The version of the following full text has not yet been defined or was untraceable and may differ from the publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/18751

Please be advised that this information was generated on 2017-12-11 and may be subject to change.
Finite rank modules over a valuation ring

W.H. Schikhof

Report No. 9932 (July 1999)
Finite rank modules over a valuation ring

W.H. Schikhof

W.H. SCHIKHO F Department of Mathematics, University of Nijmegen,
Toernooiveld 6525 ED Nijmegen, The Netherlands

Abstract

Let \(K = (K, |·|) \) be a spherically (= maximally) complete non-archimedean
rank 1 valued field with valuation ring \(B_K := \{\lambda \in K : |\lambda| \leq 1\} \). It is proved
(Theorem 3.8) that a \(\mathbb{S}_1 \)-module of finite rank is a direct sum of \(B_{nr} \)-modules of
rank 1. The proof uses convexity techniques and seminorms. However to obtain
the announced result it is not sufficient to use only real-valued seminorms, (see
§2), so we are led to allow a more general range, a so-called \(G \)-module (see §3).

Introduction

Let \(K, B_K \) be as above. A subset \(A \) of a \(K \)-vector space \(E \) is called absolutely convex
if \(0 \in A \) and if \(x, y \in A, \lambda, \mu \in B_K \) implies \(\lambda x + \mu y \in A \) i.e. if \(A \) is a \(B_K \)-submodule
of \(E \). A \(B_K \)-module \(B \) is said to be of finite rank if there is an \(n \in \mathbb{N} \), an absolutely
convex \(A \subset K^n \) and a surjective \(B_K \)-module homomorphism \(A \to B \). The smallest \(n \)
for which this is true is called the rank of \(B \). (One can prove easily that it is the same
as the Fleischer rank introduced in [1].) The following natural question was stated in
[2], p. 35 as an open problem.

Q. Is every rank \(n \) \(B_K \)-module a direct sum of \(n \) rank 1 submodules?

For a non-spherically complete base field, a twodimensional indecomposable absolutely convex set is constructed in [3], p. 68 so the condition of spherical completeness of \(K \) is necessary to obtain a positive answer.

In this note we prove that Q has a positive answer. During preparation of this note,
it was kindly pointed out by Prof. L. Fuchs that there is a direct purely algebraic
proof using the theory of [1], sketched as follows. Let \(B \) be a finite rank \(B_K \)-module.
It is a surjective image of a finite rank torsion-free module \(A \). As every rank one
submodule of \(A \) is pure-injective, \(A \) is completely decomposable. By [1], Th. 5.5, \(B \) is
polyserial, by spherical completeness and [1], Th. 5.1 all uniserials are pure-injective
and therefore \(A \) is a direct sum of uniserials.

Now we present an alternative proof, using techniques of convexity and seminorms.
To this end we write a \(B_K \)-module of rank \(n \) as \(T/S \) where \(S \subset T \) are absolutely
convex sets in \(K^n \) and study orthogonality properties of the Minkowski seminorms of
S and T. As we will see in §2 this method yields the result only for special, so-called edged sets, S and T. To obtain the full answer we extend the notion of Minkowski function by admitting a range set different from $[0, \infty)$, see §3.

1 Preliminaries

Throughout K, B_K are as above. For a subset X of a K-vector space E we denote by $[X]$ the K-linear span of X. An absolutely convex set $A \subseteq E$ is called absorbing if $[A] = E$.

Let p be a (non-archimedean) seminorm on a K-vector space E. Two subspaces D_1, D_2 of E are called p-orthogonal if $D_1 \cap D_2 = \{0\}$ and $p(d_1 + d_2) = \max\{p(d_1), p(d_2)\}$ for all $d_1 \in D_1$, $d_2 \in D_2$. If, in addition, $E = D_1 \oplus D_2$ we call D_2 (D_1) a p-orthocomplement of D_1 (D_2).

A finite linearly independent sequence e_1, \ldots, e_n in E is called p-orthogonal if $p(\sum_{i=1}^n \lambda_i e_i) = \max_{1 \leq i \leq n} p(\lambda_i e_i)$ for all $\lambda_1, \ldots, \lambda_n \in K$ i.e. if Ke_i is p-orthogonal to $\sum_{j \neq i} Ke_j$, for each i.

Proposition 1.1 Let E be an n-dimensional space over K $(n \in \mathbb{N})$, let p be a seminorm. Then each subspace of E has a p-orthocomplement. In particular, each p-orthogonal sequence can be extended to a p-orthogonal base of E.

Proof. The statements are well-known for norms p, ([3], 5.5, 5.15). We leave the extension to the case of seminorms p to the reader.

2 The edged case

Recall that for an absolutely convex subset A of a K-vector space, $A^c := \bigcap_{r > 1} \{\lambda a : \lambda \in K, |\lambda| < r, a \in A\}$ i.e., $A^c = A$ if the valuation of K is discrete, $A^c = \bigcap\{\lambda A : \lambda \in K, |\lambda| > 1\}$ if the valuation of K is dense. A is called edged if $A^c = A$. The following is well-known.

Proposition 2.1 For an absolutely convex subset A of a K-vector space the formula $p_A(x) = \inf\{|\lambda| : \lambda \in K, x \in \lambda A\}$ defines a seminorm p_A on $[A]$. We have $\{x \in [A] : p_A(x) < 1\} \subseteq A \subseteq \{x \in [A] : p_A(x) \leq 1\}$.

A is edged if and only if $A = \{x \in [A] : p_A(x) \leq 1\}$.

Proposition 2.2 Let $n \in \mathbb{N}$, let p, q be seminorms on K^n. Then there exists a base e_1, \ldots, e_n of K^n that is both p- and q-orthogonal.
Proof. (After [4], 1.10). It suffices to prove the existence of an \(e \in K^n \setminus \{0\} \) and a subspace \(D \) of \(K^n \) such that \(K^n = Ke \oplus D \), and \(Ke \) and \(D \) are both \(p \) and \(q \)-orthogonal. If \(p(e) = 0 \) for some nonzero \(e \), let \(D \) be any \(q \)-orthocomplement of \(Ke \). Then trivially \(D \) and \(Ke \) are \(p \)-orthogonal. So, we may assume that \(p \) is a norm. Let \(e_1, \ldots, e_n \) be a \(p \)-orthogonal base of \(K^n \) (see 1.1). Set \(t := \max \{ q(e_i)/p(e_i) \} = q(e_k)/p(e_k) \) for some \(k \in \{1, \ldots, n\} \). Then \(tp(x) \geq q(x) \) for all \(x \in K^n \). Choose \(e := e_k \), let \(D \) be a \(q \)-orthocomplement of \(Ke \) (see 1.1). To show that \(Ke \) and \(D \) are also \(p \)-orthogonal let \(x \in D \). Then \(tp(e + x) \geq q(e + x) \geq q(e) = tp(e) \), so \(p(e + x) \geq p(e) \) implying orthogonality.

As a corollary we obtain

Proposition 2.3 Let \(S \subset T \) be edged absolutely convex subsets of \(K^n \) where \(n \geq 1 \). Then there exists a base \(e_1, \ldots, e_n \) of \(K^n \), and absolutely convex \(C_1, \ldots, C_n \) and \(D_1, \ldots, D_n \) in \(K \) such that

\[
S = C_1e_1 \oplus \cdots \oplus C_ne_n
\]

\[
T = D_1e_1 \oplus \cdots \oplus D_ne_n.
\]

Proof. By 2.2 there is a base \(e_1, \ldots, e_m \) of \([S]\) that is both \(p_S \)- and \(p_T \)-orthogonal. Extend it to a \(p_T \)-orthogonal base \(e_1, \ldots, e_s \) of \([T]\) (see 1.1) and further extend it to a base \(e_1, \ldots, e_n \) of \(K^n \). Set

\[
C_i := \begin{cases} \{ \lambda \in K : p_S(\lambda e_i) \leq 1 \} & \text{if } i \in \{1, \ldots, m\} \\ \{0\} & \text{if } i \in \{m + 1, \ldots, n\} \end{cases}
\]

\[
D_i := \begin{cases} \{ \lambda \in K : p_T(\lambda e_i) \leq 1 \} & \text{if } i \in \{1, \ldots, s\} \\ \{0\} & \text{if } i \in \{s + 1, \ldots, m\} \end{cases}
\]

To prove that \(S = \sum_{i=1}^n C_i e_i = C_1 e_1 + \cdots + C_m e_m \) first observe that for each \(x \in C_1 e_1 + \cdots + C_m e_m \) we have \(p_S(x) \leq 1 \), so \(x \in S \) by the last statement of 2.1 (here we use that \(S \) is edged). Hence, \(C_1 e_1 + \cdots + C_m e_m \subset S \). Conversely, if \(x \in S \), \(x = \sum_{i=1}^m \lambda_i e_i \) where \(\lambda_i \in K \), then, by orthogonality and 2.1, \(1 \geq p_S(x) = p_S(\lambda_i e_i) \), so \(\lambda_i \in C_i \) for each \(i \in \{1, \ldots, m\} \) i.e. \(S \subset C_1 e_1 + \cdots + C_m e_m \). That \(T = \sum D_i e_i \) is proved similarly.

Corollary 2.4 Let \(B \) be a \(B_K \)-module of finite rank. If \(B \) has the form \(T/S \), where \(S \subset T \) are edged absolutely convex sets in some finite-dimensional \(K \)-vector space then \(B \) is the direct sum of submodules of rank \(\leq 1 \).

Proof. Let \(e_i, C_i, D_i \) be as in 2.3. Obviously, \(C_i \subset D_i \) for each \(i \) and we find \(T/S \cong \bigoplus_{i=1}^n (D_i/C_i) \).

In the next section we will remove the edgedness condition. Notice that if the valuation of \(K \) is discrete each absolutely convex set is edged, so we may assume that the valuation of \(K \) is dense.

3
3 The general case

From now on in §3, let $G := \{ |\lambda| : \lambda \in K, \lambda \neq 0 \}$. It is a multiplicative subgroup of $(0, \infty)$. The following notion has been used successfully in Functional Analysis over infinite rank valued fields to define (semi)norms, see [6], [5] for a discussion.

Definition 3.1 A *G-module* is a linearly ordered set X together with an action $G \times X \to X$ (i.e., $g_1(g_2 x) = (g_1 g_2) x$, $1 x = x$ for all $g_1, g_2 \in G$, $x \in X$) such that $g_1 \geq g_2$, $x_1 \geq x_2$ ($g_1, g_2 \in G$, $x_1, x_2 \in X$) implies $g_1 x_1 \geq g_2 x_2$, and such that for each $\varepsilon \in X$ and $x \in X$ there exists a $g \in G$ and that $gx < \varepsilon$.

Lemma 3.2 Let X be a G-module, let $x \in X$. If $g \in G$, $gx = x$ then $g = 1$.

Proof. The set $\{ g \in G : gx = x \}$ is easily seen to be a proper subgroup H of G. If $h \in H$, $h > 1$ and $g \in G$, $g \geq 1$ then $1 \leq g \leq h^n$ for some n. It follows that $H = G$, a contradiction.

Obvious examples of G-modules are G itself, the group $(0, \infty)$ or any union of multiplicative cosets of G in $(0, \infty)$. For a more interesting example, let X be a G-module, let Y be a totally ordered set. Then $X \times Y$ becomes a G-module under the lexicographic ordering and the action

$$g(x, y) = (gx, y) \quad (g \in G, \ x \in X, \ y \in Y).$$

We adjoin an element 0_X to X for which $0_X < x$, $0_X 0_X = 0_X$ for every $x \in X$ but from now on we will write 0 instead of 0_X.

Definition 3.3 Let E be a K-vector space, let X be a G-module. An *X-seminorm* is a map $p : E \to X \cup \{ 0 \}$ such that $p(0) = 0$, $p(\lambda x) = |\lambda| p(x)$, $p(x+y) \leq \max(p(x), p(y))$ for all $\lambda \in K, \ x, y \in E$.

Remark. It is not hard to see that Proposition 1.1 remains valid if we replace p by an X-seminorm. (For a formal proof for norms, see [6], [3].)

To define the kind of seminorms we are interested in, let $X := (0, \infty) \times \{ 0, 1 \}$ with the lexicographic ordering. Then for each $r \in (0, \infty)$ the element $(r, 1)$ is an immediate successor of $(r, 0)$ which suggests the notation r for $(r, 0)$ and r^+ for $(r, 1)$. The action defined above now reads as $|\lambda| r^+ = (|\lambda| r)^+\ (\lambda \in K, \lambda \neq 0)$. Thus, we have ‘doubled’ every positive real number r by giving it a successor r^+, and we write $X = (0, \infty) \cup (0, \infty)^+$ where $(0, \infty)^+ := \{ r^+ : r \in (0, \infty) \}$.

From now on in this note we assume that the valuation of K is dense and let $X_K := G \cup (0, \infty)^+$ (which is a G-submodule of $(0, \infty) \times (0, \infty)^+$ we have just introduced).

Theorem 3.4 Let A be an absolutely convex subset of a K-vector space. Then the formula

$$q_A(x) = \begin{cases} \rho_A(x) & \text{if } \rho_A(x) = \min\{|\lambda| : x \in \lambda A\} \\ \rho_A(x)^+ & \text{otherwise} \end{cases}$$
defines an X_K-seminorm $q_A \geq p_A$ on $[A]$ for which
$A = \{x \in [A] : q_A(x) \leq 1\}$.

Proof. We first prove

\[(*) \quad q_A(x) \leq |\lambda| \iff x \in \lambda A \quad (x \in [A], \lambda \in K, \lambda \neq 0)\]

yielding the desired identity $A = \{x \in [A] : q_A(x) \leq 1\}$.

Let $q_A(x) \leq |\lambda|$. If $q_A(x) = |\mu|$ for some $\mu \in K$ then $x \in \mu A \subset \lambda A$. If $q_A(x) = r^+$ for some $r \in (0, \infty)$ then $p_A(x) \leq q_A(x) < |\lambda|$ so $p_A(\lambda^{-1} x) < 1$ hence $\lambda^{-1} x \in A$ by 2.2.

If, conversely, $x \in \lambda A$ and $q_A(x) = |\mu|$ for some $\mu \in K$ then $|\mu| = \min\{|\nu| : x \in \nu A\} \leq |\lambda|$. If $q_A(x) = r^+$ for some $r \in (0, \infty)$ then $r < |\nu|$ for all ν for which $x \in \nu A$, so $r < |\lambda|$, hence $q_A(x) = r^+ < |\lambda|$.

To show that q_A is a seminorm, let $x \in [A], \lambda \in K$. If $q_A(x) = |\mu|$ for some $\mu \in K$ then $x \in \mu A$ so that $\lambda x \in \lambda \mu A$ so that by $(*)$ $q_A(\lambda x) = |\lambda \mu| = |\lambda| q_A(x)$. If $q_A(x) = r^+$ for some $r \in (0, \infty)$ then $x \in \mu A$ for all $|\mu| > r$ so $\lambda x \in \nu A$ for all $|\nu| > r|\lambda|$, hence $q_A(\lambda x) \leq |\lambda| r^+$ for all $|\nu| > r|\lambda|$ i.e. $q_A(\lambda x) \leq (r|\lambda|)^+ = |\lambda| r^+ = |\lambda| q_A(x)$. So we have proved $q_A(\lambda x) \leq |\lambda| q_A(x)$.

To prove the converse inequality (which is only needed for $\lambda \neq 0$) we observe that $|\lambda| q_A(x) = |\lambda| q_A(\lambda^{-1} x) \leq |\lambda||\lambda^{-1} q_A(x) = q_A(x)$. Finally we prove the strong triangle inequality $q_A(x+y) \leq \max(q_A(x),q_A(y))$. Suppose $q_A(x) = q_A(y)$. If $q_A(y) = |\lambda|$ for some $\lambda \in K$ then by $(*)$ $y \in \lambda A$ and also $x \in \lambda A$ so $x+y \in \lambda A$, implying $q_A(x+y) \leq |\lambda|$. If $q_A(y) = r^+$ for some $r \in (0, \infty)$ then for all $\lambda \in K$ with $|\lambda| > r$ we have $y \in \lambda A$ and also $x \in \lambda A$ so $x+y \in \lambda A$. We see that $q_A(x+y) \leq |\lambda|$ for all $|\lambda| > r$ i.e. $q_A(x+y) \leq r^+$.

Lemma 3.5 Let p,q be X_K-seminorms on a K-vector space E. If $\{x \in E : p(x) \leq 1\} \subset \{x \in E : q(x) \leq 1\}$ then $p \geq q$.

Proof. By obvious scalar multiplication we have

$$\{x \in E : p(x) \leq |\lambda|\} \subset \{x \in E : q(x) \leq |\lambda|\}$$

for each $\lambda \in K^\times$. Then the above inclusion is also true for $\lambda = 0$. Now let $r^+ \in (0, \infty)^+$. From

$$\{x \in E : p(x) \leq r^+\} = \bigcap_{\lambda \in K, |\lambda| > r} \{x \in E : p(x) < |\lambda|\}$$

and a similar formula for q we obtain

$$\{x \in E : p(x) \leq s\} \subset \{x \in E : q(x) \leq s\}$$

for every $s \in X_K \cup \{0\}$. It follows that $q \leq p$.

Corollary 3.6 Let E be a K-vector space, let p be an X_K-seminorm.

(i) If $A := \{x \in E : p(x) \leq 1\}$ then $p = q_A$.

(ii) Let $B : E \to E$ be a linear map. If $p(x) \leq 1$ implies $p(Bx) \leq 1$ for all $x \in E$ then $p(Bx) \leq p(x)$ for all $x \in E$.
Proof. (i) is a direct consequence of \(\{ x \in E : p(x) \leq 1 \} = \{ x \in E : p_A(x) \leq 1 \} \) and Lemma 3.5. For (ii) apply 3.5 to the seminorms \(p \) and \(p \circ B \).

Proposition 3.7 Let \(n \in \mathbb{N} \), let \(p \) and \(q \) be \(X_K \)-seminorms on \(K^n \). Then there is a base of \(E \) that is both \(p \)- and \(q \)-orthogonal.

Proof. Like in the proof of 2.2 we prove the existence of an \(e \in K^n \setminus \{0\} \) and an \((n - 1)\)-dimensional subspace \(D \) such that \(K^n = Ke \oplus D \) where \(Ke \) and \(D \) are both \(p \)- and \(q \)-orthogonal, and we may assume that \(p \) is a norm. Let \(e_1, e_2, \ldots, e_n \) be a \(p \)-orthogonal base of \(K^n \) (see Remark following 3.3). For each \(i \in \{1, \ldots, n\} \) let \(C_i := \{ \lambda \in K : p(\lambda e_i) \leq 1 \} \) and \(A_i := C_i e_i \). Then by \(p \)-orthogonality

\[
\{ x \in K^n : p(x) \leq 1 \} = A_1 + \cdots + A_n.
\]

Now set \(l(A_i) := \{ t \in X_K \cup \{0\} : \text{there is an } a \in A_i \text{ with } t \leq q(a) \} \). Then \(l(A_i) \) is an initial part of \(X_K \cup \{0\} \), so \(l(A_i), \ldots, l(A_n) \) are linearly ordered by inclusion; let \(l(A_1) \) be the largest one. Set \(e := e_1 \). If \(l(A_1) = \{0\} \) then \(q = 0 \) and we can take \(D = [e_2, \ldots, e_n] \), so assume \(q \neq 0 \) on \(A_1 \). Now let \(D \) be a \(q \)-orthogonal complement of \(Ke \) (Remark following 3.3) and let \(P : D + Ke \to D \) be the natural projection.

We finish the proof by showing that \(Ke \) and \(D \) are \(p \)-orthogonal, i.e. that \(p(x) \leq 1 \) implies \(p(Px) \leq 1 \) (3.6 (ii)). Let \(x \in K^n, p(x) \leq 1 \). Then \(x = a_1 + \cdots + a_n \) where \(a_i \in A_i \) for each \(i \). We have, for each \(i \), \(q(a_i) \in l(A_i) \subset l(A_1) \), so \(q(a_i) \leq q(b) \) for some \(b \in A_1 \) and \(q(b) \neq 0 \). Then \(q(Pa_i) = q(a_i) \leq q(b) \). Now \(Pa_i \in [b] \) so \(Pa_i = \lambda b \) for some \(\lambda \in K \). We see that \(|\lambda|q(b) \leq q(b) \) implying \(|\lambda| \leq 1 \) by 3.2, so \(Pa_i \in A_i \). Then \(Px = \sum Pa_i \in A_1 \) i.e., \(p(Px) \leq 1 \), and we are done.

Remark. The above proof is valid for an \(X_K \)-seminorm \(p \) and an \(X \)-seminorm \(q \) for any \(G \)-module \(X \). I do not know whether the conclusion of 3.7 holds for an \(X \)-seminorm \(p \) and a \(Y \) seminorm \(q \) where \(X \) and \(Y \) are arbitrary \(G \)-modules.

The following corollary obtains.

Theorem 3.8 (Let \(K \) be spherically complete and) let \(B \) be a \(B_K \)-module of finite rank. Then \(B \) is a direct sum of submodules of rank \(\leq 1 \).

Proof. The proofs of Proposition 2.3 and Corollary 2.4 can formally be taken over, where \(p_S \) and \(p_T \) are replaced by the \(X_K \)-seminorms \(q_S \) and \(q_T \) respectively.
References

