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Abstract

The behaviour of iterative solution methods for linear systems of algebraic
equations, in general nonsymmetric and/or indefinite, is considered. The meth-
ods analysed are generalized conjugate gradient methods of minimal residual or
orthogonal residual type using a Krylov set of vectors, defined by the precondi-
tioned matrix B, and/or other vectors.

A general convergence result showing convergence for any matrix whose field
of values does not contain the origin, is given. The rate of convergence can be
analysed using the spectrum, pseudo-eigenvalues, or more generally the field of
values of B.

For severely ill-conditioned and/or strongly non-normal matrices convergence
stagnation occurs but can be avoided using restart of the method with a properly
chosen new preconditioner.

An iterative solution method is best characterized by being either a mono-
tonically convergent minimization method or, more generally, just a projection
method on a subspace of vectors. A relation in the form of peaks and plateaus
between the convergence of pairs of methods from either class is shown.

Other issues discussed include: automatic truncation to a short length ver-
sion, the use of normal equations and efficient implementation of the methods,
with minimal complexity per iteration step.

The presentation is divided in two parts. Part one, i.e. the present paper,
deals with the characterization and convergence, including stagnation of the
method. Part two, to appear in a separate paper deals with the remaining
topics.

Keywords: Tterative solution, generalized conjugate gradient, characterization,
stagnation, variable preconditioners, pseudo-eigenvalues, field of values.



1 Introduction

Consider the iterative solution of a linear system Ax = b, where A is an n x n matrix,
xz € C*, b € C*. Our major concern here is solving such systems where A is non-
hermitian and/or indefinite. The classical conjugate gradient method of Hestenes and
Stiefel [18] was derived as a method to solve symmetric (or hermitian) and positive
definite systems, using iteratively computed approximations from a Krylov vector
subspace, Vi_1(d®, A) = span{d®, Ad°, ..., A*~1d"}, where d° is a given vector, such
as d° = Az® — b, for some initial vector z°.

Over the years since then, a number of generalized conjugate gradient methods
have been proposed to solve more general, non-hermitian and/or indefinite systems.
Some of the methods can form the iterations on more general vector subspaces than
the Krylov space. Various attempts have been made to characterize the methods, see
2], [10], [17], [22], [19].

These characterizations have been based on the inner product used (normally
defined by an Hermitian positive definite matrix, H) and the matrices A, AT, B, BT,
where B = C~! A4 and C is a preconditioner, which may be involved in the method.

However, a more natural way to characterize such iterative methods seems to be
by their fulfillment of one of the major properties: minimization, orthogonalization
based on projection, or orthogonalization without projection. Let W be a vector
space with inner product (-,-) in W and let V, U be subspaces of W.

By projection of a vector r° onto a subspace V we mean a vector g € V such that

(g,v) = (r°,v) forallv e U,

or,
(g—r°v) =0 for all v € U.

We shall consider cases where V' and U are finite dimensional of the same dimension
in which case g is unique. For the standard inner product, such a projection is also
called the [>-projection.

This leads to the following characterizations:

(i) methods based on minimization of the residual r* = b — Az*, or the iteration
error, £ — z* in some norm over a vector subspace, where z* is the current
approximation to the vector z to be computed. This corresponds to a projection,
called Ritz projection, where U = V.

(ii) methods based on making the residual or error orthogonal w.r.t. another vector
space U than V. This projection is called Galerkin projection.

(iii) methods based on making the residual or error orthogonal w.r.t. a generalized
inner product, i.e., one which is defined by a symmetric but not necessarily
positive definite, but nonsingular matrix. A typical inner product is here given

by
(1, v) 0 A
u,v)=u _— V.

Note that this inner product does not define a norm.



Examples of familiar methods within each class are

(i) ORTHOMIN (Vinsome, 1976), GCG-LS (Axelsson, 1980, 1987), GMRES (Saad
and Schultz, 1986).

(il) ORTHORES (Young and Jea, 1980), GCG-OR. (Axelsson and Makorov, 1995),
(Axelsson, 1994)

(iii) BCG (Fletcher, 1976; Jea and Young, 1983 for such a presentation of the
biorthogonal Lanczos method)

Note that all methods in the same class which are based on the same inner product
and subspaces give the same approximation in exact arithmetic. It is only their
implementations which may differ.

For further remarks regarding the characterization of generalized conjugate gra-
dient methods, see [28].

In the paper we will frequently refer to the GMRES (generalized minimal residual)
method [23] which has become a popular method. We recall that it is a Krylov
subspace method in which first the basis vectors for Vi1 (d°, A) are calculated via an
orthogonalization process, referred to as Arnoldi process, see [1].

The vector z* is then computed at predetermined steps (k) such that

1b— Az*|> = 16— Az|l2.

min
z€x'DVi_1(d°,A)

Computing the next basis vector requires only one matrix vector multiplication with
A (and a preconditioning step in the preconditioned version of the method).

In general, there is no a priori information available to tell when the residual % =
Az — b is sufficiently small, so one may do more steps than required for the wanted
accuracy. All basis vectors have to be stored and the number of vector operations
(inner products and vector additions) increases linearly with & as, in general, no short
recursion is available. Therefore for large values of k, the method becomes less efficient
and the GMRES method is normally restarted after every ky iterations for some kg,
typically of the order 10-20, using the current iterate as a new initial vector.

The present paper discusses in a survey form three fundamental issues related to
the behaviour of such iteration methods, namely

(i) convergence properties, such as best approximation properties, stagnation and
avoidance of stagnation.

(ii) relations in the form of peaks and plateaus between certain pairs of methods
taken from the different classes

(iii) implementational aspects.

The paper is divided in two parts of which this is the first part.
It is organized as follows. In Section 2 the generalized conjugate gradient method
is presented. Its major convergence properties are shown in Section 3 and some



concluding remarks are found in Section 4.

The second part discusses the importance of using non-Krylov subspaces of vectors
to avoid stagnation of the convergence and shows a relation in the form of peaks and
plateaus between pairs of methods from the Galerkin and Ritz projection classes of
methods. Some implementational aspects of the GCG type methods are discussed and
a comparison with the GMRES method is made. In the final section some concluding
remarks on automatic truncation to a short length version and convergence properties
of normal equation approaches are found.

2 The GCG-MR and GCG-OR methods with vari-
able preconditioners

Let (u,v) = u*Hv, where H is h.p.d., define an inner product, let |ju|| = (u,u)? and
let

a(u,v) = (Au, Av) ,for the GCG-MR method (2.1)

a(u,v) = (Au,v) ,for the GCG-OR method (2.2)

To solve the linear system Az = b, where A is nonsingular, following [3], [4], [5], [8]
we present now the generalized conjugate gradient-minimum residual (GCG-MR) and
the generalized conjugate gradient-orthogonal residual (GCG-OR) methods in a form
which accommodates the use of variable preconditioners.

The methods presented here use a long recursion for the update of the solution
vector z* instead of for the search direction vector d* as in the other similar (and, in
exact arithmetic equivalent) methods within the same class. As we shall see, thereby
one must solve small sized least squares problems whereas the orthogonalization of
the vectors {d*}, required in the other methods, is avoided. The methods used here
are therefore not, or less, influenced by the loss of exact orthogonality.

Given s > 1, where s is the truncation index, i.e., the maximum number of search
directions vectors used at any stage, a sequence of nonsingular preconditioners Cf,
k > 0 and an initial vector z°, let

r® =b— Az,

d =0yt .

At step k, the vector z* in the sequence {z*} approximating the solution z, is defined
by

okt =2kl 4 Z ag-k)dj , 1 < s, < min(k,s) , (2.3)

where {d’} are search directions and {ag-k)} are parameters computed to do one of
the following;:

(a) minimize (r*,r*), where r¥ = b — Az* (in the GCG-MR method)



or
(b) make r* orthogonal to the s; previous search directions, i.e. make
(r*,d) =0, k—s<l<k-—1 (2.4)

(in the GCG-OR method).
Relation (2.3) shows that

k-1
rh o=kl — Z a;k)Adj , (2.5)

kfsk

which can be used as an alternative to computing the residuals by the defining relation
r* = b — Az* if it is more cost efficient and if the propagations of round-off errors is
on a satisfactory level, to prevent the recursively computed residuals from becoming
too different from the true residuals.
By the minimization property in (a), the residual 7* is orthogonal to the subspace
AVk_l, where
Vi1 = span{d* % ... d*1} |

because r* is the difference between 7! and the projection of r*~! onto AV} ;.
Hence
(rk, Av) =0, forall v € Vi_y
or, by (2.1),
a(ef,v) =0, forall v eV, (2.6)
where
b =z — ok = A1k (2.7)

is the iteration error. By (2.4) and (2.2), relation (2.6) holds for the GCG-OR method
also.
The new search-direction vector can be defined by

dt = otk (2.8)
Alternatively, it can be defined by
d* =tk — Brdt Tt (2.9)
where (i is a scalar parameter computed to make
a(d=1,d*) =0,

that is,

B = a(dk_l,Clzlrk)
a(d* 1, dFT)

As it turns out, the latter choice gives automatic truncation i.e., a vector recursion

of length s = 1 if Cj, = C is fixed and C ' A is an H-normal matrix (see [12], [20],

(2.10)



[4], for instance). If C, = C, the expression in (2.10) can be simplified, similar as
has been done in [8]. Due to a possible division by zero in (2.10) in the case (b), one
should use (2.9) only when A is positive definite w.r.t. the inner product used.

It is also possible to use a longer recursion than in (2.9) and orthogonalize the
vectors, possibly with respect to some other inner product. In particular, to avoid
the long recursion one can generate orthogonal vectors such as in the BCG method,
which requires only a three term recursion. Numerical tests have shown that even if
the least squares minimization is done with just a few vectors, the GCG method can
offer stabilization of the erratic convergence behavior seen in the pure BCG method.
An example of such a method is the BCG-Stab method (see [26]) where just a one-
dimensional minimization is done. The GCG method offers a general approach for
such stabilizations.

Relations (2.6), (2.7) and (2.5) show that

k—1
Z ag'k)a(djadl):a(ekil,dl) s sz'—l,...,k—sk R
j=k—sk
or
AF Q) = ®) 2.11)
where . _ . )
A = a(d,d'), (a®); = o (1)), = 4P
and
() B (rk=1, Adk—1), in case (a)
. (rk=1, dk=1) in case (b), ’
YW =0, k-sp<l<Ek-2

Relation (2.11) is used to compute the coefficients in (2.3).
The matrix A®) which has order sj, x sj, has the following properties:

Case (a): Here a(d’,d’) = (Ad’, Ad"), so A®) is symmetric. Furthermore, it is
positive definite if and only if the vector set V}, is spanned by linearly independent
vectors {d’}; "} . (Note here that we have assumed that A is nonsingular.) Due to
the minimization property, it follows that this set is linearly dependent if and only
if =1 = 0, i.e., the solution has already been found. Hence, the method does not
suffer any breakdown.

Further, A®®) equals A*~1) augmented with a row and column. This observation
is important from a computational complexity point of view as only s, inner products
must be computed in all. In addition, at a truncation step, where s < sg—1 (some
of) the earlier row(s) and column(s) are deleted. Hence choosing the parameter s,
properly one can limit the total computational complexity. In practice, the matrix
A®) can become very ill-conditioned when k is large. This may cause unacceptably
large rounding errors. One must therefore combine the method with restarts as is
also normally done in the GMRES method.

Case (b): Here a(d’,d") = (Ad’,d").



Without further assumptions, in this case A*) may become singular, and the
method will then suffer a breakdown. Assume now that we use a fixed preconditioner
so that Cy, = C, k = 0,1,.... Then it can be readily seen (see also [8]) that (2.6),
(2.9) and (2.5) imply that

a(d,d) =0, 0<j<t-1

that is, the matrix A*) is upper triangular. Further, the leading coefficient in (2.3)
satisfies
ol = () fa(dh )

Hence, as long as a(d*~1,d* 1) # 0 (which holds if A is positive definite w.r.t. the
inner product) the method will not suffer any breakdown before the solution has been
found. However, if a(d*~',d*=1) = 0, A is singular and the method may have
breakdown.

3 Convergence behaviors of the GCG-MR and GCG-
OR methods

Convergence of iterative methods is typically measured by the ratio ||7*||/||7°|| or by
the ratio ||e*||/||€°||. However, normally the latter is not available. In this section a
general convergence estimate based on the relative residuals is first presented followed
by some specific estimates based on eigenvalues and on pseudo-eigenvalues.

3.1 General convergence estimates

To analyze the convergence of the methods consider first the full, untruncated method
where s;, = k, and assume that Cy, = C, k > 0. By (2.3) we have

k—1
z* =20 + Zﬁ;k)dj

0

for some coefficients §(k).
In case (a), by construction we have

(k. r*) = a(zx—2F, z—2F)

3.1
= mina(z — v,z —v) , veEx’PVEL 3D

since v = 2% + pp_1(CtA)d", where py_1(-) is a polynomial of degree k — 1 and
pr—1(0) = 0. As has been shown in [4], [5], for instance, the optimal approximation
property (3.1) can be used to give lower bounds of the rate of convergence using
various polynomial approximation properties. As it turns out, the rate of convergence
depends heavily on the distribution of eigenvalues of C~!'A. For the case where the
eigenvalues are all located in one (or several) ellipse(s) in the complex plane, see [6]
and the references therein, and the next subsection.



As shown in [4], the following general estimate holds for the rate of convergence
of the GCG-MR method.

Theorem 3.1 Consider the GCG-MR method (2.3), (2.11)). Let
kask = Spa'n{dkisk PR ;dkil)dk}'

Then successive residuals are related as

k k
. k k k k .k (r*, Br")
i I = ol = G = 05 = | —

ok WEBVE_1,5,, -1

where B = C71A.

Remark 3.1 Theorem 3.1 implies monotone convergence, i.e. ||[r*+1|| < ||r¥||, when
(rk, Br*) # 0. Further, we have seen that A® is singular if and only if the search
directions become linearly dependent, which can only occur when ¥ = 0. If the
field of values, W(B) = {(z,Bz);z € C",||z|]| = 1} does not contain zero, then
the hermitian part of B (w.r.t. the inner product defined by H, i.e., the hermitian
part of B = H-2BH?z) is positive (or negative) definite, and (r¥, Br¥) = 0 if and
only if ¥ = 0, i.e., the solution has already been found. This follows since the
real part of W (B) is equal to the interval [Amin(3(B + B*)), Amax(3(B + B*))]. It
can be shown that W (B) does not contain zero if W (B) lies in any open half-space
{z; Re(e~"2) > 0}.

For min ||Br¥ — w||?> a similar expression as for ||r**1]|? holds which shows that the
estimate in Theorem 3.1 is of a continued fraction type. (See [4] for further details.)

Remark 3.2 Letting w = 0 in Theorem 3.1, we obtain the upper bound

2
: : . (r*, Brk)
(Tk+1)rk+1) < (Tkvrk) - ( :
1 Br¥||

This estimate is the same as for the steepest descent method (which corresponds to
s=1). If H = I, we have then

k k k k
e < (1= OB G5B gy
(rk,rk) > (Brk, Brk)

Let 6, be the acute angle between r* and Br*. Then

|(r*, Brt)]

cosbly = ———
B

and the estimate takes the form

I < (1= cos? 04



or
[P < sin B[l

For this and other convergence estimates involving “operator trigonometry” see [16].
Note that cos ) can be used to tell when there is convergence stagnation.
Another bound is

-1
PP < (1 - min TBD i B9 ke (3.2)
ro(nr) s (s8)

that is, this upper bound involves the product of the smallest real parts of the field of
values of B and of B~!. In general, as shown in Theorem 3.1, the rate of convergence
of the GCG-MR method is much faster than what the latter bounds predict.

Note also that even if A and C are hpd, the hermitian part of B = C~'A may
be indefinite, so requiring /\min(%(B + B*)) or Amin (% (B_1 + B*fl)) to be positive
may not be feasible in practice. A simple example illustrating this is

S, [1 o0 1 3] _ [ 1 -3
¢ A‘{o 0.1]{—3 10}_{—0.3 1]
1 -165

whose symmetric part is { 165 1

} , 1.e., indefinite.

The GCG-OR method

For method (b) we follow [5], [8], to show a similar bound as in (3.1), which holds
if the bilinear form a(-,-) is positive definite, that is, we assume that there exists a
positive number p such that

a(u,u) > p(u,u) , forall uweC” (3.3)

It is readily seen that this holds if and only if the symmetric part of B=H 'Y2BH!/?
is positive definite, and then p = Amin(%(B + B*)). Furthermore, we assume that
a(u,v) is bounded, i.e., there exists a constant K, K > p such that

la(u,v)| < K (u,u)?(v,0)"/? | forall veC.

This holds with K = ||B|] = Amax(B*B)'/2. Clearly K > p. If B is spd, then
P = Amin(B) and K = Apax(B).
Using the orthogonality property (2.6),
a(e®,v) =0, forall vez’ PV,

and the above bounds on a(u,v), we find

bek) = aleh,z —v)

< K(e*,eb)1/2(z — v,z — v)!/2

ale

10



for all v € 2° @ V;_;. This and (3.3) show the quasioptimal (quasioptimal, because
K/p > 1, in general) property,

. g K
||ek|| = (ek: ek)1/2 < ? mExIOIIG;I‘l/kil(:E —v,x — v)1/2 (3.4)

and the average rate of convergence,

1/k

K

ek /% < (—) min  [le — ol
P z€xDVi_1

Since (K/p)'/* — 1, k — oo, it follows that in exact arithmetic the average error
becomes arbitrary close to the best approximation error. (Typical values could be

K/p=10* and k = 32, in which case (K/p)* ~ 1.35.) Hence, the average convergence
rate approaches that of method (a), but in a different norm.

3.2 Convergence estimates based on eigenvalues and on pseudo-
eigenvalues

As has been shown in [4], [8], (3.1) and (3.4) can be used to estimate the rate of

convergence of the GCG-MR and GCG-OR methods when C} = C. The estimates

are based on the fact that for any matrix B (B = C~!A) there exists a nonsingular
matrix S such that a Jordan decomposition

SIBS =17,

of B holds, where J is block diagonal and each diagonal block J; is itself either
diagonal or a Jordan matrix, of order s; of the form

A1 0
Ji =
1
0 A\

The number s; is called the deficiency index, since s; — 1 is the number of deficient
eigenvalues corresponding to the single eigenvector of J;. From the above it follows
now readily that

min [lz —of| <[|S||ISTH| min [pe())e"]],
vex®DVi_1 PrET

where 7; denotes the set of polynomials of degree k, normalized at the origin.
The number of iterations required to make

[le"[] < elle’ll (3.5)

11



for some € > 0 can then be estimated as the smallest integer &, such that for some
polynomial pg(J) of degree k we have

. pe 0
min_|[|px(J)e°|| < e 3.6
min, (1)l < sl (36)
where £(S) = [|S]|||S™"|| is the condition number of S and p and K are defined in
(3.3).

As has been shown in [6], in general this number k can depend heavily on the initial
vector and much better estimates can be derived than if we consider an arbitrary initial
vector. However, in this presentation we consider (3.5) for a general vector €. In
this case, we need only find the smallest integer k such that for some polynomial 7}
of degree k, normalized at the origin, we have

pe
Kk(S) -

min [|p;(J)[| < (3.7)
PrET,

The problem of finding the minimal number of iterations has thus been reduced to
a pure approximation problem. To proceed further, we assume that most of the
eigenvalues can be found in an ellipse E(a,b), symmetrically oriented along the real
axis with foci a, b, and with 0 < a < b on this axis. In practice, this ellipse is chosen so
that it contains most of the eigenvalues except some ‘outliers’, i.e., isolated eigenvalues
outside the ellipse. Let g be the number of such ‘outliers’ and those eigenvalues in
E(a,b) which are deficient, i.e., which correspond to a pure Jordan block of size
(s; > 1). Denote the eigenvalues by A;. If there are two or more Jordan blocks
belonging to a single eigenvalue, we take here the largest deficiency index. Then the
following estimate holds.

Theorem 3.2 [Azelsson, 1994; Axelsson, Makarov, 1995]. Assume that the eigen-
values of B = C~1A are located in the ellipse E(a,b) except for some outliers as
defined above. Then the smallest number k for which (3.5) holds is bounded by

q
kSZsi—kl},

=1

where

N 1 1 1

k—[ln(;—l— (8,)2—1>/1n0 ]
Here,

g A |si o Ep
, i
= 1- 2
c Aenbl“%;(,b)il;[l A l Kk(S)’

p=o\[120, o= a1+ Vafb),

and 0 is the ratio of the semi-azes of E(a,b). When 6 < 1, and § < 1, it holds

1/In6™" ~ Ly/b/a.

12



This theorem generalizes a similar theorem in [7] which dealt only with real eigen-
values.

This result shows that the number of iterations is bounded by the sum of the
deficiency indices s; and a number which depends essentially on the distribution of
those eigenvalues which do not correspond to proper Jordan boxes. Note that for
a normal matrix there are no deficient eigenvalues, so ¢ contains only the outlier
eigenvalues, and, furthermore, x(S) = 1.

The theorem shows that outlier eigenvalues with a big absolute value compared to
those in E(a, b) can be annihilated with a single iteration while an outlier with a small
absolute value causes a penalty in the form of a small additional factor in &’. In the
latter case one sees a delay (near stagnation) in the convergence before this eigenvalue
has been annihilated. The number of additional iterations grows logarithmically with
its inverse distance to the origin. When all outliers have been eliminated and when
the ellipse is sufficiently far from the origin, one sees a superlinear rate of convergence.
For further discussions on the above, see [7] and [5].

The estimate in Theorem 3.2 holds for any initial residual. A particular initial
vector may be such that the initial residual decays rapidly (but sublinearly) during
some initial iterations before the phase of linear convergence is entered. However,
note that this does not necessarily mean a corresponding fast decay of the errors, in
particular if the decay of the residuals was caused mainly be the annihilation of big
eigenvalues. For a detailed discussion on the different convergence phases, frequently
seen in practice, see [5], [6].

When B is highly non-normal with many Jordan boxes and/or Jordan boxes of
high order or when r(S) is huge, the above estimate is less useful and there is an
alternative approach to estimate the rate of convergence which is based on pseudo-
eigenvalues (see [24]) which may give more accurate estimates in such cases.

As is well known, the information given by the eigenvalues is already insufficient
in judging the convergence of a basic iteration method in the form

The eigenvalues \; of I — aA may all have absolute values < 1 (|A;| < 1) so, asymp-
totically, the method converge as (I — aA)* — 0, k — co. However, in the initial
transient phase ||(I —aA)*|| can take huge values and in finite precision computation
one may never enter the asymptotic phase.

An example of an inherently ill-conditioned matrix is the upper triangular Jordan
block matrix J. Following [24], let J have order 32 with zero diagonal elements and
let Jz be the perturbation of J where the lower-left corner entry is perturbed to
£ = 1073. This small perturbation changes the zero eigenvalues of .J (of multiplicity
32) into 32 distinct eigenvalues of magnitude %2 ~ 0.8. This illustrates that the
spectrum o(A) of a matrix is a bad measure of sensitivity of A w.r.t. perturbations.
In fact, in general, the additivity property does not hold for the spectrum, i.e.

0(A+E) ¢ o(A) +0(E).

13



_ (Bz,x)

On the other hand, the numerical range, W(z) = W(B,z) = o) 18 additive since

W(A+ E) C W(A) + W(E).

One can say that the spectrum is a too small set but, as it turns out, the numerical
range is too large to give useful information. The pseudo eigenvalues could possibly
be a good compromise between the two sets.

The pseudo-eigenvalues are defined as the set of eigenvalues of a perturbed matrix
with perturbation satisfying || E|| < &. (One can define a more general set of pseudo-
eigenvalues by taking perturbations satisfying some other stability region than the
disc with radius €. For this and other additional comments, see [16].)

Definition 3.1 Let A: D A = {\;} denote the set of £-pseudo-eigenvalues of A, i.e.,
all those points in the complex field, z € C which are eigenvalues of some matrix
A+ E with ||E|| < &

Now, if X is an e-pseudo-eigenvalue of A, then there is a perturbation E, ||E|| < g,
for which (A+ E)z = Az, ||z|| = 1 with eigenvector x. Thus ||(M — A)z|| = ||Ez|| < €.
Further, for any matrix B, it is true that ||B~!|| > 1/||Bz||, ||z|| = 1. Therefore it
follows by letting B = AI — A that

1 1
NN =) > o 2 =
I(AML = A)zf| — €
(Here the convention is that |[(A] — A)~!|| = oo when X equals an eigenvalue of A.)

It can also be seen that the latter property implies that A is an £-pseudo-eigenvalue.
Therefore the following equivalences hold.

Theorem 3.3 (Trefethen, 1992) Let A be a square matriz. Then the following are
equivalent

(i) X is an E-pseudo-eigenvalue.
(i) ||(AM — A)z|| <€ for some z, ||z|| = 1.
(iii) (M = A)~H| > 1/2.

Note that ||(A] — A)~!|| equals the inverse of the smallest singular value of (A\I —A)~?.

If A is normal then )

dist(\, o (A))’
i.e., equals the inverse of the distance from A to the spectrum of A, implying a tentlike
shape hanging from its poles. In the non-normal case, the shape of the surface can
be much more complicated and ||(A\I — A) || can attain huge values even when X is
far from an eigenvalue.

Let L(€) be the arclength of the boundary I'(€) of Az. It is known that, for any
polynomial pg, the matrix pg(A4) can be written as a Cauchy integral,

) =5z [ w7, (33

A=A~ =
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when T'(€) is any simple closed curve or the union of several simple closed curves
containing the spectrum of A. Considering a contour I'(€) on which ||(z] — A4)71]| =
€71 and taking norms in (3.8), we obtain

L
k(O < 2 ma (2] (39
Large values of L(€)/€ indicate that A is highly sensitive to perturbations of its
coefficients. This sensitivity will be reflected in severe problems when solving systems
with A or when computing eigenvalues of A. To make the estimate (3.9) viable,
one must choose € properly. Choosing & small gives too large values of L(€)/€ while
choosing € too large may increase the set Az and, hence L(€) too much.

Theorem 3.4 Let L(¢) and I'(€) be defined as above. Then the residuals and iteration
errors in the GCG-MR and the GCG-OR methods satisfy

L)

o S T ming, ¢ .1 Max.er(z) |px (2)], in the GCG-MR method
HEI;H < % gfg) min,, c,1 Max,er(z) |pe(2)|, in the GCG-OR method.

In both estimates in Theorem 3.4 we have avoided the appearance of the, potentially
huge, factor x(S). For certain problems, in particular when A is far from normal, and
with a proper choice of £, the bound in Theorem 3.4 may be smaller than the bound in
Theorem 3.2. In such cases the convergence of the GCG-MR and GCG-OR methods
depend on a polynomial approximation problem defined on a pseudo-spectrum rather
than on just the spectrum. As it turns out, neither bound is sharp in general. (On
the other hand, it can be readily seen that the bound for the GCG-MR method,

[Ir*]]

< min max z 3.10
011 = sy 2Kes) ! (340
holds for normal matrices and is sharp in the respect that for any & there is an initial
residual for which equality holds in (3.10)).

4 Concluding remarks

It has been shown in Theorem 3.1 that the generalized conjugate gradient (GCE)
or minimal residual method can have excellent convergence properties. However, the
actual convergence depends much on the distribution of eigenvalues or of pseudoeigen-
values.

Unless truncated, the computational cost per iteration step of the method grows lin-
early with the iteration number but this is avoided when restarts are used. In a
companion paper to the present one it will be shown that the GCG method can be
implemented as efficiently as the GMRES method but it has the advantage over the
latter that the residual is available at any step and therefore one can stop the iter-
ations as soon as the residual becomes sufficiently small. In the GCG method it is
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also possible to use other vectors than Krylov vectors and combinations of Krylov set
vectors and certain approximate solution vectors (see [21]) can often be particularly
efficient.

In practice, even after relatively few iterations, rounding errors cause a deviation
of the convergence from an ideal method with no rounding errors. This topic is treated
in particular details in [14]. The exact orthogonality among vectors is lost and this
causes an increase of the number of iterations in the GMRES and, in particular, in
methods using short term recursions, as all short term recursions depend upon certain
orthogonality properties. The GCG method is less dependent on orthogonality as
it is based on a minimization over the current vector set. It should, however, be
implemented with restart when the convergence tends to stagnate. The use of a new
set of Krylov vectors based on a new preconditioner has thereby turned out to be
particularly efficient, see [9].

For a nice survey of various phenomenae which can occur in other methods due
to loss of orthogonality and also the dependence of the rate of convergence on various
eigenvalue distributions, see [11]. See also [15].

In the companion paper to the present one it will also be shown that the orthogonal
residual method can have very large residuals, which occur when there is stagnation
in the convergence of the corresponding minimum residual method.
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