A search for resonances decaying into a Higgs boson and a new particle X in the $XH \rightarrow qqbb$ final state with the ATLAS detector

The ATLAS Collaboration*

1. Introduction

The Standard Model (SM), including the recently discovered Higgs boson [1,2], describes collider phenomenology for energy scales up to a few hundred GeV. However, a number of issues with the SM, including sensitivity of the Higgs boson mass to radiative corrections, indicate either extreme fine-tuning or the presence of new physics at an energy scale not far above the Higgs boson mass. Many theoretical extensions to the SM predict the existence of new particles around the TeV scale, and it is natural to expect such particles to exhibit significant coupling to the Higgs boson (H). Examples of previous studies at the CERN Large Hadron Collider (LHC) which are motivated by these considerations include ATLAS [3,4] and CMS [5–8] searches for new resonances decaying into VH, where V denotes a W or Z boson, as well as ATLAS [9] and CMS [10,11] searches for resonances decaying into HH.

This Letter presents a new and more general search for heavy resonances which decay into the SM Higgs boson and a new particle (X), utilizing a data sample corresponding to 36.1 fb$^{-1}$ of proton–proton (pp) collisions at $\sqrt{s} = 13$ TeV collected during 2015 and 2016 with the ATLAS detector. Since the hypothetical particle X has not yet been detected, it has unknown properties. It is assumed that X decays hadronically into a pair of light quarks, $X \rightarrow q\bar{q}$, and has a natural width which is narrow compared to the detector resolution. It is also assumed that single X production is sufficiently rare that it has not been observed by analyses such as the ATLAS and CMS searches for dijet resonances [12–14].

Examples of theories of physics beyond the SM which predict the existence of XH resonances include pseudo Nambu–Goldstone models [15], extended Higgs boson models [16] and extra-dimension frameworks with warped compactifications [17]. For simplicity, such XH resonances are hereafter denoted by Y. It is assumed that the new resonance Y is narrow. This study analyses the decay chain $Y \rightarrow XH \rightarrow q\bar{q}bb$, and considers the regime of high Y masses, in the range between 1 TeV and 4 TeV, with $m(Y) > m(X)$, which implies that the X and H bosons are both highly Lorentz-boosted. The X and H boson candidates are each reconstructed in a single jet with large radius parameter; these jets are called “large-R jets” throughout this Letter and are denoted by J. Jet substructure techniques and b-tagging are used to suppress the dominant background from multijet events, to enhance the sensitivity to the dominant $H \rightarrow bb$ decay mode, and to distinguish between the two bosons.

Given their assumed decay modes, both X and Y must be bosons. However, the search does not impose explicit requirements on their electric charge, spin or polarization states, and utilizes a simple event selection that does not seek to exploit angular correlations or other variables that would be sensitive to particular spin states. The analysis utilizes the reconstructed Y mass as the final discriminant, searching for an excess due to a resonance in the $Y \rightarrow XH \rightarrow J$ mass distribution, separately in a large number of overlapping ranges of X mass.

* E-mail address: atlas.publications@cern.ch.

https://doi.org/10.1016/j.physletb.2018.01.042
0370-2693/© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
A modified form of the benchmark heavy vector triplet (HVT) model [18,19] is used to provide a measure of the implications of the results of the search within one particular theoretical framework. The HVT model provides a simplified phenomenological Lagrangian that predicts heavy spin-1 resonances which are produced via $qar{q}$ annihilation, and which can have significant branching ratios for decays into boson pairs, with longitudinally polarized bosons. The search results are used to set limits on the production cross-section $\sigma(pp \rightarrow Y \rightarrow XH \rightarrow q\bar{q}bb)$ within the HVT theoretical framework, to provide an interpretation in the case where both X and Y have spin 1. The search overlaps with the VH and HH searches, when the X mass window extends around the V and H mass values, respectively, in which cases the results are found to be compatible with those analyses. However, the current search considers a much wider range of X masses, from 50 GeV to 1000 GeV.

2. ATLAS detector

The ATLAS detector [20] is a general-purpose particle physics detector used to investigate a broad range of physics processes. ATLAS includes an inner detector (ID) surrounded by a superconducting solenoid, electromagnetic (EM) and hadronic calorimeters, and a muon spectrometer (MS). The ID consists of a silicon pixel detector, including the insertable B-layer [21] installed after Run 1 of the LHC, a silicon microstrip detector and a straw-tube tracker. The ID is immersed inside a 2 T axial magnetic field from the solenoid and provides precision tracking of charged particles with pseudorapidity $|\eta| < 2.5$. The straw-tube tracker also provides transition radiation measurements for electron identification. The calorimeter system consists of finely segmented sampling calorimeters using lead/liquid-argon for the detection of EM showers up to $|\eta| = 3.2$, and copper or tungsten/liquid-argon for hadronic showers for $1.5 < |\eta| < 4.9$. In the central region $|\eta| < 1.7$, a steel/scintillator hadronic calorimeter is used. Outside the calorimeters, the MS incorporates multiple layers of trigger and tracking chambers within a magnetic field produced by a system of superconducting toroids, enabling an independent precise measurement of muon track momenta for $|\eta| < 2.7$. The ATLAS detector has a two-level trigger system. The first-level (L1) trigger is implemented in hardware and uses the calorimeter and muon systems to reduce the accepted event rate to 100 kHz. The L1 trigger is followed by a software-based high-level trigger to reduce the accepted event rate to approximately 1 kHz for offline analysis [22].

3. Signal and background simulation

Samples of simulated signal and background events are used to optimize the event selection and to estimate the background contributions from various SM processes.

The $Y \rightarrow XH$ signal was simulated by modifying the HVT [18, 19] configuration for $W' \rightarrow WH$ decays, replacing the W' boson with a narrow resonance Y, and the W boson by X. The new X boson was assumed to have spin 1, a natural width of 2 GeV, and a branching ratio (B) of 100% for decays $X \rightarrow ud$. The properties of the Higgs boson were assumed to be as described in the SM, with its mass set to 125.5 GeV and decays into bb and cc enabled in the simulation. Given the SM branching ratios and the relevant experimental performance factors, Higgs boson decays to bb dominate the signal efficiency. The signal samples were generated with MadGraph5_aMC@NLO 2.2.2 [23] interfaced to Pythia 8.186 [24] for parton shower and hadronization, with the NNPDF2.3 next-to-leading-order (NLO) parton distribution function (PDF) set [25] and the ATLAS A14 set of tuned parameters (tune) [26] for the underlying event. Approximately 100 signal samples were generated, each with individual values of Y and X masses, chosen in a two-dimensional grid of values ranging from 1 TeV to 4 TeV for $m(Y)$ and from 50 GeV to 1000 GeV for $m(X)$. The requirements $m(Y) > 1$ TeV and $m(Y) > m(X)$ were applied, to focus on the kinematic regime where the X and H bosons are highly Lorentz-boosted.

The dominant SM background is due to multijet processes and, as described in Section 7, is evaluated using data-driven techniques. Some cross-checks were performed using simulated multijet events generated with Pythia 8.186, with the NNPDF2.3 NLO PDF and the ATLAS A14 tune.

Minor background contributions, which are estimated using simulated samples, are due to $t\bar{t}$ production and to vector boson production in association with jets (V+jets). The $t\bar{t}$ samples were generated with Powheg-Box v2 [27] with the CT10 PDF set [28], interfaced with Pythia 8.428 [29] and the Perugia 2012 tune for the parton shower [30] using the CTEQ6L1 PDF set [31]. The cross-section of the $t\bar{t}$ process was normalized to the result of a QCD calculation at next-to-next-leading order and next-to-next-leading logarithmic accuracy ($\text{NNLO}+\text{NLL}$), as implemented in Top++ 2.0 [32]. The V+jets background samples were generated with Sherpa 2.1.1 [33] interfaced with the CT10 PDF set, including only hadronic V decays. Matrix elements of up to four extra partons were calculated at leading order in QCD. The V+jets events are normalized to the NNLO cross-sections [34].

For all simulated samples except those produced using Sherpa, EvtGen v1.2.0 [35] was used to model the properties of bottom and charm hadron decays. The effect of multiple pp interactions in the same and neighbouring bunch crossings (pile-up) was included by overlaying minimum-bias events simulated with Pythia 8.186 on each generated event [36]. The detector response was simulated with a GEANT4 [37] based framework [38] and the events were processed with the same reconstruction software as that used for data.

4. Event reconstruction

The reconstruction and identification of hadronically decaying bosons is performed using jets. Large-R jets are reconstructed with the anti-k_t algorithm [39,40] with radius parameter $R = 1.0$ from three-dimensional topological clusters of energy deposits in the calorimeter [41]. The large-R jets are required to have transverse momentum $p_T > 250$ GeV and $|\eta| < 2.0$.

Track-jets are formed from charged-particle tracks with $p_T > 0.4$ GeV and $|\eta| < 2.5$ that satisfy a set of hit and impact parameter criteria to reduce the contamination from pile-up interactions, and are clustered using the anti-k_t algorithm with $R = 0.2$ [42]. Only track-jets with $p_T > 25$ GeV that are constructed from at least two tracks are considered in this analysis.

To mitigate pile-up effects and soft radiation, the large-R jets are trimmed [43], and then are subsequently reclustered into subjets using the k_t algorithm [44]. To compensate for the limited angular resolution of the calorimeter, the mass of large-R jets is computed using a combination of calorimeter and tracking information [45]. The combined jet mass is defined as
where \(m_j^\text{calo} \) is the calorimeter-only estimate of the jet mass. The variable \(m_j^\text{track} \) is the jet mass estimated via tracks with \(p_T > 0.4 \text{ GeV} \) associated with the large-\(R \) jet using “ghost association” [39], and is scaled in the combined mass formula by the ratio of calorimeter to track \(p_T \) estimates in order to account for the missing neutral-particle component in the track-jet. The ghost association technique relies on repeating the jet clustering process with the addition of measured tracks that have the same direction but infinitesimally small \(p_T \), so that the jet properties remain unaffected. A track is associated with a jet if it is contained in the jet after this re-clustering procedure. The weighting factors \(w_{\text{calo}} \) and \(w_{\text{track}} \) depend on \(p_T \) to satisfy \(w_{\text{calo}} + w_{\text{track}} = 1 \), and are used to optimize the combined mass resolution. To partially account for the energy carried by muons from semileptonic b-hadron decays, the four-momentum of the closest muon candidate satisfying “Tight” muon identification criteria [46] with \(p_T > 4 \text{ GeV} \) and \(|\eta| < 2.5 \) that is within \(\Delta R = 0.2 \) of a track-jet that is b-tagged is added to the calorimeter jet four-momentum [47]. In this study, only large-\(R \) jets with \(m_j > 50 \text{ GeV} \) are considered for further analysis.

Identifying a large-\(R \) jet as a hadronically decaying Higgs boson candidate is aided by using track-jets matched via ghost association to the large-\(R \) jet [48]. The identification of b-hadrons relies on a multivariate b-tagging algorithm [49] applied to a set of tracks in a region of interest around each track-jet axis. The b-tagging requirements result in an efficiency of 77% for track-jets containing b-hadrons, and the misidentification rate is \(\sim 2\% \) (\(\sim 24\% \)) for light-flavour (charm) jets. These were determined in a sample of simulated \(t\bar{t} \) events. For simulated samples the b-tagging efficiencies are corrected, based on the jet \(p_T \), to match those measured in data [50].

Identifying a large-\(R \) jet as a hadronically decaying \(X \rightarrow q\bar{q}' \) boson candidate is aided by using jet substructure techniques. The variable \(D_2 \) is defined\(^2\) as a ratio of two- and three-point energy correlation functions [51,52], which are based on the energies and pairwise angular distances of particles within a jet. This variable is optimized [53] to distinguish between jets originating from a single parton and those from the two-body decay of a heavy particle. A detailed description of the optimization, performed using simulated \(V \) decays, can be found in Refs. [54]. Studies of boosted W boson decays [54] demonstrate that the \(D_2 \) variable is well modelled, with good agreement observed between data and simulation.

“Loose” electrons and muons are reconstructed and identified as described in Refs. [46,56]. These leptons have \(p_T > 7 \text{ GeV} \), \(|\eta| < 2.5 \) (2.47) for muons (electrons), \(|d_0|/\sigma_d < 3 \) (5) and \(|z_0\sin\theta| < 0.5 \text{ mm} \), where \(d_0 \) is transverse impact parameter with respect to the beam line, \(\sigma_d \) is the corresponding uncertainty, and \(z_0 \) is the distance between the longitudinal position of the track along the beam line at the point where \(d_0 \) is measured and the longitudinal position of the primary vertex. An isolation criterion is also applied. Specifically, within a cone of size \(\Delta R = 0.2 \) (0.3) around an electron (muon), the scalar sum of transverse momenta of tracks divided by the lepton \(p_T \) is required to be less than a cut-off value, chosen to provide a constant efficiency of around 99% as a function of \(p_T \) and \(|\eta| \).

5. Event selection

Events are selected from the 2015 (2016) running period using a trigger that requires a single large-\(R \) jet with \(p_T > 200 \text{ GeV} \)

\(^2\) The angular exponent \(\beta \), defined in Ref. [51], is set to unity.
value decreases to 89.5% for \(m(Y) = 4 \) TeV, due to the falling efficiency in the very high mass region to tag two separate b-tagged jets within the \(H \) jet.

The large-\(R \) jet which is not chosen as the Higgs candidate is assigned to the \(X \) hypothesis. The jet substructure variable \(D_2 \), described previously, is used to check whether the \(X \) candidate jet is compatible with the two-prong structure expected due to its assumed \(X \rightarrow qar{q}' \) decay. The requirement on the value of \(D_2 \) corresponds to that defined in Refs. [54,55] to provide a constant efficiency of 50% for selecting hadronic \(V \) decays, when applied along with an associated requirement that \(m_J \) lies within a window around the \(V \) mass. Given that the \(X \) mass is a priori unknown, the event selection does not make any requirement on the mass of the \(X \) candidate jet beyond the \(m_J > 50 \) GeV restriction applied to all large-\(R \) jets, however the data are interpreted in windows of \(m_X \).

The mass of the \(Y \rightarrow X H \) candidate is required to be larger than 1 TeV. The efficiencies for the 1-tag and 2-tag signal region selections are presented as a function of \(m(Y) \) and \(m(X) \) in Fig. 2 for the various signal samples. No signal samples with \(m(Y) > 4 \) TeV were simulated, due to the low expected sensitivity for such high masses with the current data sample. However, data events with higher reconstructed \(Y \) mass values are included in the overflow bin in the mass distributions.

6. Signal modelling

The signal search in the two-dimensional space of \(m(Y) \) versus \(m(X) \) employs a sliding-window technique to the \(m_J \) spectrum of the \(X \) candidate jet, dividing the data into a series of overlapping \(m_J \) ranges. As described in Section 9, for each \(m_J \) window of the \(X \) candidate jet, the corresponding \(m_J \) distribution is examined for evidence of an excess due to a signal, where \(m_J \) denotes the invariant mass of the system formed by the \(H \) and \(X \) candidate large-\(R \) jets.

The reconstructed \(X \) mass resolution varies from 12 GeV to 40 GeV. The widths of the overlapping \(m_J \) windows for the \(X \) candidate jet are chosen to be around twice the \(X \) mass resolution, but also take into account the limited number of data events. The central values of neighbouring \(m_J \) windows are shifted by roughly half of the \(X \) mass resolution, ensuring that they overlap and do not leave gaps in the search coverage. Studies in which simulated signals were injected at various mass values were used to demonstrate the reasonableness of the window choices.

The reconstructed \(Y \rightarrow X H \) mass resolution varies from about 65 GeV to 100 GeV. For each \(m_J \) window of the \(X \) candidate jet, the binning for the corresponding \(m_J \) distribution is chosen to be at least as large as the \(Y \) mass resolution, dependent on the size of the data sample. Given the large number of possible \(m(Y) \) and \(m(X) \) values in the ranges considered, a parameterization of the signal is used to interpolate between the mass values for which signal samples were generated. Probability distribution functions for the \(m_J \) and \(m_J \) shapes are built using the RooKeysPdf class of the RooFit package [57]. Multidimensional morphing methods, implemented in the RooMomentMorphND class [58], are subsequently applied to parameterize grid points using the surrounding four nearby points. The normalization of the parameterized signals is estimated using linear interpolation.

7. Background estimation

After the event selection, over 96% of the SM background originates from multijet processes. A data-driven method is used to determine the shape of the dominant multijet background, with its normalization in the signal regions being determined with the fit procedure described in Section 9. The small additional background contributions from \(t\bar{t} \) and \(V \)-jets production are estimated via simulation. The background determination is performed separately in each of the \(m_J \) windows considered for the \(X \) candidate jet mass.

As depicted in Fig. 1, the event sample, before any specific requirements are made on the mass of the \(X \) candidate jet, is separated into mutually exclusive categories according to the mass and number of \(b \)-tagged jets of the Higgs boson candidate. The SR1 and SR2 regions are used to perform the signal search, while the other seven regions are used as control regions to develop and validate the background model. The multijet background component in each of the seven control regions is determined by subtracting from the data the \(t\bar{t} \) and \(V \)-jets contributions predicted by simulation.

The modelling of the dominant multijet background in the SR1 and SR2 signal regions starts from the CR0 sample, for which the candidate Higgs jet satisfies the SR requirement on the jet mass but has no associated \(b \)-tagged jets. The CR0 sample should contain negligible signal contamination. The basic strategy is to use
events in the CR0 sample with at least one (two) track-jet(s) associated with the Higgs jet to model the shape of the multijet background in the SR1 (SR2) signal region. However, sources of possible differences between the multijet components of CR0 versus SR1 and SR2 include changes in the underlying event populations due to the absence or presence of b-quarks as well as kinematic differences arising from the application of b-tagging, since the b-tagging efficiency depends on the p_T and η of the track-jet. The corrections required to take these differences into account are extracted from the HSB events. In each of the HSB regions with different number of b-tags (HSB0, HSB1, HSB2), a pair of two-dimensional histograms is filled, one of p_T versus η for the leading track-jet, and the other for the subleading track-jet. Subsequently, leading and subleading track jet reweighting maps are created by dividing the HSB1 and HSB2 histograms by the corresponding HSB0 histogram. A Gaussian kernel, similar to that applied in Ref. [59], is used to smooth out statistical fluctuations by taking a weighted sum of neighbouring bins. The weight is inversely proportional to the width of the Gaussian kernel and depends on the statistical uncertainty of each bin. The result is a reduction of statistical fluctuations, while adding negligible bias to the distributions.

To describe the SR multijet background shapes, the CR0 events are reweighted using the maps in bins of track-jet p_T and η extracted from the sideband. The reweighting is performed only for the 2-tag samples, as the modelling of the shape of the multijet background in the 1-tag sideband regions without reweighting is observed to be adequate. Due to the correlations between the kinematic variables of the two leading track-jets used for the reweighting, multiple reweighting iterations are performed, until the track-jet properties, p_T and η, are matched within statistical uncertainties.

The background modelling is validated by using the same method to predict the background in the LSB regions in the low mass sidebands, and then comparing with the data and obtaining good agreement. Agreement is also confirmed in the signal region by integrating over all values of the mass of the X candidate jet, thereby diluting any possible signal contamination to a negligible level.
Fig. 4. The $m_{3\ell}$ mass distributions in the m_{j} window of the X candidate jet from 288 GeV to 340 GeV after the likelihood fit for events in (a) the 1-tag signal region (SR1) and (b) the 2-tag signal region (SR2). The highest mass bin includes any overflows. The background expectation is given by the filled histograms and the ratio of the observed data to the background (Data/Bkg) is shown in the lower panel. The uncertainties shown are those after the fit described in the text. One particular example of a possible signal model, namely with $m(X) = 314$ GeV and $m(Y) = 2.3$ TeV, is overlaid with an arbitrary overall normalization, illustrating the corresponding contributions that would be expected in the SR1 and SR2 regions. Panel (c) shows the resultant 95% CL upper limit on the production cross-section, $\sigma(pp \rightarrow XH → q\bar{q}X)$, (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.)

8. Systematic uncertainties

The main systematic uncertainty in the background estimate arises from the potential mis-modelling of the background processes. As described in Section 7, the multijet background shapes in the two signal regions are estimated directly from data using sideband regions. To determine the systematic uncertainty in this method, the multijet background shapes in the HSB1 and HSB2 regions are compared, in each m_{j} window of the X candidate jet, to those of the reweighted HSB0 multijet distributions. The differences, in bins of m_{jj}, fitted with a line are used as the multijet modelling systematic uncertainties. The largest observed shape difference is found to be approximately 12%, while the smallest is 3%. A normalization uncertainty of 30% is assigned to the small $t\bar{t}$ background, based on the ATLAS $t\bar{t}$ differential cross-section measurement [60]. The same uncertainty is conservatively applied to the small $V +\text{jets}$ background component.

The uncertainty in the combined 2015+2016 integrated luminosity is 2.1%. It is derived, following a methodology similar to that detailed in Ref. [61], from a calibration of the luminosity scale using x–y beam–separation scans performed in August 2015 and May 2016. This uncertainty is applied to the yields of both the signal and the small $t\bar{t}$ and $V +\text{jets}$ backgrounds, which are not determined from data.

Additional systematic uncertainties in the signal acceptance arise from the choice of PDF set and the uncertainty in the amount of initial- and final-state radiation. For all the two-dimensional mass grid points, a constant 5% uncertainty is applied and covers both effects.

Uncertainties related to the signal parameterization method are estimated by comparing the mass distributions of generated signal points to those predicted from morphing nearby points in the two-dimensional space of $m(Y)$ versus $m(X)$. The largest observed normalization deviation is $\sim8\%$, while differences in the signal shape also reach levels up to $\sim8\%$. Both effects are included as uniform uncorrelated systematic uncertainties.

Systematic uncertainties which account for experimental effects on the signal shape include the large-R jet mass scale and mass resolution, as well as D_{2} and the b-tagging. The impact of each of these effects is evaluated by shifting each variable accord-
Fig. 5. The m_Y mass distributions in the m_J window of the X candidate jet from 500 GeV to 584 GeV after the likelihood fit for events in (a) the 1-tag signal region (SR1) and (b) the 2-tag signal region (SR2). The highest mass bin includes any overflows. The background expectation is given by the filled histograms and the ratio of the observed data to the background (Data/Bkg) is shown in the lower panel. The uncertainties shown are those after the fit described in the text. One particular example of a possible signal model, namely with $m(X) = 542$ GeV and $m(Y) = 2.9$ TeV, is overlaid with an arbitrary overall normalization, illustrating the corresponding contributions that would be expected in the SR1 and SR2 regions. Panel (c) shows the resultant 95% CL upper limit on the production cross-section, $\sigma(pp \rightarrow Y \rightarrow XH \rightarrow q\bar{q}'b\bar{b})$. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.)

Fig. 6. The (a) expected and (b) observed 95% CL limits on the production cross-section $\sigma(pp \rightarrow Y \rightarrow XH \rightarrow q\bar{q}'b\bar{b})$ (z-axis) in the two-dimensional space of $m(Y)$ versus $m(X)$. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.)
ing to these systematic uncertainties and then re-performing the signal parameterization. Based on the measurements documented in Refs. [55,62], a 2% uncertainty is assigned for the large-R jets p_T scale, while uncertainties of 20% and 15%, respectively, are assigned for the large-R jet mass resolution and D_2 resolution. Uncertainties in the correction factors for the b-tagging are applied to the simulated event samples by looking at dedicated flavour-enriched samples in data. An additional term is included to extrapolate the measured uncertainties to the high-p_T region of interest.

This term is calculated from simulated events by considering variations of the quantities affecting the b-tagging performance such as the impact parameter resolution, percentage of poorly measured tracks, description of the detector material, and track multiplicity per jet. The dominant effect on the uncertainty when extrapolating to high p_T is related to the change in tagging efficiency when smearing the track impact parameters based on the resolution measured in data and simulation. The uncertainty in the b-tagging efficiency is measured as a function of b-jet p_T and η for track-jets with $p_T < 250$ GeV, while for higher p_T values it is extrapolated using simulation [50]. These uncertainties vary between 2% and 8% in the lower p_T range, and rise to approximately 9% for track-jets with $p_T > 400$ GeV.

9. Statistical treatment and results

The signal search in the two-dimensional space of $m(Y)$ versus $m(X)$ is performed by applying a sliding-window technique to the $m_{J\gamma}$ spectrum of the X candidate jet, which divides the data into a series of overlapping $m_{J\gamma}$ ranges. For each $m_{J\gamma}$ window, a binned maximum-likelihood fit is then performed to the resultant $m_{J\gamma}$ distributions in both SR1 and SR2 signal regions simultaneously. A test statistic based on the profile likelihood ratio [63] is used to test hypothesized values of the global signal strength (μ), corresponding to the HVT model. The systematic uncertainties, described previously, are modelled with Gaussian or log-normal constraint terms (nuisance parameters) in the definition of the likelihood function.

Each $m_{J\gamma}$ window of the X candidate jet is fitted independently, but as the mass ranges overlap, the fit results are correlated. In each fit, the normalizations of the multijet backgrounds in the SR1 and SR2 signal regions are treated as free parameters. All of the systematic uncertainties are treated as correlated between the two signal regions.

The data distributions and fit results are shown for three example $m_{J\gamma}$ windows of the X candidate jet in Figs. 3–5. In each case, the left (right) upper plot shows the $m_{J\gamma}$ distribution in the SR1 (SR2) signal region, and the results of the simultaneous fit are superimposed on the plots. Examples of possible signal models are also shown, with arbitrary overall normalization, illustrating the corresponding contributions that would be expected in the SR1 and SR2 regions. The data distributions are well described by the fitted SM background, and there is no significant evidence of a signal. The same conclusion is valid for all $m_{J\gamma}$ windows of the X candidate jet.

The fits to the data are used to set upper limits on the production cross-section, $\sigma(pp \to Y \to XH \to q\bar{q}bb)$, Exclusion limits are computed using the CL$_{s}$ method [64], with a value of μ regarded as excluded at the 95% confidence level (CL) when CL$_{s}$ is less than 5%. The corresponding limit plots are included in panel (c) of Figs. 3–5.

A summary of the expected and observed 95% CL limits on the production cross-section, $\sigma(pp \to Y \to XH \to q\bar{q}bb)$, is given in the two-dimensional plane of $m(Y)$ versus $m(X)$ in Fig. 6. For X mass windows around the V and Higgs boson mass values, the results are found to be compatible with the dedicated ATLAS VH

and HH searches reported in Refs. [4] and [9], respectively. To visualize both the magnitude and the sign of discrepancies between the expected and observed limits, Fig. 7 presents the differences between the expected and observed limits, expressed in multiples of σ, the equivalent Gaussian significance. The maximum observed deviation has a local significance of about 2.5σ, corresponding to a global deviation of 1.2σ.

10. Conclusion

A search for new heavy resonances Y decaying into a Higgs boson and a new particle X was carried out using 36.1 fb$^{-1}$ of pp collision data collected at $\sqrt{s} = 13$ TeV by ATLAS during the 2015 and 2016 runs of the CERN Large Hadron Collider. The $Y \to XH \to q\bar{q}bb$ channel was studied using a generic approach in the topological regime where both bosons are highly Lorentz-boosted, and each is reconstructed as a single jet with a large radius parameter. Jet substructure and b-tagging techniques are exploited to tag the X and Higgs bosons and to reduce the dominant multijet background. Values of $m(X)$ in the mass range of 1 TeV to 4 TeV (50 GeV to 1000 GeV) were considered.

A search for evidence of an excess in the XH mass spectrum was made in a large number of overlapping sliding windows in the mass of the X particle. The data found to be in agreement with the Standard Model background expectations and only small deviations are observed, with local (global) significance of no more than 2.5σ (1.2σ). Within the framework of a modified Heavy Vector Triplet model, upper limits on the resonance production cross-section $\sigma(pp \to Y \to XH \to q\bar{q}bb)$ were set at 95% CL in the two-dimensional space of the Y mass versus the X mass.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSF, Georgia; BMHE, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo
Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRSRT, Morocco; NWO, Netherlands; RCN, Norway; MNISW and NCN, Poland; FCT, Portugal; MINEFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIzo, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AWI Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BRF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKa (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [65].

References

62 (10) Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; (11) Department of Physics, The University of Hong Kong, Hong Kong; (12) Department of Physics and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
63 Department of Physics, National Tsing Hua University, Taiwan, Taiwan
64 Department of Physics, Indiana University, Bloomington IN, United States
65 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
66 University of Iowa, Iowa City IA, United States
67 Department of Physics and Astronomy, Iowa State University, Ames IA, United States
68 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
69 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
70 Graduate School of Science, Kobe University, Kobe, Japan
71 Faculty of Science, Kyoto University, Kyoto, Japan
72 Kyoto University of Education, Kyoto, Japan
73 Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka, Japan
74 Instituto de Fisica La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
75 Physics Department, Lancaster University, Lancaster, United Kingdom
76 (13) INFN Sezione di Lecce; (14) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
77 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
78 Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana, Slovenia
79 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
80 Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
81 Department of Physics and Astronomy, University College London, London, United Kingdom
82 Louisiana Tech University, Ruston LA, United States
83 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
84 Fysika institutionen, Lunds universitet, Lund, Sweden
85 Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
86 Institut für Physik, Universität Mainz, Mainz, Germany
87 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
88 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
89 Department of Physics, University of Massachusetts, Amherst MA, United States
90 Department of Physics, McGill University, Montreal QC, Canada
91 School of Physics, University of Melbourne, Victoria, Australia
92 Department of Physics, The University of Michigan, Ann Arbor MI, United States
93 Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States
94 (10) INFN Sezione di Milano; (11) Dipartimento di Fisica, Università di Milano, Milano, Italy
95 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
96 Research Institute for Nuclear Problems of Byelorussian State University, Minsk, Belarus
97 Group of Particle Physics, University of Montreal, Montreal QC, Canada
98 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
99 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
100 National Research Nuclear University MEPhI, Moscow, Russia
101 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
102 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
103 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
104 Nagasaki Institute of Applied Science, Nagasaki, Japan
105 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
106 (10) INFN Sezione di Napoli; (11) Dipartimento di Fisica, Università di Napoli, Napoli, Italy
107 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States
108 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
109 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
110 Department of Physics, Northern Illinois University, DeKalb IL, United States
111 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
112 Department of Physics, New York University, New York NY, United States
113 Ohio State University, Columbus OH, United States
114 Faculty of Science, Okayama University, Okayama, Japan
115 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States
116 Department of Physics, Oklahoma State University, Stillwater OK, United States
117 Palacký University, RCPTM, Olomouc, Czech Republic
118 Center for High Energy Physics, University of Oregon, Eugene OR, United States
119 LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
120 Graduate School of Science, Osaka University, Osaka, Japan
121 Department of Physics, University of Oslo, Oslo, Norway
122 Department of Physics, Oxford University, Oxford, United Kingdom
123 (10) INFN Sezione di Padova; (11) Dipartimento di Fisica, Università di Padova, Padova, Italy
124 Department of Physics, University of Pennsylvania, Philadelphia PA, United States
125 National Research Centre "Kurchatov Institute", B.P. Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia
126 (10) INFN Sezione di Pisa; (11) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
127 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States
128 (10) Laboratório de Instrumentação e Física Experimental de Partículas – LIP, Lisbon; (11) Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
129 (12) INFN Sezione di Roma; (13) Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
130 (14) INFN Sezione di Roma Tor Vergata; (15) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
131 (16) INFN Sezione di Roma Tre; (17) Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
132 Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
133 Czech Technical University in Prague, Prague, Czech Republic
134 Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
135 State Research Center Institute for High Energy Physics (Protvino), NRC KI, Russia
136 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
137 (10) INFN Sezione di Roma; (11) Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
138 (12) INFN Sezione di Roma Tor Vergata; (13) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
139 (14) INFN Sezione di Roma Tre; (15) Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy