \in h\text{-traces}(A_1 \parallel B)$. From Lemma 5.4, $\pi_{A_1}(\beta) \in h\text{-traces}(A_1)$ and $\pi_B(\beta) \in h\text{-traces}(B)$. Since $A_1 \leq A_2$, $\pi_{A_1}(\beta) \in h\text{-traces}(A_2)$. Since A_1 and A_2 have the same external interface, $\pi_{A_1}(\beta) = \pi_{A_2}(\beta)$. Thus it follows from Lemma 5.4 that $\beta \in h\text{-traces}(A_2 \parallel B)$.

Two natural hiding operations can be defined on any HA A:

1. If $E \subseteq E_A - \{e\}$, then $\text{ActHide}(E, A)$ is the HA B that is equal to A except that $E_B = E_A - E$ and $H_B = H_A \cup E$.

2. If $W \subseteq W_A$, then $\text{VarHide}(W, A)$ is the HA B that is equal to A except that $W_B = W_A - W$ and $X_B = X_A \cup W$.

Proposition 5.6 Let $E \subseteq E_A - \{e\}$ and $W \subseteq W_A$. Then $\text{ActHide}(E, A)$ and $\text{VarHide}(W, A)$ are HAs.

Proof: Straightforward application of the definitions.

Theorem 5.7 Suppose A and B are HAs with $A \leq B$, and let $E \subseteq E_A - \{e\}$ and $W \subseteq W_A$. Then $\text{ActHide}(E, A) \leq \text{ActHide}(E, B)$ and $\text{VarHide}(W, A) \leq \text{VarHide}(W, B)$.

Proof: Trivial argument since for each hybrid automaton A, each $E \subseteq E_A - \{e\}$, and each $W \subseteq W_A$, $h\text{-traces}(\text{ActHide}(E, A))$ and $h\text{-traces}(\text{VarHide}(W, A))$ can be expressed as functions of $h\text{-traces}(A)$.

6 Hybrid I/O Automata

In this section we specialize the hybrid automaton model of Section 3 by adding a distinction between input and output. We show that the results on simulation relations, composition and hiding presented in Section 4 and 5 carry over straightforwardly to this new setting.
6.1 Hybrid I/O Automata

A hybrid I/O automaton (HIOA) \(A \) is a tuple \((H, U, Y, I, O)\) where

- \(H = (W, X, E, H, \Theta, D, T) \) is a hybrid automaton.
- \(U \) and \(Y \) partition \(W \) into input and output variables, respectively.
 Variables in \(Z \doteq X \cup Y \) are called local.
- \(I \) and \(O \) partition \(E \) into input and output actions, respectively, such that \(e \in I \).
 Actions in \(L \doteq H \cup O \) are called locally controlled; as before we write \(A \doteq E \cup H \).
- The following additional axioms are satisfied, for \(s, s' \in \text{val}(V) \), \(k \in \text{val}(U) \) and \(a \in A \):\(^1\)

\[\begin{align*}
\text{Init} & \quad \text{(Start states closed under change of input variables)} \\
&s \in \Theta \implies \exists r \in \Theta : r \mid U = k \land r \mid Y = s \mid Y.
\end{align*}\]

\[\begin{align*}
\text{D1} & \quad \text{(Input enabling)} \\
&a \in I \implies \exists r : s \xrightarrow{a} r.
\end{align*}\]

\[\begin{align*}
\text{D2} & \quad \text{(An environment action that does not change inputs does not affect the state)} \\
&s \xrightarrow{e} s' \land s \mid U = s' \mid U \implies s = s'.
\end{align*}\]

\[\begin{align*}
\text{D3} & \quad \text{(Discrete transitions do not depend on input variable changes)} \\
&s \xrightarrow{a} s' \implies \exists r : s \xrightarrow{a} r \land r \mid U = k \land r \mid Y = s' \mid Y.
\end{align*}\]

The intuition captured by axioms Init and D1-3 is that an HIOA is responsible for performing locally controlled actions and for modifying the values of its local variables, whereas its environment is responsible for performing input actions and modifying the values of the input variables. Axiom D1, which is just the input enabling axiom from the (untimed) I/O automaton model, says that an HIOA accepts each input action in each state. Axiom D2 postulates that an environment action that does not affect the input variables cannot be ‘detected’ by the automaton and therefore leaves the state unchanged. Axiom D3 states that there is no functional dependence between the input and the output variables of an HIOA during a transition. If there is an \(a \)-step from a state \(s \) to a state \(s' \), then, for any valuation \(k \) of the input variables, there also exists an \(a \)-step from \(s \) to a state \(r \) with an input part \(k \) and an output part equal to that of \(s' \). We do not require the internal variables of \(s' \) and \(r \) to have the same values, because we want to allow an HIOA to record all the discrete changes to its input variables in its internal state. The technical use of axiom D3 is to avoid cyclic constraints during the interaction of two systems. The axiom ensures that the composition of two HIOA’s is still input enabled and that the environment can never block the output actions of a system. Axiom Init says that a system may not constrain the initial values of its input variables: if in a start state we change

\(^1\)The axiom Init that we present here, and also the axioms D1-3 below, are slightly different from the axioms that we introduced in the preliminary version of this paper [29]. The new axioms allow an HIOA to change the values of its internal variables if the environment modifies the input variables of the HIOA.
the input variables then there is a way to change the internal variables as well (while leaving the output variables unchanged) so that the result is again a start state.

To understand better the roles of axioms D1, D2 and D3 we show that these axioms imply axiom D, i.e., the existence of stuttering transitions. Later, in Example 6.8, we show more explicitly why axiom D3 is necessary to guarantee that HIOAs are closed under composition.

Proposition 6.1 Axioms D1, D2 and D3 imply axiom D.

Proof: Let s be a state of an HIOA A. Since the environment action e is an input action, axiom D1 implies that there is a state r such that $s \xrightarrow{\epsilon} r$. From D3 there is a state r' such that $r' \mid U = s \mid U$ and $s \xrightarrow{\epsilon} r'$. From D2, $r' = s$. Thus, $s \xrightarrow{\epsilon} s$, i.e., A admits stuttering environment transitions.

Notation In the sequel, the components of an HIOA A will often be denoted by W_A, U_A, A_A, Θ_A, H_A, etc. We sometimes omit these subscripts, where no confusion is likely. Also, the components of an HIOA A_i will be denoted by W_i, U_i, A_i, Θ_i, H_i, etc. We abuse notation by referring to an HIOA A as an HA whenever we intend to refer to H_A.

Example 6.2 (Timed I/O automata) A timed I/O automaton A in the sense of [42] can be represented as a hybrid I/O automaton A' without external variables. The construction is essentially the same as for Example 3.1. Observe that in the absence of external variables axiom D2 states that all transitions labeled with e are stuttering transitions, and axiom D3 does not impose any restriction. Thus, the only nontrivial axiom is axiom D1, which imposes the input enabling constraint of timed I/O automata.

6.2 Hybrid Executions and Hybrid Traces

A hybrid execution of an HIOA A is a hybrid execution of H_A. Similarly, a hybrid trace of A is a hybrid trace of H_A.

We say that two HIOAs A_1 and A_2 are comparable if their inputs and outputs coincide, that is, if $I_1 = I_2$, $O_1 = O_2$, $U_1 = U_2$, and $Y_1 = Y_2$. If A_1 and A_2 are comparable, then $A_1 \leq A_2$ is defined to mean that the hybrid traces of A_1 are included in those of A_2: $A_1 \leq A_2 \equiv h-traces(A_1) \subseteq h-traces(A_2)$.

Proposition 6.3 Let A_1 and A_2 be two comparable HIOAs. Then H_1 and H_2 are comparable and $A_1 \leq A_2$ iff $H_1 \leq H_2$.

Proof: Immediate from the definitions.
6.3 Simulation Relations

The definition of simulation for HIOAs is the same as for HAs. Formally, if A_1 and A_2 are two comparable HIOAs, then a simulation from A_1 to A_2 is a simulation from H_1 to H_2.

Theorem 6.4 If A_1 and A_2 are comparable HIOAs and there is a simulation from A_1 to A_2, then $A_1 \leq A_2$.

Proof: Immediate from the definition of simulation, Theorem 4.2, and Proposition 6.3. □

6.4 Composition and Hiding

The definitions of composition and hiding for HIOAs build on the corresponding definitions for HAs, but also take the input/output structure into account.

Just as in the definition of compatibility for HAs, we do not allow an HIOA A_1 to be composed with an HIOA A_2 unless the internal actions and variables of A_1 are disjoint from the actions and variables, respectively, of A_2. However, unlike in the definition for HAs, there is no need to require that the initial conditions of A_1 and A_2 are consistent: we will see that this consistency is implied by axiom Init for HIOAs. Finally, in order that the composition operation might satisfy nice properties (such as those of Section 8) we establish a convention that at most one component automaton “controls” any given action or variable; that is, we do not allow A_1 and A_2 to be composed unless the sets of output actions and output variables, respectively, of A_1 and A_2 are disjoint.

Formally, we say that HIOAs A_1 and A_2 are compatible if, for $i \neq j$,

$$X_i \cap V_j = Y_i \cap Y_j = H_i \cap A_j = O_i \cap O_j = \emptyset.$$

Lemma 6.5 Let A_1 and A_2 be compatible HIOAs. Then H_1 and H_2 are compatible HAs.

Proof: The second condition of the definition of compatibility for HAs is satisfied trivially. We show that the first condition is satisfied as well. Let $s_i \in \Theta_i$, for $i = 1, 2$. Define

$$k_1 = s_2[(U_1 \cap Y_2) \cup s_1[(U_1 - Y_2)],$$

$$k_2 = s_1[(U_2 \cap Y_1) \cup s_2[(U_2 - Y_1)].$$

From Init applied to A_i, there exist states $r_i \in \Theta_i$ such that $r_i \mid U_i = k_i$ and $r_i \mid Y_i = s_i \mid Y_i$. Since A_1 and A_2 are compatible, $V_1 \cap V_2$ can be partitioned into sets $U_1 \cap U_2$, $U_1 \cap Y_2$ and
$U_2 \cap Y_1$. Now we derive

\[
\begin{align*}
 r_1 \mid (V_1 \cap V_2) &= r_1 \mid (U_1 \cap U_2) \cup r_1 \mid (U_1 \cap Y_2) \cup r_1 \mid (U_2 \cap Y_1) \\
 &= s_2 \mid (U_1 \cap U_2) \cup s_2 \mid (U_1 \cap Y_2) \cup s_1 \mid (U_2 \cap Y_1) \\
 &= r_2 \mid (U_1 \cap U_2) \cup r_2 \mid (U_1 \cap Y_2) \cup r_2 \mid (U_2 \cap Y_1) \\
 &= r_2 \mid (V_1 \cap V_2)
\end{align*}
\]

Hence r_1 and r_2 are compatible and we can define $s = r_1 \cup r_2$. From the definition of s, $s \mid V_1 = r_1 \in \Theta_1$ and $s \mid V_2 = r_2 \in \Theta_2$.

If A_1 and A_2 are compatible then their composition $A_1 \| A_2$ is defined to be the tuple $A = (H, U, Y, I, O)$ given by

- $H = H_1 \| H_2$,
- $U = (U_1 \cup U_2) - (Y_1 \cup Y_2)$, $Y = Y_1 \cup Y_2$,
- $I = (I_1 \cup I_2) - (O_1 \cup O_2)$, $O = O_1 \cup O_2$.

Proposition 6.6 $A_1 \| A_2$ is an HIOA.

Proof: Let A denote $A_1 \| A_2$. We need to show that A satisfies the properties of a hybrid I/O automaton (cf. Section 6.1). Proposition 5.1 implies that $H = H_1 \| H_2$ is a hybrid automaton. By construction, U and Y form a partition of W, and I and O form a partition of E. We verify the axioms Init and D1-3. Suppose $s, s' \in \text{val}(V)$, $k \in \text{val}(U)$ and $a \in A$. For $i \in \{1, 2\}$, let $s_i = \pi_i(s)$, $s'_i = \pi_i(s')$, and $a_i = \pi_i(a)$.

Init Assume $s \in \Theta_A$. For $i \in \{1, 2\}$, let $k_i = k \mid (U_i - Y_{-i}) \cup s \mid (U_i \cap Y_{-i})$, where $-1 = 2$ and $-2 = 1$. From Init applied to A_i, there are states $r_i \in \Theta_i$ such that $r_i \mid Y_i = s \mid Y_i$ and $r_i \mid U_i = k_i$. It is not hard to show that r_1 and r_2 are compatible, so we can define $r = r_1 \cup r_2$. From the definition of r, $r \mid V_1 = \Theta_1$, $r \mid V_2 = \Theta_2$, $r \mid Y = s \mid Y$, and $r \mid U = k$. Furthermore, from the definition of composition, $r \in \Theta_A$.

D1 Assume $a \in I_A$. From D1 applied to A_i, for $i = 1, 2$, there are states r_i such that $s_i \xrightarrow{a_i} A_i r_i$. Define input states $k_i = r_i \mid (U_i - Y_{-i}) \cup r_{-i} \mid (U_i \cap Y_{-i})$. From D3 applied to A_i, there are states r'_i such that $s_i \xrightarrow{a_i} A_i r'_i$, $r'_i \mid U_i = k_i$, and $r'_i \mid Y_i = r_i \mid Y_i$. From the definitions of the k'_is, r'_i and r'_2 are compatible. Thus, let r be $r'_1 \cup r'_2$. From the definition of composition, $s \xrightarrow{a} r$.

D2 Assume $s \xrightarrow{a} A s'$ and $s \mid U = s' \mid U$. We show first that, for $i \in \{1, 2\}$, $s_i \mid Y_i = s'_i \mid Y_i$. In fact, from D3, there are states r_i such that $r_i \mid U_i = s_i \mid U_i$ and $r_i \mid Y_i = s'_i \mid Y_i$. From D2, $r_i = s_i$. Thus, $s'_i \mid Y_i = s_i \mid Y_i$. From this fact $s' \mid Y_A = s \mid Y_A$. Thus, for $i \in \{1, 2\}$, $s_i \mid U_i = s'_i \mid U_i$. From D2 applied to A_i, $s_i = s'_i$. Thus, $s = s'$.

22
\textbf{D3} Assume $s \xrightarrow{a_A} s'$. For $i \in \{1, 2\}$, let $k_i = k \mid (U_i - Y_i) \cup s \mid (U_i \cap Y_i)$. From \textbf{D3} applied to A_i, there is a state r_i such that $s_i \xrightarrow{a_{A_i}} r_i$, $r_i \mid U_i = k_i$, and $r_i \mid Y_i = s'_i \mid Y_i$. From the definition of the k_i’s, r_1 and r_2 are compatible. Thus, let $r = r_1 \cup r_2$. Then, $r \mid U_A = k$ and $r \mid Y_A = s' \mid Y_A$. Furthermore, from the definition of composition, $s \xrightarrow{a} r$.

\textbf{Theorem 6.7} Suppose A_1, A_2 and B are HIOAs with $A_1 \leq A_2$, and each of A_1 and A_2 is compatible with B. Then $A_1 \parallel B \leq A_2 \parallel B$.

\textbf{Proof:} Since $A_1 \leq A_2$, A_1 and A_2 are comparable. Using this and the definition of composition, we infer that $A_1 \parallel B$ and $A_2 \parallel B$ are comparable. Now the result follows by combining Proposition 6.3, Lemma 6.5, Theorem 5.5, and the definition of composition.

\textbf{Example 6.8 (Need for axiom D3)} In this example we show that axiom \textbf{D3} is necessary to guarantee that HIOAs are closed under composition. Let x and y be variables of type integer. Let A_1 be an HIOA with input variable u, output variable y, and an input action a, and let A_2 be an HIOA with input variable y, output variable u, and an input action a. Let each state of A_1 and A_2 enable a self-loop transition with action e, and transitions with action a such that in the post-state of the transition the value of the output variable is the value of the input variable plus 1. Let the start states of A_1 and A_2 be the valuations that assign 0 to each variable. Observe that A_1 and A_2 satisfy all the properties of an HIOA except for \textbf{D3}. Now consider $A_1 \parallel A_2$. It is simple to observe that no state of $A_1 \parallel A_2$ enables a transition labeled with a, and thus that axiom \textbf{D1} is violated, since the post-state of any transition labeled with a should satisfy $y = u + 1$ and $u = y + 1$. That is, $y = u + 1 = (y + 1) + 1 = y + 2$. Axiom \textbf{D3} avoids exactly this type of cyclic dependency among variables of a composed HIOA in the post-state of a transition.

The definition of variable and action hiding extend trivially to any HIOA A.

\begin{enumerate}
 \item If $O \subseteq O_A$ then $\text{ActHide}(O, A)$ is the HIOA B that is equal to A except that $O_B = O_A - O$ and $H_B = H_A \cup O$.
 \item If $Y \subseteq Y_A$ then $\text{VarHide}(Y, A)$ is the HIOA B that is equal to A except that $Y_B = Y_A - Y$ and $X_B = X_A \cup Y$.
\end{enumerate}

\textbf{Proposition 6.9} If $O \subseteq O_A$ and $Y \subseteq Y_A$, then $\text{ActHide}(O, A)$ and $\text{VarHide}(Y, A)$ are HIOAs.

\textbf{Theorem 6.10} Suppose A and B are HIOAs with $A \leq B$, and suppose $O \subseteq O_A$ and $Y \subseteq Y_A$. Then $\text{ActHide}(O, A) \leq \text{ActHide}(O, B)$ and $\text{VarHide}(Y, A) \leq \text{VarHide}(Y, B)$.
7 Reduced HIOAs

Axiom D3 requires that an HIOA include transitions for all discrete actions, for all possible values of input variables. In practical applications of the HIOA model, however [34, 27, 47, 45, 46, 28, 23, 24, 15, 26, 25], it is often inconvenient to describe all these transitions. In fact, most of these applications do not specify them all. Technically, the automata defined in these papers are not HIOAs, but rather reduced HIOAs, defined as follows.

A reduced HIOA is a structure that is like an HIOA, except that axiom D3 is required only for input actions, and input variables do not change during input transitions. Specifically, axiom D3 for HIOAs is replaced by

\[D3' \ (\text{Discrete input transitions do not depend on input variable changes}) \]

\[s \xrightarrow{a} s' \land a \in I \implies \exists r : s \xrightarrow{a} r \land r \mid U = k \land r' \mid Y = s' \mid Y. \]

and a new axiom is imposed

\[D4 \ (\text{Locally controlled actions do not affect input variables}) \]

\[s \xrightarrow{a} s' \land a \in L \implies s[U = s'[U]. \]

Moreover, we require reduced HIOAs also to satisfy another axiom, saying that input actions do not affect output variables.

\[D5 \ (\text{Input actions do not affect output variables}) \]

\[s \xrightarrow{a} s' \land a \in I \implies s[Y = s'[Y]. \]

Unfortunately reduced HIOAs are not closed under parallel composition as shown in the following example.

Example 7.1 (Non-closure of reduced HIOAs under parallel composition) Let \(\mathcal{A} \) and \(\mathcal{B} \) be two reduced HIOAs. Suppose \(\mathcal{A} \) has an input variable \(u \), and \(\mathcal{B} \) has an output variable \(y \). Suppose \(a \) is an output action of \(\mathcal{B} \), but not an action of \(\mathcal{A} \). Then, in \(\mathcal{A} \parallel \mathcal{B} \) axiom D5 is not satisfied, since, due to Axiom D3 applied to \(\mathcal{A} \) with action \(e \), variable \(u \) is allowed to change arbitrarily whenever action \(a \) occurs. Thus, \(\mathcal{A} \parallel \mathcal{B} \) is not a reduced HIOA.

In the rest of this section we show that, despite the non-closure under parallel composition of reduced HIOAs, it is possible to use them safely if they are used in contexts that do not have any input variables, i.e., if we compose them in parallel with other reduced HIOAs so that the resulting structure does not have any input variable. The result is easily extendable to contexts that involve hiding as well.

Before going further into details we need a new definition.
Definition 7.2 Given an HIOA A, define $\text{reduce}(A)$ to be the structure obtained from A by removing every discrete transition labeled with a locally controlled action in which some input variable changes.

Observe that if A satisfies axiom D5, then $\text{reduce}(A)$ is a reduced HIOA. Furthermore, observe that any reduced HIOA A' can be obtained from some HIOA A' through a reduce operation: in A' we simply add the extra transitions that are required for the satisfaction of axiom D3.

The formal result that we prove is the following.

Proposition 7.3 Let A and B be two HIOAs where B satisfies axiom D5. If $A \parallel B$ does not have any input variables, then $A \parallel B = \text{reduce}(A) \parallel B$.

Proof: From the definitions of parallel composition and reduce, the structures $A \parallel B$ and $\text{reduce}(A) \parallel B$ may differ only in their discrete transition relations. Thus, we need to show that $A \parallel B$ and $\text{reduce}(A) \parallel B$ have the same discrete transition relation. Observe that, since $A \parallel B$ does not have any input variables, the input variables of A are included among the output variables of B, and the input variables of B are included among the output variables of A; that is, $U_A \subseteq Y_B$ and $U_B \subseteq Y_A$. Suppose that (s, a, s') is a transition of $A \parallel B$. If a is not a locally controlled action of A, then, from the definition of reduce, $(\pi_A(s), \pi_A(a), \pi_A(s'))$ is a transition of $\text{reduce}(A)$, and therefore (s, a, s') is a transition of $\text{reduce}(A) \parallel B$. On the other hand, if a is a locally controlled action of A, then $\pi_B(a)$ is an input action of B, and since B satisfies D5, $s'[Y_B = s[Y_B$. Since $U_A \subseteq Y_B$, $s'[U_A = s[U_A$. Thus, from the definition of reduce, $(\pi_A(s), \pi_A(a), \pi_A(s'))$ is a transition of $\text{reduce}(A)$, and therefore (s, a, s') is a transition of $\text{reduce}(A) \parallel B$.

Suppose that (s, a, s') is a transition of $\text{reduce}(A) \parallel B$. Then (s, a, s') is trivially a transition of $A \parallel B$ since, from the definition of reduce, the set of discrete transitions of $\text{reduce}(A)$ is a subset of the set of discrete transitions of A.

From Proposition 7.3 we deduce that reduced HIOAs can be used safely in contexts without any input variables since all the transitions that we rule out are never taken.

8 Receptiveness

We call an HIOA feasible if any finite hybrid execution can be extended to an admissible hybrid execution. The main significance of feasibility is to guarantee that an HIOA is meaningful in the sense that it cannot block time. Unfortunately feasibility is not preserved by composition, and thus we need to impose additional restrictions on an HIOA so that the feasibility property is guaranteed to be preserved by composition. Our ideal objective would be to find the weakest restrictions that need to be imposed; here we just propose some restrictions that work, although we do not know whether they are the weakest. Below we define a notion of receptiveness and prove that it is preserved by composition under some reasonable assumptions.
8.1 I/O Behaviors

The concept of an I/O behavior plays an important role in the definition of receptiveness. Intuitively, an I/O behavior is a set of trajectories that arise from an HIOA after choosing initial values for the local variables and resolving all local nondeterminism. An I/O behavior can be viewed as a restricted type of HIOA with only “continuous” behavior and no discrete transitions.

Formally, an I/O behavior is a triple $\mathcal{P} = (U, Y, T)$, where

- U is a set of input variables.
- Y is a set of output variables with $U \cap Y = \emptyset$. We write $V \triangleq U \cup Y$.
- $T \subseteq trajs(V)$ is a nonempty, prefix closed set of trajectories satisfying:

 B1 (Functional dependence of outputs from previous inputs)
 $\forall t \forall \tau, \tau' \in T$ with domain $[0, t]$:
 $$(\tau < t) \downarrow U = (\tau' < t) \downarrow U \Rightarrow \tau(t) | Y = \tau'(t) | Y.$$

 B2 (Freedom of inputs)
 $\forall \tau \in \max(trajs(U)) \exists \tau' \in \max(T) : \tau' \downarrow U \leq \tau.$

 B3 (NonZenoness)
 $\max(T) \subseteq \text{closed}(T) \cup \text{full}(T).$

Axiom **B1** states that the output at time t is fully determined by the inputs at times up to, but not including, t. In particular, there is an output state $l \in \text{val}(Y)$ such that all trajectories $\tau \in T$ begin with l, i.e., $\tau(0) | Y = l$. We refer to this l as the initial output of \mathcal{P}. Axiom **B2** expresses the idea that the input is a signal that is imposed by the environment and over which the system has no control. Axiom **B3** states that each maximal trajectory is either closed or full. Together, **B2** and **B3** imply that in an I/O behavior each input signal is accepted up to and including some finite time t or up to ∞. Observe that the full trajectories of an I/O behavior are precisely the limits of the finite trajectories, as the following completeness property holds due to **B2** and **B1**:

$$\forall \tau \in trajs(V) : (\forall t \in T^{\geq 0}: \tau \leq t \in T) \Rightarrow \tau \in T.$$

Also observe that the set of closed trajectories in T can be derived from the set of finite, right-open trajectories in T. Thus the set T is fully determined by the finite, right-open trajectories contained in it.

As a consequence, the I/O behaviors presented here can be viewed as a special case of the I/O behaviors of Sontag [43]. Sontag defines I/O behaviors in terms of a response map from input signals up to, but not including, time t to the output at time t, but this presentation is
equivalent to a definition in terms of trajectories over both inputs and outputs. Technically, we found it a bit easier to use trajectories in this paper. Trajectories are also taken as primitive in the related notion of \textit{I/O dynamical systems} of Willems [48]. In [43], no assumptions are made about possible input signals and the length of maximal trajectories (our axioms B2 and B3). However, [43] distinguishes the so-called \textit{V-complete} I/O behaviors, which are I/O behaviors that accept any input in a family of controls (i.e., input trajectories) \textit{V}. In [43], for continuous time systems, \textit{V} is always taken to be the class of all essentially bounded measurable controls. This is a special case of what we allow in our I/O behaviors, since we also include the possibility that certain input signals are only accepted up to and including some finite time.

\textbf{Notation} \hspace{1em} In the sequel, the components of an I/O behavior \(\mathcal{P} \) will be denoted by \(U_{\mathcal{P}}, Y_{\mathcal{P}} \) and \(\mathcal{T}_{\mathcal{P}} \), etc. Also, if no confusion can arise, the components of an I/O behavior \(\mathcal{P}_i \) will be denoted by \(U_i, Y_i \) and \(\mathcal{T}_i \), etc.

The notions of compatibility and composition are defined for I/O behaviors just as for HIOAs. Formally, two I/O behaviors \(\mathcal{P}_1 \) and \(\mathcal{P}_2 \) are called \textit{compatible} if \(Y_1 \cap Y_2 = \emptyset \). In this case, we define the \textit{composition} \(\mathcal{P}_1 \| \mathcal{P}_2 \) to be the structure \(\mathcal{P} = (U, Y, \mathcal{T}) \), where

\begin{itemize}
 \item \(U = (U_1 \cup U_2) - (Y_1 \cup Y_2) \);
 \item \(Y = Y_1 \cup Y_2 \);
 \item \(\mathcal{T} \subseteq \text{traj}(U \cup Y) \) is given by \(\tau \in \mathcal{T} \iff \tau \downarrow V_1 \in \mathcal{T}_1 \land \tau \downarrow V_2 \in \mathcal{T}_2. \)
\end{itemize}

In general, the composition of two compatible I/O behaviors need not be an I/O behavior since there may be “too many solutions” in the sense that there might be several distinct trajectories that projected onto the input variables give the same trajectory. This is illustrated by the following example.

\textbf{Example 8.1} \hspace{1em} Suppose \(T = \mathbb{R} \) and \(u, y \) are variables whose dynamic type is the set of functions from \(\mathbb{R} \) to \(\mathbb{R} \) that have left-hand limits. Define \(\text{Copy}(u, y) \) to be the I/O behavior that, for \(t > 0 \), copies \(u \) to \(y \) and \(y \) to \(y \) and with the initial value of \(y \) set to 0. That is, \(\text{Copy}(u, y) \) is the I/O behavior \((\{u\}, \{y\}, \mathcal{T}) \) where \(\mathcal{T} \) is the set of trajectories \(\tau \) such that \(\tau(0)(y) = 0 \) and, for each \(t \in \text{dom}(\tau) \setminus \{0\} \), \(\tau(t)(u) = \tau(t)(y) \). It is easy to verify that \(\text{Copy}(u, y) \) is an I/O behavior; in particular B1 is guaranteed by the fact that the functions in the dynamic types of \(u \) and \(y \) have left-hand limits. Then the composition of \(\text{Copy}(u, y) \) and \(\text{Copy}(y, u) \) has no input variables and therefore there is just one full input trajectory. However, there is more than one output trajectory and thus the composition does not satisfy axiom B1.

It may also occur that the composition of two compatible I/O behaviors yields an I/O behavior, even though there exists no “solution” in the sense outlined by the following example.

\textbf{Example 8.2} \hspace{1em} Assume again that \(T = \mathbb{R} \) and \(u, y \) are variables whose dynamic type is the set of functions from \(\mathbb{R} \) to \(\mathbb{R} \) that have left-hand limits. Define \(\text{Add1}(u, y) \) to be the I/O behavior
whose output y is, for $t > 0$, equal to the input u incremented by 1, and with the initial value of y set to 0. Then the I/O behaviors $\text{Add1}(u,y)$ and $\text{Add1}(y,u)$ are compatible and their composition is an I/O behavior with just a single point trajectory. The composition does not allow any prolonged behavior to take place since there is no non-trivial trajectory that agrees with both $\text{Add1}(u,y)$ and $\text{Add1}(y,u)$.

If the composition of two I/O behaviors is an I/O behavior, then a trajectory of the composition can be maximal because the projection onto one of the components is maximal, or because no extension of the trajectory exists that is compatible with both components. The latter situation is excluded by following definition.

Two compatible I/O behaviors \mathcal{P}_1 and \mathcal{P}_2 are strongly compatible if $\mathcal{P} = \mathcal{P}_1 \parallel \mathcal{P}_2$ is an I/O behavior and, for each trajectory τ of \mathcal{P},

$$C1 \quad \tau \in \max(\mathcal{T}_\mathcal{P}) \Rightarrow \tau \downarrow V_1 \in \max(\mathcal{T}_1) \lor \tau \downarrow V_2 \in \max(\mathcal{T}_2).$$

The next definition associates I/O behaviors with HIOAs.

Let \mathcal{A} be an HIOA and let $l \in \text{val}(Z_\mathcal{A})$ be a valuation of the local variables of \mathcal{A}. A set T of trajectories of \mathcal{A} is called an l-process (or process) of \mathcal{A} if $(U_\mathcal{A}, Z_\mathcal{A}, T)$ is an I/O behavior with initial output l.

Two compatible HIOAs \mathcal{A}_1 and \mathcal{A}_2 are strongly compatible if for each reachable state s of $\mathcal{A}_1 \parallel \mathcal{A}_2$, for each $(s[Z_1])$-process T_1 of \mathcal{A}_1, and for each $(s[Z_2])$-process T_2 of \mathcal{A}_2, the I/O behaviors (U_1, Z_1, T_1) and (U_2, Z_2, T_2) are strongly compatible.

8.2 Games and Strategies

Intuitively, a system is receptive if it can accept all the input provided by its environment and if time can advance to infinity irrespective of the input provided by its environment. Equivalently, a system is receptive if it accepts all input and does not rely on any specific behavior of its environment to let time advance forever. This informal explanation is not entirely correct though since, for example, there is no way to accept all input and let time advance to infinity if the environment provides input in a Zeno manner. In [41, 1, 42], various notions of receptivity have been defined formally in terms of games. Below, we extend these ideas to the setting of hybrid systems. The interaction between a system and its environment is represented as a two-player game in which the goal of the system is to construct an admissible execution, and the goal of the environment is to prevent such a construction. The system is receptive if it has a strategy by which it can always win the game, irrespective of the behavior of the environment.

Formally, a strategy ρ for an HIOA \mathcal{A} is a function that specifies, for each sentence α of \mathcal{A},

1. An l-process T^α of \mathcal{A}, where $l = \alpha.lstate[Z_\mathcal{A}]$.
2. A function $g^\alpha : \text{closed}(T^\alpha) \times I \times \text{val}(U) \rightarrow \text{val}(V)$ satisfying:

$S_1 \ g^\alpha(\tau, a, k) = s \Rightarrow \tau.Istate \overset{\alpha}{\rightarrow} s \land s[U = k].$

$S_2 \ g^\alpha(\tau, a, k)[Y] = g^\alpha(\tau, a, k')[Y].$

3. A function $f^\alpha : \text{closed}(\max(T^\alpha)) \times \text{val}(U) \rightarrow (L \times \text{val}(V))$ satisfying:

$S_3 \ f^\alpha(\tau, k) = (a, s) \Rightarrow \tau.Istate \overset{\alpha}{\rightarrow} s \land s[U = k].$

$S_4 \ f^\alpha(\tau, k) = (a, s) \land f^\alpha(\tau, k') = (a', s') \Rightarrow a = a' \land s[Y = s'][Y].$

At the beginning and immediately after each discrete transition, a strategy produces a process that starts in the current local state. By doing this, a strategy resolves all nondeterminism for the next 'continuous' phase. Typically, choosing a process amounts to fixing the trajectories for certain internal variables that represent disturbances, and deciding at which time the next locally controlled action will be performed. Once a process has been selected, the input signal fully determines the next trajectory in the execution of the system. Since at any point the environment may produce a discrete input action and change discretely some input variables, a strategy also specifies, through the function g, what will be the next local state after such an event. Through the function f, a strategy specifies, for each closed maximal trajectory of the selected process, which transition will be performed at the end of this trajectory. Functions f and g are based also on the input that the environment may provide during the discrete transition performed by A, so that the value of the input variables in the post-state of the returned transitions are those chosen by the environment. Axioms S_1 and S_3 ensure that a strategy always returns legal transitions that are consistent with the input provided by the environment; axioms S_2 and S_4 ensure that a strategy does not introduce functional dependencies between input and output variables during a transition: the system cannot react immediately to the changes in the values of the input variables. These axioms are closely connected to axiom D_3 for HIOAs.

In the game between the environment and the system, the behavior of the environment is represented by an environment sequence. This is an infinite alternating sequence

$$\mathcal{I} = \tau_1 a_1 b_1 \tau_2 a_2 b_2 \cdots$$

of closed or maximal trajectories $\tau_i \in \text{trajs}(U)$, actions $a_i \in I$, and booleans $b_i \in \{\text{true}, \text{false}\}$.

In the i-th move of the game, the environment produces input signal τ_i. If τ_i is closed then the environment produces input action a_i right after signal τ_i. The boolean b_i serves to break ties in case the environment and the system both intend to perform a discrete action at the same time: if $b_i = \text{true}$ then the environment is allowed to make a move and otherwise the system may perform an action. As in [42], our game starts after a finite execution α. The outcome of the game is described formally in the following definition.

Let A be an HIOA, ρ a strategy for A, \mathcal{I} an environment sequence for A (with ρ and \mathcal{I} as defined above), and let α be a closed hybrid execution of A. We define the outcome $O_{\rho, \mathcal{I}}(\alpha)$
as the limit of the sequence \((\alpha_i)_{i \geq 0}\) of hybrid executions that is constructed inductively below. Each \(\alpha_i\) is either a sentence or admissible.

The hybrid execution \(\alpha_0\) is obtained by extending \(\alpha\) in two steps to a sentence to which strategy \(\rho\) can be applied in combination with environment sequence \(\mathcal{I}\). The first step adds a stuttering transition to \(\alpha\), thus generating a sentence; the second transition adds an environment transition using function \(g\) to account for the initial values of the input variables that the environment provides in \(\mathcal{I}\). Formally, let \(s = \alpha.lstate\) and \(\alpha' = \alpha e \varphi(s)\). Then

\[
\alpha_0 \stackrel{\Delta}{=} \alpha' e \varphi(g^{\alpha'}(\varphi(s), e, \tau_1(0))).
\]

Observe that, from D2, if the input \(\tau_1(0)\) is the same as \(s[U]\), then \(\alpha_0\) is stuttering equivalent with \(\alpha\). For each \(i > 0\), define \(\alpha_i\) in terms of \(\alpha_{i-1}\) as follows. If \(\alpha_{i-1}\) is admissible then

\[
\alpha_i \stackrel{\Delta}{=} \alpha_{i-1} \cdot \tau_i'.
\]

Otherwise, \(\alpha_{i-1}\) is a sentence. Let \(\tau_i'\) be the longest trajectory in \(T^{\alpha_{i-1}}\) with \(\tau_i' \downarrow U \leq \tau_i\). The existence of \(\tau_i'\) is guaranteed by axiom B2 after extending \(\tau_i\) to any maximal trajectory, and the uniqueness by axiom B1; furthermore axiom B3 tells us that \(\tau_i'\) is either closed or full. Let \(t = \tau_i,\ellime\) and \(t' = \tau_i',\ellime\). Then \(t' \leq t\) since \(\tau_i' \downarrow U \leq \tau_i\). We distinguish between three cases:

1. If \(t = t' = \infty\) then

\[
\alpha_i \stackrel{\Delta}{=} \alpha_{i-1} \cdot \tau_i'.
\]

This is the case where neither the system nor the environment performs a discrete action.

2. If \(t < t' < \infty \land b_i = \text{true}\), then

\[
\alpha_i \stackrel{\Delta}{=} \alpha_{i-1} \cdot (\tau_i' \cdot a_i \varphi(g^{\alpha_{i-1}}(\tau_i', a_i, \tau_{i+1}(0)))).
\]

This is the case where after \(\tau_i'\) the environment produces input action \(a_i\). The resulting state after this action is obtained by applying the \(g\)-part of the strategy.

3. If \(t' < t\) or \(t = t' < \infty \land b_i = \text{false}\) and if we let \(f^{\alpha_{i-1}}(\tau_i', \tau_{i+1}(0)) = (a_i', s_i')\), then

\[
\alpha_i \stackrel{\Delta}{=} \alpha_{i-1} \cdot (\tau_i' \cdot a_i' \varphi(s_i')).
\]

This is the case where, after \(\tau_i'\) has been completed, the system performs a locally controlled transition as specified by the \(f\)-part of the strategy.

Proposition 8.3 \(\mathcal{O}_{\rho,\tau}(\alpha)\) is a Zeno or admissible hybrid execution of \(A\).
Proof: By construction the outcome $O_{\rho, I}(\alpha)$ is a hybrid execution of A. According to the definition of outcome, either case 1 occurs at some point, or cases 2 and 3 occur infinitely often. If case 1 occurs, then $O_{\rho, I}(\alpha)$ is admissible; otherwise, $O_{\rho, I}(\alpha)$ contains infinitely many discrete actions, i.e., it is not a closed execution.

It is interesting to observe that in our definition of strategy functions f and g are based on sentences, while the definition of the outcome of a strategy is based on arbitrary closed hybrid executions. The reason behind this apparent inconsistency is that there is no need to consider general closed hybrid executions in the strategy definition, since, as we can see from the definition of α_0, there is an easy way to extend any closed hybrid execution to a sentence. On the other hand, defining strategies based on general closed hybrid executions would require to assert additional consistency conditions relating the strategies for hybrid executions obtained from other hybrid executions by extension with a single trajectory.

8.3 Composition of Strategies

Let A_1 and A_2 be strongly compatible HIOAs and let ρ_1 and ρ_2 be strategies for A_1 and A_2, respectively. The purpose of this section is to define a new strategy $\rho_1 \parallel \rho_2$, the composition of ρ_1 and ρ_2. The composition uses ρ_1 to perform those parts of a move that are pertinent to A_1, and uses ρ_2 for those parts of a move that are pertinent to A_2. The main result that we prove (cf. Lemma 8.5) states that whenever an hybrid execution α is the outcome of $\rho_1 \parallel \rho_2$ given a starting point α' and an environment sequence I, it is possible, for $i = 1, 2$, to find an environment sequence I_i such that $\pi_i(\alpha)$ is the outcome of ρ_i given $\pi_i(\alpha')$ and I_i. That is, it is like each component A_i has played according its strategy ρ_i during the game played according to $\rho_1 \parallel \rho_2$. The composition of strategies that we define in this section will be used to show that receptiveness is compositional.

Before giving the formal definition of $\rho_1 \parallel \rho_2$, we give some intuitions about its structure. Function $\rho_1 \parallel \rho_2$ applied to a sentence α returns a process T^α and two functions g^α and f^α. The process T^α is obtained by composing processes $T_{1}^{\pi_{1}(\alpha)}$ and $T_{2}^{\pi_{2}(\alpha)}$. We are guaranteed that T^α is a process since A_1 and A_2 are strongly compatible.

Function g^α uses functions $g_{1}^{\pi_{1}(\alpha)}$ and $g_{2}^{\pi_{2}(\alpha)}$ to compute how A reacts to an input action. The definition of g^α is complicated by the fact that g_1 and g_2 have to agree on the common variables of A_1 and A_2. Informally, the computation of g is done as follows. First, g_1 and g_2 are used to figure out what should be the value of the output variables in the post-state of the transition returned by g (these are the y_k's in the following definition); then, based on the outputs just computed, g_1 and g_2 are used to determine the values of the internal variables in the post-state of the transition returned by g.

The definition of f^α is slightly more complicated. First of all f_1 and f_2 are used to determine which process among A_1 and A_2 moves first. In choosing among A_1 and A_2 we always give priority to A_1; due to the symmetry of the problem our arbitrary decision does not compromise generality. Suppose that A_1 moves first; the other case is symmetric. Then, f_1 and g_2 are
used to figure out what should be the value of the output variables in the post-state of the transition returned by \(f \) (these are the \(y_i \)'s in the following definition); finally, based on the outputs just computed, \(f_1 \) and \(g_2 \) are used to determine the values of the internal variables in the post-state of the transition returned by \(f \).

We are now ready for the formal definition. Let \(-1 = 2 \) and \(-2 = 1\). We define the *composition* \(\rho_1 \parallel \rho_2 \) to be the function that associates to each sentence \(\alpha \) of \(\mathcal{A} = A_1 \parallel A_2 \) the following objects:

1. \(T^a = \{ \tau \in T_A \mid \pi_1(\tau) \in T_{1}^{\pi_1(a)} \land \pi_2(\tau) \in T_{2}^{\pi_2(a)} \} \).

2. A function \(g^a : \text{closed}(T^a) \times I_A \times \text{val}(U_A) \rightarrow \text{val}(V_A) \) defined as follows.

 Let \((\tau, a, k) \in \text{dom}(g^a)\). For \(i \in \{1, 2\} \), let \(k_i \) be an arbitrary valuation for \(U_i \), and let \(y_i = g_i^{\pi_i(a)}(\pi_i(\tau), \pi_i(a), k_i)[Y_i] \). Observe that, by S2, \(y_i \) is independent of the choice of \(k_i \). This is the reason for our arbitrary choice of the \(k_i \)'s. This same observation applies to the other places where we use arbitrary \(k_i \)'s. Let \(k_i' = (k \cup y_{-i})[U_i] \) and let \(s_i' = g_i^{\pi_i(a)}(\pi_i(\tau), \pi_i(a), k_i') \). Then

 \[g^a(\tau, a, k) \triangleq s_1' \cup s_2' \]

 Note that \(s_1' \) and \(s_2' \) are compatible:

 \[
 s_1'[((Y_1 \cap U_2) \cup (Y_2 \cap U_1)) = (s_1'[Y_1][U_2 \cup (s_1'[U_1])[Y_2]
 \quad \text{(by S1 and S2)}
 = y_1[U_2 \cup k_1'][Y_2]
 = y_1[U_2 \cup ((k \cup y_2)[U_1])[Y_2]
 = y_1[U_2 \cup y_2[U_1]
 \quad \text{(by symmetric reasoning)}
 = s_2'[((Y_1 \cap U_2) \cup (Y_2 \cap U_1))
 \]

3. A function \(f^a : \text{closed}(\text{max}(T^a)) \times \text{val}(U_A) \rightarrow (L_A \times \text{val}(V_A)) \) defined as follows.

 Let \((\tau, k) \in \text{dom}(f^a)\). We distinguish between two cases:

 - \(\pi_1(\tau) \in \text{max}(T_{1}^{\pi_1(a)}) \).

 Let \(k_1 \) be any valuation for \(U_1 \), let \(f_{1}^{\pi_1(a)}(\pi_1(\tau), k_1) = (a, s_1) \) and let \(y_1 = s_1[Y_1] \).

 Let \(k_2 = (k \cup y_1)[U_2] \), let \(s_2 = g_2^{\pi_2(a)}(\pi_2(\tau), \pi_2(a), k_2) \) and let \(y_2 = s_2[Y_2] \). Finally, let \(k_1' = (k \cup y_2)[U_1] \) and let \(f_{1}^{\pi_1(a)}(\pi_1(\tau), k_1') = (a, s_1') \). Then

 \[f^a(\tau, k) \triangleq (a, s_1' \cup s_2) \].

 Note that \(s_1' \) and \(s_2 \) are compatible:

 \[
 s_1'[((Y_1 \cap U_2) \cup (Y_2 \cap U_1)) = (s_1'[Y_1][U_2 \cup (s_1'[U_1])[Y_2]
 \quad \text{(by S3 and S4)}
 = y_1[U_2 \cup k_1'][Y_2]
 \]

 \[32 \]
\[= ((k \cup y_1)[U_2])[Y_1 \cup ((k \cup y_2)[U_1])[Y_2 \]
\[= k_2[Y_1 \cup y_2][U_1 \]
\[(\text{by S1}) = (s_2[U_2])[Y_1 \cup (s_2[Y_2])[U_1 \]
\[= s_2[(Y_1 \cap U_2) \cup (Y_2 \cap U_1)] \]

- \(\pi_2(\tau) \in \max(T_2^{\pi_2(\alpha)}) \) and \(\pi_1(\tau) \notin \max(T_1^{\pi_1(\alpha)}) \).

This case is symmetric to the previous case by exchanging 1 and 2.

Note that the above case distinction is complete: Let \(l = \alpha.lstate[Z_A] \). Then, for \(i \in \{1, 2\} \), \(T^{\pi_i(\alpha)} \) is an \((l[Z_i]) \)-process of \(A_i \). Since \(A_1 \) and \(A_2 \) are strongly compatible, \(T^\alpha \) is an \(l \)-process of \(A \) and all trajectories in \(\tau \in T^\alpha \) satisfy axiom C1.

The next proposition asserts that \(\rho_1||\rho_2 \) is indeed a strategy for \(A \). In addition, the proposition states some technical properties of \(\rho_1||\rho_2 \) that will be useful in proving the main result of this section. The technical properties essentially explain how the strategies \(\rho_1 \) and \(\rho_2 \) are used in \(A_1 \) and \(A_2 \) to obtain the transitions returned by \(\rho_1||\rho_2 \).

Proposition 8.4 \(\rho_1||\rho_2 \) is a strategy for \(A \). Furthermore, for each sentence \(\alpha \) of \(A \), each trajectory \(\tau \in \text{closed}(T^\alpha) \), each action \(a \) of \(A \), each state \(s \) of \(A \), each valuation \(k \) for \(U_A \), and each \(i \in \{1, 2\} \),

a. If \(a \in I_A \) and \(g^a(\tau, a, k) = s \), then \(\pi_i(s) = g^{\pi_i(\alpha)}_i(\pi_i(\tau), \pi_i(a), s[U_i]) \).

b. If \(\tau \in \max(T^\alpha) \), \(\pi_i(a) \in I_i \), and \(f^\alpha(\tau, k) = (a, s) \), then \(\pi_i(s) = g^{\pi_i(\alpha)}_i(\pi_i(\tau), \pi_i(a), s[U_i]) \).

c. If \(\tau \in \max(T^\alpha) \), \(a \in L_i \), and \(f^\alpha(\tau, k) = (a, s) \), then \((a, \pi_i(s)) = f^{\pi_i(\alpha)}_i(\pi_i(\tau), s[U_i]) \).

Proof: We show that the three objects returned by \(\rho_1||\rho_2 \) satisfy the conditions of the definition of a strategy, and the implications (a)-(c). Let \(\alpha, \tau, a, s \) and \(k \) be as above, and let \(l = \alpha.lstate[Z_A] \).

1. As observed already above, \(T^\alpha \) is an \(l \)-process of \(A \).

2. Assume \(a \in I_A \) and \(g^a(\tau, a, k) = s \). Let, for \(i \in \{1, 2\} \), \(k_i \) be arbitrary valuations for \(U_i \), and let \(y_i = g^{\pi_i(\alpha)}_i(\pi_i(\tau), \pi_i(a), k_i)[Y_i] \). Let \(s_i' = (k \cup y_i)[U_i] \) and let \(s_i' = g^{\pi_i(\alpha)}_i(\pi_i(\tau), \pi_i(a), k_i') \). Then, by definition of \(g^\alpha \), \(s = s_i' \cup s_2 '\). Since axiom S1 holds for \(\rho_i \),

\[s[U_i] = s_i'[U_i] = g^{\pi_i(\alpha)}_i(\pi_i(\tau), \pi_i(a), k_i')[U_i] = k_i' \]

and thus

\[\pi_i(s) = s_i' = g^{\pi_i(\alpha)}_i(\pi_i(\tau), \pi_i(a), k_i') = g^{\pi_i(\alpha)}_i(\pi_i(\tau), \pi_i(a), s[U_i]) \]

(1)
Since $U \subseteq U_1 \cup U_2$, and since for $i \in \{1, 2\}$, $k'_i = s[U_i]$, $s[U] = k$. Furthermore, from Equation (1) and from S1 applied to $\rho_i, \pi_i(\tau.\text{state}) \xrightarrow{\mathcal{A}_i} \pi_i(s)$. From the definition of composition, $\tau.\text{state} \xrightarrow{\mathcal{A}_i} s$. This shows that ρ satisfies S1.

To show S2, suppose by contradiction that there are two valuations k, k' such that $g^\alpha(\tau, a, k)[Y \neq g^\alpha(\tau, a, k')][Y]$. Then, there exists $i \in \{1, 2\}$ such that $g^\alpha(\tau, a, k)[Y_i \neq g^\alpha(\tau, a, k')][Y_i]$, i.e., $\pi_i(g^\alpha(\tau, a, k))|Y_i \neq \pi_i(g^\alpha(\tau, a, k'))|Y_i$. From Equation (1) we derive that $g^\alpha_i(\pi_i(a), g^\alpha(\tau, a, k)[U_i])[Y_i \neq g^\alpha_i(\pi_i(a), g^\alpha(\tau, a, k')][U_i])[Y_i$, which contradicts S2 for ρ_i.

3. Assume $\tau \in \max(T^\alpha)$ and $f^\alpha(\tau, k) = (a, s)$. By the axiom C1 for strong compatibility, either $\pi_1(\tau) \in \max(T_1^\alpha)$ or $\pi_2(\tau) \in \max(T_2^\alpha)$. We only consider the first case, the other case being symmetric. From the definition of f^α we infer $a \in L_1$ and $\pi_2(a) \in L_2$.

Let k_1 be any valuation for U_1, let $f^\alpha_1(\pi_1(\tau), k_1) = (a, s_1)$, and let $y_1 = s_1[Y_1]$. Let $k_2 = (k \cup y_1)[U_2]$, then $s_2 = g^\alpha_2(\pi_2(\tau), \pi_2(a), k_2)$, and let $y_2 = s_2[Y_2]$. Finally, let $k'_1 = (k \cup y_2)[U_1]$ and let $f^\alpha_1(\pi_1(\tau), k'_1) = (a', s'_1)$. Then $s = s'_1 \cup s_2$. From S3 applied to ρ_1 we infer $k'_1 = s'_1[U_1]$, and from S1 applied to ρ_2 we infer $k_2 = s_2[U_2]$. Thus

\[(a, \pi_1(s)) = f^\alpha_1(\pi_1(\tau), s[U_1]) \quad (2) \]

and

\[\pi_2(s) = g^\alpha_2(\pi_2(\tau), \pi_2(a), s[U_2]). \quad (3) \]

Since $U \subseteq U_1 \cup U_2$, $s[U] = k$. Furthermore, from S3 applied to ρ_1 and from S1 applied to $\rho_2, \pi_i(\tau.\text{state}) \xrightarrow{\mathcal{A}_i} \pi_i(s)$, and from the definition of composition, $\tau.\text{state} \xrightarrow{\mathcal{A}} s$. This shows that ρ satisfies S3.

To show S4, let k, k' be two valuations for the input variables of \mathcal{A}, and let $(a, s) = f^\alpha(\tau, k)$ and $(a', s') = f^\alpha(\tau, k')$. We want to show that $a = a'$ and $s[Y] = s'[Y]$. From Equation (2), $(a, \pi_1(s)) = f^\alpha_1(\pi_1(\tau), s[U_1])$ and $(a', \pi_1(s')) = f^\alpha_1(\pi_1(\tau), s'[U_1])$.

From S4 applied to ρ_1, $a = a'$ and $\pi_1(s)[Y_1 = \pi_1(s')[Y_1$. From Equation (3), $\pi_2(s) = g^\alpha_2(\pi_2(\tau), \pi_2(a), s[U_2])$ and $\pi_2(s') = g^\alpha_2(\pi_2(\tau), \pi_2(a), s'[U_2])$. From S1 applied to $\rho_2, \pi_2(s)[Y_2 = \pi_2(s')[Y_2$. Thus, $s[Y] = s'[Y]$.

We are now ready to prove the main result of this section. Roughly speaking, playing a game on $\mathcal{A}_1 \parallel \mathcal{A}_2$ using $\rho_1 \parallel \rho_2$ is like playing a game on \mathcal{A}_1 using ρ_1 and on \mathcal{A}_2 using ρ_2 under some appropriate environment sequences.

Lemma 8.5 Suppose \mathcal{A}_1 and \mathcal{A}_2 are strongly compatible HIOAs, ρ_1 and ρ_2 are strategies for \mathcal{A}_1 and \mathcal{A}_2, respectively, I is an environment sequence of $\mathcal{A} = \mathcal{A}_1 \parallel \mathcal{A}_2$, and α is a closed execution of \mathcal{A}. Let $\rho = \rho_1 \parallel \rho_2$ and $i \in \{1, 2\}$. Then there exists an environment sequence I_i for \mathcal{A}_i such that $\mathcal{O}_{\rho, I_i}(\pi_i(\alpha)) = \pi_i(\mathcal{O}_{\rho, I}(\alpha))$.

34
Proof: Let $s = \alpha.\text{state}, \alpha' = \alpha e \psi(s)$, and let $\tau'_0 a'_1 \tau'_1 a'_2 \cdots$ be the unique hybrid execution fragment of A with $O_{\rho, \tau}(\alpha) = \alpha' e \tau'_0 a'_1 \tau'_1 a'_2 \cdots$. Let n be the number of τ'_i's if the τ'_i's are finite, and ∞ otherwise. Let I_i be any environment sequence $\tau_1 a_1 b_1 \tau_2 a_2 b_2 \cdots$ for A_i such that for each $j > 0$, if $j \leq n$ then
\begin{align*}
 \tau_j &\triangleq \tau'_{j-1} \downarrow U_i \\
a_j &\triangleq \begin{cases} a'_j & \text{if } a'_j \in I_i \\ e & \text{otherwise} \end{cases} \\
b_j &\triangleq \begin{cases} \text{false} & \text{if } a'_j \in I_i \\ \text{true} & \text{otherwise} \end{cases}
\end{align*}

We claim that I_i satisfies the required property. The fact that the elements with index greater that n are defined arbitrarily causes no problem since those elements will never be used in the proof. Let $\alpha'_0, \alpha'_1, \ldots$ denote the intermediate hybrid execution fragments in the definition of $O_{\rho, \tau}(\alpha)$, and let $\alpha_0, \alpha_1, \ldots$ denote the corresponding fragments in the definition of $O_{\rho, \tau}(\pi_i(\alpha))$. We first show by induction on j that for each $j \leq n$, $\alpha_j = \pi_i(\alpha'_j)$, and then we use this result to complete the proof of the lemma.

For the base case, applying the definitions of O and of the τ'_i's gives
\begin{align*}
 \alpha'_0 &= \alpha' e \psi(s') \\
 \alpha_0 &= \pi_i(\alpha') e \psi(r')
\end{align*}

where $s' = \tau'_0(0)$, $r' = g^{\pi_i(\alpha')}(\psi(r), e, \tau_1(0))$ and $r = \pi_i(s)$. Since by definition of O and S1, $s' = g^{\psi'}(\psi(s), e, s'[U])$, Proposition 8.4.a gives
\begin{align*}
 \pi_i(s') &= g^{\pi_i(\alpha')}(\pi_i(\psi(s)), \pi_i(e), s'[U]) = g^{\pi_i(\alpha')}(\psi(r), e, \tau_1(0)) = r'.
\end{align*}

This implies that $\alpha_0 = \pi_i(\alpha'_0)$.

For the inductive step, choose $j > 0$ and assume $\alpha_{j-1} = \pi_i(\alpha'_{j-1})$. We distinguish cases based on the definition of $O_{\rho, \tau}(\pi_i(\alpha))$ applied to α_{j-1}. If α_{j-1} is admissible, then the conclusion is trivial since α'_{j-1} is admissible as well, and thus $\alpha'_j = \alpha'_{j-1}$ and $\alpha_j = \alpha_{j-1}$.

Otherwise, α'_j and α_{j-1} are sentences. Let $\tau^*_j = \pi_i(\tau'_{j-1})$. From the definition of ρ and the fact that τ'_{j-1} is a trajectory of $T^{\alpha'_{j-1}}$, it follows that τ^*_j is a trajectory of $T^{\alpha_{j-1}}$. Since
\begin{align*}
 \tau^*_j \downarrow U_i &= \pi_i(\tau'_{j-1}) \downarrow U_i = \tau'_{j-1} \downarrow U_i = \tau_j,
\end{align*}
τ^*_j is in fact the longest trajectory of $T^{\alpha_{j-1}}$ with $\tau^*_j \downarrow U_i \leq \tau_j$. Let $t = \tau_j.\text{time}$. There are three cases.
1. $t = \infty$.
 In this case τ_j^* and τ_{j-1} are admissible, $\alpha_j' = \alpha_j'_{j-1} \sim \tau_{j-1}$, and $\alpha_j = \alpha_{j-1} \sim \tau_j^*$. Thus,
 \[\alpha_j = \alpha_{j-1} \sim \tau_j^* = \pi_i(\alpha_j'_{j-1}) \sim \pi_i(\tau_{j-1}) = \pi_i(\alpha_j').\]

2. $t < \infty \land b_j = \text{true}$.
 In this case
 \[
 \begin{align*}
 \alpha_j' & = \alpha_j'_{j-1} \sim \tau_{j-1} \alpha_j' \psi(s'_j) \\
 \alpha_j & = \alpha_{j-1} \sim \tau_j^* \alpha_j \psi(s_j)
 \end{align*}
 \]
 where $s'_j = \tau_j'(0)$ and $s_j = g_i^{\alpha_j^{-1}}(\tau_j^*, \alpha_j, s'_j[U_i])$. By induction hypothesis, $\alpha_{j-1} = \pi_i(\alpha_j'_{j-1})$. By definition $\tau_j^* = \pi_i(\tau_{j-1})$. Since $b_j = \text{true}$, $\alpha_j' \notin L_i$ and therefore $\alpha_j = \pi_i(\alpha_j')$.
 Thus, in order to prove that $\alpha_j = \pi_i(\alpha_j')$, we are left to show that $\pi_i(s'_j) = s_j$. We distinguish between two cases.

 (a) $a_j' \in I_A$. Then, by S1, $s_j' = g_i^{\alpha_j^{-1}}(\tau_{j-1}, a_j', s'_j[U])$. Application of Proposition 8.4.a gives
 \[\pi_i(s_j') = g_i^{\pi_i(a_j'^{-1})}(\pi_i(\tau_{j-1}), \pi_i(a_j'), s'_j[U_i]) = g_i^{\alpha_j^{-1}}(\tau_j^*, a_j, s'_j[U_i]) = s_j.

 (b) $a_j' \in L_A$. Then, by S3, $(a_j', s_j') = f_i^{\alpha_j'^{-1}}(\tau_{j-1}', s'_j[U])$. Now Proposition 8.4.b gives
 \[\pi_i(s_j') = g_i^{\pi_i(a_j'^{-1})}(\pi_i(\tau_{j-1}'), \pi_i(a_j'), s'_j[U_i]) = g_i^{\alpha_j'^{-1}}(\tau_j^*, a_j, s'_j[U_i]) = s_j.

3. $t < \infty \land b_j = \text{false}$.
 In this case
 \[
 \begin{align*}
 \alpha_j' & = \alpha_j'_{j-1} \sim \tau_{j-1} \alpha_j' \psi(s'_j) \\
 \alpha_j & = \alpha_{j-1} \sim \tau_j^* \alpha_j' \psi(s_j)
 \end{align*}
 \]
 where $s'_j = \tau_j'(0)$ and $(a_j', s_j) = f_i^{\alpha_j'^{-1}}(\tau_j^*, s'_j[U_i])$. Furthermore, $b_j = \text{false}$ implies $a_j' \in L_i$ and thus $a_j' \notin L_A$. This means that $(a_j', s_j') = f_i^{\alpha_j'^{-1}}(\tau_{j-1}', s'_j[U])$.
 From Proposition 8.4.c,
 \[\pi_i(s_j') = f_i^{\pi_i(a_j'^{-1})}(\pi_i(\tau_{j-1}'), s'_j[U_i]) = f_i^{\alpha_j'^{-1}}(\tau_j^*, s'_j[U_i]) = (a_j', s_j).

 This implies $\pi_i(a_j') = a_j' = a_j'_{j-1}$ and $\pi_i(s_j') = s_j$, and thereby $\pi_i(a_j') = \alpha_j$.

We are now left to show that $\mathcal{O}_{\pi_i, I}(\pi_i(\alpha)) = \pi_i(\mathcal{O}_{\pi_i, I}(\alpha))$. If n is finite, then $\alpha_n' = \mathcal{O}_{\pi, I}(\alpha)$, and by definition of \mathcal{O} α_n' is admissible. Since $\alpha_n = \pi_i(\alpha_n')$, then also α_n is admissible. Thus, by definition of \mathcal{O}, $\alpha_n = \mathcal{O}_{\pi_i, I}(\pi_i(\alpha))$, which suffices. If n is infinite, then it suffices to show that $\lim_{j \to \infty} \pi_i(\alpha_j) = \pi_i(\lim_{j \to \infty} \alpha_j')$. Since for each $j > 0 \alpha_j' = \pi_i(\alpha_j)$, $\lim_{j \to \infty} \alpha_j = \lim_{j \to \infty} \pi_i(\alpha_j')$.}

The conclusion then follows directly from the continuity of the projection operator, which is easy to show.

36
8.4 Receptiveness and Compositionality

To define the notion of receptiveness we need to introduce one last concept of Zeno-tolerant hybrid execution. Informally, a hybrid execution is Zeno-tolerant if it is Zeno and its Zenoness is caused only by the fact that the environment provided input in a Zeno manner. The need for Zeno-tolerance will be clarified in Example 8.8.

We define a hybrid execution α of an HIOA A to be Zeno-tolerant iff it is Zeno, contains infinitely many input actions and only finitely many locally controlled actions.

Lemma 8.6 Suppose A_1 and A_2 are compatible HIOAs and α is a hybrid execution of $A_1 \| A_2$ such that $\pi_1(\alpha)$ and $\pi_2(\alpha)$ are Zeno-tolerant. Then α is Zeno-tolerant.

Proof: Suppose by contradiction that α is not Zeno-tolerant. By Lemma 5.2, α is Zeno, and thus, by definition of Zeno-tolerance, either α contains infinitely many locally controlled actions, or α contains finitely many input actions. In the first case, either $\pi_1(\alpha)$ or $\pi_2(\alpha)$ would contain infinitely many locally controlled actions, contradicting the fact that $\pi_1(\alpha)$ and $\pi_2(\alpha)$ are Zeno-tolerant. Thus, α contains finitely many actions. However, in this case both $\pi_1(\alpha)$ and $\pi_2(\alpha)$ would contain finitely many actions, thus contradicting again the fact that $\pi_1(\alpha)$ and $\pi_2(\alpha)$ are Zeno-tolerant.

We define a strategy ρ for A to be Zeno-tolerant if for each environment sequence I and for each closed execution α, $O_{\rho,I}(\alpha)$ is either admissible or Zeno-tolerant. We call A receptive if there exists a Zeno-tolerant strategy for A.

Proposition 8.7 Suppose A is a receptive HIOA. Then A is feasible.

Proof: Let τ be any full trajectory over the input variables of A, b any boolean value, and let I be $\tau e b \tau e b \tau e b \cdots$. Let ρ be any Zeno-tolerant strategy for A, and let α be any closed hybrid execution of A. Then $O_{\rho,I}(\alpha)$ is an admissible execution of A that extends α.

Zeno-tolerance is needed to deal with environments that provide inputs in a Zeno manner. Intuitively it should be sufficient to assume that the environment is never Zeno. However, this assumption is not sufficient to preserve receptiveness under composition. The following example, taken from [42], clarifies this point.

Example 8.8 Consider hybrid I/O automata A, B with $I_A = O_B = \{ b \}$ and $O_A = I_B = \{ a \}$. Assume A starts by performing its output action a and B starts by waiting for some input. Furthermore, assume that both A and B respond to their n^{th} input with an output action exactly $1/2^n$ time units after the input has occurred.

Consider the following alternative definition of receptiveness, which assumes that the environment does not behave in a Zeno manner. Call an environment sequence $\tau_1 a_1 b_1 \tau_2 a_2 b_2 \cdots$
admissible if, for each \(i > 0 \), \(\sum_{j \geq i} \tau_j \cdot \text{time} = \infty \). Suppose we redefine an HIOA to be receptive iff there exists a strategy \(\rho \) such that, for each closed hybrid execution \(\alpha \) and for each admissible environment sequence \(I \), \(O_{\rho, I}(\alpha) \) is admissible. Using the new definition of “receptive” it is easy to see that \(A \) and \(B \) are receptive. However, the composition of \(A \) and \(B \) yields no admissible hybrid executions. In fact, it yields only a Zeno hybrid execution that blocks time. Thus, the composition of \(A \) and \(B \) is not receptive according to neither definitions of receptiveness. One might say that \(A \) and \(B \) “unintentionally collude” to generate a Zeno behavior: each of the HIOAs looks like a Zeno environment to the other. The main idea behind Zeno-tolerance is to exclude this type of collisions between a system and its environment.

We now come to the main result of this paper, stating that receptiveness is preserved by composition.

Theorem 8.9 Suppose \(A_1 \) and \(A_2 \) are strongly compatible, receptive HIOAs. Then \(A_1 \parallel A_2 \) is receptive.

Proof: Let \(\rho_1 \) and \(\rho_2 \) be Zeno-tolerant strategies for \(A_1 \) and \(A_2 \), respectively. We prove that \(\rho = \rho_1 \parallel \rho_2 \) is a Zeno-tolerant strategy for \(A = A_1 \parallel A_2 \).

By Proposition 8.4, it follows that \(\rho \) is a strategy for \(A \). Thus it suffices to show that, for each environment sequence \(I \) of \(A \) and for each closed execution \(\alpha \) of \(A \), \(\alpha' = O_{\rho, I}(\alpha) \) is either admissible or Zeno-tolerant.

Suppose that \(\alpha' \) is not admissible. Then, by Proposition 8.3, it is Zeno. Therefore, by Lemma 5.2, \(\pi_1(\alpha') \) and \(\pi_2(\alpha') \) are also Zeno. Let \(i \in \{1, 2\} \). By Lemma 8.5, there exists an environment sequence \(I_i \) such that \(O_{\rho_i, I_i}(\pi_i(\alpha)) = \pi_i(\alpha') \). Since \(\rho_i \) is Zeno-tolerant, this implies that \(\pi_i(\alpha') \) is Zeno-tolerant. Now apply Lemma 8.6 to conclude that \(\alpha' \) is Zeno-tolerant.

With Theorem 8.9 we have decomposed the compositionality property of feasible HIOAs into two parts: strong compatibility and receptiveness. Strong compatibility deals with the compositionality of the continuous behaviors of an HIOA, while receptiveness, assuming strong compatibility, deals with the compositionality of the discrete part of an HIOA. In control theory strong compatibility corresponds to checking the consistency of different sets of differential equations. This is hard to check in general, and constitutes an important research topic within control theory. Receptiveness is a well-known issue within the theory of concurrency where it has been thoroughly investigated [14, 1, 40, 42]. Thus, Theorem 8.9 decomposes the compositionality problem of HIOAs into two problems that are best suited to be analyzed within control theory and concurrency theory, respectively. This decomposition result is an important feature of our hybrid model, as it allows one to analyze each problem within its natural framework.

The compositionality results for the hiding operations are much easier to prove:
Theorem 8.10 Suppose A is a receptive HIOA, $O \subseteq O_A$ and $Y \subseteq Y_A$. Then $\text{ActHide}(O, A)$ and $\text{VarHide}(Y, A)$ are receptive.

Proof: It is sufficient to show that if ρ is a Zeno-tolerant strategy for A, then ρ is a Zeno-tolerant strategy for $\text{ActHide}(O, A)$ and $\text{VarHide}(Y, A)$ as well. This proof is simply long and tedious, but it does not present any particular difficulty. \blacksquare

8.5 Strong Compatibility versus Compatibility

In order to apply Theorem 8.9, one has to establish that two HIOAs A_1 and A_2 are strongly compatible. As mentioned above, this is a difficult problem in general. Nevertheless, it is possible to identify certain classes of I/O behaviors for which strong compatibility reduces to compatibility. This means that if all processes of A_1 and A_2 are within such a class, the condition of strong compatibility in Theorem 8.9 reduces to the condition of compatibility.

A first example can be obtained by considering what we call autistic I/O behaviors. These are I/O behaviors that accept any input but produce an output that is totally unrelated to this input. Formally, an I/O behavior is called autistic if it satisfies the following axiom B4, which strengthens axiom B1,

$$\text{B4} \quad \forall \tau, \tau' \in \mathcal{T} : \text{dom}(\tau) = \text{dom}(\tau') \Rightarrow \tau \downarrow Y = \tau' \downarrow Y.$$

It is routine to verify that two autistic I/O behaviors are strongly compatible iff they are compatible. From the perspective of classical control theory autistic I/O behaviors are definitely of no interest: why have an input if it is not used at all? In a hybrid setting, however, a system that does not process its input in a continuous manner can still monitor this input and perform a discrete transition when some threshold is reached. Linear hybrid automata [3, 2], for instance, have no input variables and therefore, by direct application of B1, all their processes are autistic.

Less trivial examples of classes of I/O behaviors for which strong compatibility reduces to compatibility can be found in the literature on control theory [43]. In control theory it is common to express the continuous behavior of a system by means of differential equations; thus, to be sure that a system is well described, the differential equations need to admit a unique solution for each possible starting condition of the system. A typical approach is to describe a system through differential equations of the form

$$\begin{align*}
D \triangleq \begin{cases}
\dot{x} &= f(x, u) \\
y &= g(x)
\end{cases}
\end{align*}$$

where u, y, x are the vectors of input, output, and internal variables, respectively. It is known from calculus that if f is globally Lipschitz and u is C^1, then for each fixed starting
condition $x(0) = x_0$ there is a unique solution to the equations of D, defined on a maximal neighborhood of 0, such that $x(t) = x_0$. Suppose that the dynamic type of each input variable in u is the set of all C^1 functions that are defined in a left closed (possibly empty) interval. Consider the set T of all the solutions to D for each possible choice of x_0 and of $u(t)$. Observe that T is prefix closed (just define $u(t)$ on closed intervals). Let $(U, X \cup Y, T')$ be any I/O behavior such that $T' \subseteq T$. We say that $(U, X \cup Y, T')$ is an I/O behavior of D.

Consider now two systems, described by equations D_1 and D_2 with the same form as D, and suppose there are no common locally controlled variables in D_1 and D_2. The interaction between D_1 and D_2 can be described by a new set of equations D_3 obtained by considering together the equations of D_1 and D_2. If also the g functions of D_1 and D_2 are globally Lipschitz, then it is easy to show that D_3 can be represented in the same form as D where f and g are globally Lipschitz. Furthermore, the following proposition holds.

Proposition 8.11 Let \mathcal{P}_1 and \mathcal{P}_2 be two I/O behaviors of D_1 and D_2, respectively. Then \mathcal{P}_1 and \mathcal{P}_2 are strongly compatible and $\mathcal{P}_1 || \mathcal{P}_2$ is an I/O behavior of D_3.

Proof: Denote $\mathcal{P}_1 || \mathcal{P}_2$ by \mathcal{P}_3. Let l_1 and l_2 be the initial outputs of \mathcal{P}_1 and \mathcal{P}_2, respectively. We need to prove the following facts.

1. \mathcal{T}_3 is prefix closed.

 This follows immediately from the prefix closure of \mathcal{T}_1 and \mathcal{T}_2.

2. Each trajectory of \mathcal{P}_3 is a solution to D_3.

 Fix $i \in \{1, 2\}$. From the definition of \mathcal{P}_i, $\pi_i(\tau)$ is a solution to D_i. This means that τ satisfies all the equations of D_1 and of D_2, i.e., τ is a solution to D_3.

3. \mathcal{P}_3 satisfies B3.

 Suppose for the sake of contradiction that there is a maximal Zeno trajectory τ in \mathcal{P}_3. Then, $\pi_1(\tau)$ and $\pi_2(\tau)$ are Zeno trajectories in \mathcal{P}_1 and \mathcal{P}_2, respectively. By **B3** applied to \mathcal{P}_1 and \mathcal{P}_2, $\pi_1(\tau)$ and $\pi_2(\tau)$ are not maximal. Thus, there are two finite trajectories τ_1 and τ_2 in \mathcal{P}_1 and \mathcal{P}_2, respectively, defined in the interval $[0, \tau_{life}]$, such that $\pi_1(\tau) \leq \tau_1$ and $\pi_2(\tau) \leq \tau_2$. From the continuity of the solutions to D_3, the valuations $\tau_1(\tau_{life})$ and $\tau_2(\tau_{life})$ are determined by τ and are compatible. Thus the $[0, \tau_{life}]$-trajectory τ' defined by $\tau'(t) = \tau_1(t) \cup \tau_2(t)$ is a trajectory of \mathcal{P}_3 that extends τ. This contradicts the hypothesis that τ is maximal in \mathcal{P}_3.

4. \mathcal{P}_3 satisfies B1.

 Consider two trajectories τ_1 and τ_2 of \mathcal{T}_3 and a time $t \in dom(\tau_1) \cap dom(\tau_2)$ such that $(\tau_1 < t) \downarrow U_3 = (\tau_2 < t) \downarrow U_3$. We distinguish two cases.

 (a) $t = 0$. Let $i \in \{1, 2\}$. From Axiom **B1** applied to \mathcal{P}_i, $\tau_i(0)[Y_i] = \tau_i(0)[Y_i]$. This means that $\tau_1(0)[Y_3] = \tau_2(0)[Y_3]$.
(b) $t > 0$. Since τ_1 and τ_2 are solutions to D_3, from the local existence theorem (ordinary calculus) $\tau_1 < t = \tau_2 < t$. From the continuity of τ_1 and τ_2 in their domain, $\tau_1(t) = \tau_2(t)$, i.e., $\tau_1(t)[Y_3 = \tau_2(t)[Y_3]$.

5. \mathcal{P}_3 satisfies B2.

Let τ_{U_3} be a maximal trajectory for the input variables of \mathcal{P}_3. Then τ_{U_3} is either full or Zeno with some unbounded variable. Let x_0 be $l_1 \cup l_2 \cup \tau_{U_3}(0)$, for $i \in \{1, 2\}$, from B2 and the prefix closure of T_i, $\varphi(\pi_i(x_0))$ is a trajectory of \mathcal{P}_i. Thus, $\varphi(x_0)$ is a trajectory of \mathcal{P}_3. From the local existence theorem (ordinary calculus), there is a unique solution τ to D_3, defined in a maximal neighborhood of 0, with input τ_{U_3} and that starts from x_0. Also, again from the local existence theorem, for $i \in \{1, 2\}$, $\pi_i(\tau)$ is the unique maximal solution to D_i with input $\tau \downarrow U_i$. If τ is full or $\tau \downarrow U_1$ and $\tau \downarrow U_2$ are Zeno with some unbounded variable, then, from B2 applied to \mathcal{P}_1 and \mathcal{P}_2, and from the uniqueness property of $\pi_1(\tau)$ and $\pi_2(\tau)$, there is a maximal prefix τ_1 of $\pi_1(\tau)$ in \mathcal{P}_1 and a maximal prefix τ_2 of $\pi_2(\tau)$ in \mathcal{P}_2. From the definition of composition, $\tau[0, min(\tau_1, ltime, \tau_2, ltime)]$ is a maximal prefix of τ in \mathcal{P}_3.

If $\tau \downarrow U_1$ is Zeno with some unbounded variables and $\tau \downarrow U_2$ is Zeno without unbounded variables, then the input of $\pi_2(\tau)$ can be prolonged to a full input. From the local existence theorem (ordinary calculus), the unique maximal solution to the prolonged input is either $\pi_3(\tau)$ or a prolongation of $\pi_2(\tau)$, and thus the maximal prefix of τ can be defined as for the first case.

If $\tau \downarrow U_1$ and $\tau \downarrow U_2$ are Zeno without unbounded variables, then, since τ is a maximal solution to D_3, and since all the variables of τ are continuous, there is at least one unbounded local variable in τ. Assume without loss of generality that one of such variables is in Y_1. From continuity, $\tau \downarrow U_1$ and $\tau \downarrow U_2$ can be prolonged to full inputs. Furthermore, since $\tau \downarrow Y_1$ contains an unbounded variable, the maximal solution to D_1 with the prolonged inputs is $\pi_1(\tau)$, and the maximal solution to D_2 with the prolonged inputs is either $\pi_3(\tau)$ or a prolongation of $\pi_2(\tau)$. In particular $\tau, ltime < \tau, ltime$. Then, the maximal prefix of τ can be defined as for the first case.

6. \mathcal{P}_1 and \mathcal{P}_2 satisfy axiom C1.

Consider a maximal trajectory τ of \mathcal{P}_3. By B3, either τ is full or τ is closed. If τ is full, then its projections are maximal as well. If τ is closed, then suppose for the sake of contradiction that $\tau_1 = \pi_1(\tau)$ and $\tau_2 = \pi_2(\tau)$ are not maximal in \mathcal{P}_1 and \mathcal{P}_2, respectively. Let τ_U be any full extension of $\tau \downarrow U_3$. From the local existence theorem (ordinary calculus) there is a unique solution $\tau' \downarrow D_3$ with input τ_U that has value $\tau(0)$ at time 0. Furthermore, $\tau \subseteq \tau'$. Let τ_i' denote $\pi_1(\tau')$ and τ_2' denote $\pi_2(\tau')$. Let $i \in \{1, 2\}$. Then $\tau_i \leq \tau_i'$. Since τ_i is not maximal, and since \mathcal{P}_i satisfies B2, there is a trajectory τ_i'' in \mathcal{P}_i such that $\tau_i < \tau_i'' \leq \tau_i'$. Thus, there is an extension of τ in \mathcal{P}_3, e.g., $\tau' \leq min(\tau_i'', ltime, \tau_2'', ltime)$, a contradiction. □
The conclusion that we derive from Proposition 8.11 is that strong compatibility reduces to compatibility if we describe the continuous behaviors of HIOAs by means of differential equations of the form of D with functions f and g globally Lipschitz. In general, any choice of conditions on $f, g,$ and u that guarantees local existence of unique solutions, continuity of solutions, and that is preserved by interaction between systems, can be used as a basis to define a class of processes for which strong compatibility reduces to compatibility.

Example 8.12 We reconsider the case of Lipschitz functions to show a naive choice of conditions on $f, g,$ and u that does not work. If in addition to the global Lipschitz requirement for f and g we require u to be globally Lipschitz, then from ordinary calculus we know that all the solutions to D are global, i.e., defined on the full time domain. However, we cannot impose such a restriction on the dynamic types of input variables since otherwise we could not let systems interact: the output variables of a Lipschitz system, which can also be used as inputs in an interaction, are not necessarily Lipschitz.

Acknowledgment We thank Jan van Schuppen for constructive criticism on an early version of this paper.

References

43

A Notational Conventions

\(a \) action
\(b \) boolean
\(e \) the environment action
\(f \) function, in particular local step function in strategy
\(g \) function, in particular input step function in strategy
\(h \) function
\(i, j \) index
\(k \) input state
\(l \) local or output state
\(r, s \) state
\(t \) time point
\(u \) input variable
\(v \) variable
\(w \) external variable
\(x \) internal variable
\(y \) output variable
\(z \) local variable
\(A \) set of actions
\(C \) context
\(D \) set of differential equations
\(E \) set of external actions
\(F \) set of functions
\(H \) set of internal (hidden) actions
\(I \) set of input actions
\(J \) interval
\(L \) set of locally controlled actions
\(O \) set of output actions
\(R \) (simulation) relation
\(S \) set
\(T \) set of trajectories
\(U \) set of input variables
\(V \) set of variables
\(W \) set of external (Dutch: waarneembare) variables
\(X \) set of internal variables
\(Y \) set of output variables
\(Z \) set of local variables
A, B, C hybrid (I/O) automaton
\mathcal{D} set of discrete transitions
\mathcal{H} hybrid automaton
I environment sequence
\mathcal{P}, \mathcal{Q} I/O behavior
\mathcal{T} set of trajectories
N the natural numbers
R the real numbers
T the time axis
Z the integers
V the universe of variables
α hybrid execution fragment
β hybrid trace
γ sequence
ι the ‘generic’ internal action
λ the empty sequence
π projection function
ρ strategy
σ sequence
τ trajectory
Θ set of start states