Search for $B-L$ R-parity-violating top squarks in $\sqrt{s} = 13$ TeV pp collisions with the ATLAS experiment

M. Aaboud et al.*
(ATLAS Collaboration)

(Received 16 October 2017; published 6 February 2018)

A search is presented for the direct pair production of the stop, the supersymmetric partner of the top quark, that decays through an R-parity-violating coupling to a final state with two leptons and two jets, at least one of which is identified as a b-jet. The data set corresponds to an integrated luminosity of 36.1 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of $\sqrt{s} = 13$ TeV, collected in 2015 and 2016 by the ATLAS detector at the LHC. No significant excess is observed over the Standard Model background, and exclusion limits are set on stop pair production at a 95% confidence level. Lower limits on the stop mass are set between 600 GeV and 1.5 TeV for branching ratios above 10% for decays to an electron or muon and a b-quark.

DOI: 10.1103/PhysRevD.97.032003

I. INTRODUCTION

The extension of the Standard Model (SM) of particle physics with supersymmetry (SUSY) [1–6] leads to processes that violate both baryon number (B) and lepton number (L), such as rapid proton decay. A common theoretical approach to reconcile the strong constraints from the nonobservation of these processes is to introduce a multiplicative quantum number called R-parity [7], defined as $R = (-1)^{3(B-L)+2s}$ where s is the spin of the particle. If R-parity is conserved, then SUSY particles are produced in pairs, and the lightest supersymmetric particle (LSP) is stable. The LSP cannot carry electric charge or color charge without coming into conflict with astrophysical data [8,9].

A number of theoretical models beyond the Standard Model (BSM) predict R-parity violation (RPV) [10–13]. The benchmark model for this search considers an additional local symmetry $U(1)_{B-L}$ to the $SU(3)_C \times SU(2)_L \times U(1)_Y$ Standard Model with right-handed neutrino supermultiplets. The minimal supersymmetric extension then only needs a vacuum expectation value for a right-handed scalar neutrino in order to spontaneously break the $B-L$ symmetry [14–18]. This minimal $B-L$ model violates lepton number but not baryon number. The couplings for RPV are highly suppressed as they are related to the neutrino masses, and the model is consistent with the experimental bounds on proton decay and lepton number violation. At the LHC, the most noticeable effect is that the LSP is no longer stable and can now decay via RPV processes, and it also may now carry color and electric charge. This leads to unique signatures that are forbidden in conventional models with R-parity conservation. A novel possibility is a top squark or stop (\tilde{t}) as the LSP with a rapid RPV decay. The supersymmetric partners of the left- and right-handed top quarks, \tilde{t}_L and \tilde{t}_R, mix to form two mass eigenstates consisting of the lighter \tilde{t}_1 and heavier \tilde{t}_2. Given the large top quark mass, the lighter \tilde{t}_1 is expected to be significantly lighter than the other squarks due to renormalization group effects [19,20]. The lighter \tilde{t}_1, denoted \tilde{t} for simplicity, is the target of this analysis.

This paper presents a search performed by ATLAS for direct stop pair production, with the RPV decay of each \tilde{t} to a b-quark and a charged lepton ($\tilde{t} \rightarrow b\ell$), as shown in Fig. 1. In contrast to R-parity-conserving searches for \tilde{t}, there is no significant missing transverse momentum in the

![FIG. 1. Feynman diagram for stop pair production, with \tilde{t} and anti-\tilde{t}(\tilde{t}')decay to a charged lepton of any flavor and a b-quark through an R-parity-violating coupling λ'.](image-url)
decay. The t decay branching ratios to each lepton flavor are related to the neutrino mass hierarchy [21,22], and a large phase space in the branching ratio plane is currently available. With an inverted mass hierarchy, the branching ratio to the be final state may be as large as 100%, and with a normal mass hierarchy the branching ratio to the by final state may be as high as 90%. The experimental signature is therefore two oppositely charged leptons of any flavor and two b-jets. In this analysis, only events with electron or muon signatures are selected, and final states are split by flavor into ee, $e\mu$, and $\mu\mu$ selections. At least one of the two jets is required to be identified as initiated by a b-quark, improving the selection efficiency of signal events over a requirement of two b-jets. Events are chosen in which the two reconstructed $b\ell$ pairs have roughly equal mass.

Previous searches with similar final states have targeted the pair production of first-, second-, and third-generation leptoquarks at ATLAS [23,24] and at CMS [25,26]. However, they consider final states within the same generation ($eejj$, $\mu\mu jj$, $rrbb$, where j indicates a light-flavor jet) and do not focus on final states with both b-jets and electrons or muons ($eebb$, $\mu\nu bb$), nor consider final states with both electrons and muons ($e\mu bb$). The results of the Run 1 leptoquark searches were reinterpreted for the t mass and its decay branching ratios in the $B = L$ model [21,22], setting lower mass limits between 424 and 900 GeV at a 95% confidence level.

The ATLAS detector and the data set collected during Run 2 of the LHC are described in Sec. II, with the corresponding Monte Carlo simulation samples presented in Sec. III. The identification and reconstruction of jets and leptons is presented in Sec. IV, and the discriminating variables used to construct the signal regions are described in Sec. V. The method of background estimation is described in Sec. VI, and the systematic uncertainties are detailed in Sec. VII. The results are presented in Sec. VIII, and the conclusions are given in Sec. IX.

II. ATLAS DETECTOR AND DATA SET

The ATLAS detector [27] consists of an inner detector tracking system, electromagnetic and hadronic sampling calorimeters, and a muon spectrometer. Charged-particle tracks are reconstructed in the inner detector (ID), which spans the pseudorapidity range $|\eta| < 2.5$, and consists of three subdetectors: a silicon pixel tracker, a silicon microstrip tracker, and a straw-tube transition radiation tracker. The ID is surrounded by a thin superconducting solenoid providing an axial magnetic field of 2 T, allowing the measurement of charged-particle momenta. In preparation for Run 2, a new innermost layer of the silicon pixel tracker, the insertable B-layer (IBL) [28], was introduced at a radial distance of 3.3 cm from the beam line to improve track reconstruction and the identification of jets initiated by b-quarks.

The ATLAS calorimeter system consists of high-granularity electromagnetic and hadronic sampling calorimeters covering the region $|\eta| < 4.9$. The electromagnetic calorimeter uses liquid argon (LAr) as the active material with lead absorbers in the region $|\eta| < 3.2$. The central hadronic calorimeter incorporates plastic scintillator tiles and steel absorbers in the region $|\eta| < 1.7$. The hadronic endcap calorimeter ($1.5 < |\eta| < 3.2$) and the forward calorimeters ($3.1 < |\eta| < 4.9$) use LAr with copper or tungsten absorbers.

The muon spectrometer (MS) surrounds the calorimeters and measures muon tracks within $|\eta| < 2.7$ using three layers of precision tracking chambers and dedicated trigger chambers. A system of three superconducting air-core toroidal magnets provides a magnetic field for measuring muon momenta.

The ATLAS trigger system begins with a hardware-based level-1 (L1) trigger followed by a software-based high-level trigger (HLT) [29]. The L1 trigger is designed to accept events at an average rate of 100 kHz, and the HLT is designed to accept events to write out to disk at an average rate of 1 kHz. Electrons are triggered in the pseudorapidity range $|\eta| < 2.5$, where the electromagnetic calorimeter is finely segmented and track reconstruction is available. Compact electromagnetic energy deposits triggered at L1 are used as the seeds for HLT algorithms that are designed to identify electrons based on calorimeter and fast track reconstruction. The muon trigger at L1 is based on a coincidence of trigger chamber layers. The parameters of muon candidate tracks are then derived in the HLT by fast reconstruction algorithms in both the ID and MS.

The data sample used for this search was collected from proton-proton collisions at a center-of-mass energy of $\sqrt{s} = 13$ TeV in 2015 and 2016. An integrated luminosity of 36.1 fb$^{-1}$ was collected while all tracking detectors, calorimeters, muon chambers, and magnets were fully operational. The uncertainty in the combined 2015 and 2016 integrated luminosity is 3.2%. It is derived from a preliminary calibration of the luminosity scale using x–y beam-separation scans performed in August 2015 and May 2016, following a methodology similar to that detailed in Ref. [30]. The LHC collided protons with bunch-crossing intervals of 25 ns, and the average number of interactions per bunch crossing was estimated to be $\langle \mu \rangle = 23.7$.

For this analysis, events are selected using single-electron and single-muon triggers requiring leptons above...
a transverse momentum (p_T) threshold and satisfying various lepton identification and isolation criteria. The trigger-level criteria for the p_T, identification, and isolation of the leptons are less stringent than those applied in the event selection to ensure that trigger efficiencies are constant in the analysis phase space.

III. MONTE CARLO SIMULATION

Monte Carlo (MC) simulation is used to predict the backgrounds from SM processes, estimate the detector response and efficiency to reconstruct the signal process, and estimate systematic uncertainties. The largest sources of SM background with different-flavor leptons are top quark and estimate systematic uncertainties. The largest sources of response and efficiency to reconstruct the signal process, backgrounds from SM processes, estimate the detector approximation through with additional radiation simulated to the leading-logarithm order using the POWHEG-BOX v1 generator for the electroweak and s-channel single-top production, and using the POWHEG-BOX v1 generator for the electroweak t-channel single-top production. For these processes the spin correlations in top quark production and decay were preserved, and the top quark mass was set to 172.5 GeV. The matrix element was interfaced with the CT10 parton distribution function (PDF) set [39], and the parton shower (PS), fragmentation, and underlying event were simulated with PYTHIA 6.428 [40] using the CTEQ6L1 PDF set [41] and the P2012 underlying-event tuned parameters (UE tune) [42], with additional radiation simulated to the leading-logarithm approximation through p_T-ordered parton showers [43].

The $Z +$ jets and $W +$ jets samples were generated at NLO [44] with the SHERPA 2.2.1 event generator [45]. Matrix elements were calculated for up to two partons at NLO and four partons at LO using Comix [46] and OpenLoops [47], and merged with the SHERPA PS [48] using the ME + PS@NLO prescription [49]. The NNPDF3.0 PDF set [50] was used in conjunction with a dedicated PS tuning developed by the SHERPA authors. Diboson samples with two, three, or four leptons were similarly generated with SHERPA 2.2.1. The diboson matrix elements contain all diagrams with four electroweak vertices, and were calculated for up to one (ZZ) or zero (WW,WZ) partons at NLO and up to three partons at LO. Electroweak- and loop-induced diboson events were simulated with SHERPA 2.1.1, using the same prescriptions as above but with the CT10 PDF set used in conjunction with the dedicated SHERPA PS tuning. The production of $t\bar{t}$ with a W or Z boson ($t\bar{t} + V$) was simulated at NLO using MADGRAPH5_aMC@NLO (MG5_aMC@NLO) 2.2.3 [51] and interfaced to PYTHIA 8.212 [52] with the CKKW-L prescription [53]. These samples are generated with the A14 UE tune [54] and NNPDF2.3 PDF set [55].

The RPV stop signal events were generated at leading order using the MG5_aMC@NLO 2.2.3 event generator with the NNPDF2.3 PDF set and interfaced to PYTHIA 8.186 [52] using the A14 UE tune. The matrix element was matched to the PS using the CKKW-L prescription, with the matching scale set to one quarter of the generated stop mass. All other supersymmetric particles are assumed to be decoupled. The signal cross sections are calculated to NLO accuracy in the strong coupling constant, adding the resummation of soft gluon emission at next-to-leading-logarithm accuracy (NLO + NLL) [56–59]. The nominal cross section and the uncertainty for each mass value are taken from a combination of cross-section predictions using different PDF sets and factorization and renormalization scales, as described in Ref. [36]. Stop samples were generated at masses between 600 and 1000 GeV in steps of 100 GeV and between 1000 and 1600 GeV in steps of 50 GeV. The cross section ranges from 175 ± 23 fb for a \tilde{t} mass of 600 GeV to 0.141 ± 0.038 fb for a mass of 1600 GeV. The generated stops decay promptly through $\tilde{t} \to b\ell^*$ with a 1/3 branching ratio (\mathcal{B}) for each lepton flavor. When optimizing the signal event selection, the generated events are reweighted to have

TABLE I. MC simulation details by physics process.

<table>
<thead>
<tr>
<th>Process</th>
<th>Event generator</th>
<th>PS and hadronization</th>
<th>UE tune</th>
<th>PDF</th>
<th>Cross section</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t\bar{t}$</td>
<td>POWHEG-Box v2</td>
<td>PYTHIA 6.428</td>
<td>P2012</td>
<td>CT10</td>
<td>NNLO + NNLL [31]</td>
</tr>
<tr>
<td>(Wt and s-channel)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t-channel)</td>
<td>POWHEG-Box v2</td>
<td>PYTHIA 6.428</td>
<td>P2012</td>
<td>CT10</td>
<td>NNLO + NNLL [32,33]</td>
</tr>
<tr>
<td>(t-channel)</td>
<td>POWHEG-Box v1</td>
<td>PYTHIA 6.428</td>
<td>P2012</td>
<td>CT10</td>
<td>NNLO + NNLL [34]</td>
</tr>
<tr>
<td>$Z/W +$ jets</td>
<td>SHERPA 2.2.1</td>
<td>SHERPA 2.2.1</td>
<td>Default</td>
<td>NNPDF3.0</td>
<td>NLO [35]</td>
</tr>
<tr>
<td>Diboson</td>
<td>SHERPA 2.2.1</td>
<td>SHERPA 2.2.1</td>
<td>Default</td>
<td>NNPDF3.0</td>
<td>NLO [35]</td>
</tr>
<tr>
<td>Diboson (EW/loop)</td>
<td>SHERPA 2.1.1</td>
<td>SHERPA 2.1.1</td>
<td>Default</td>
<td>CT10</td>
<td>NLO [35]</td>
</tr>
<tr>
<td>$t\bar{t} + W/Z$</td>
<td>MG5_AMC@NLO 2.2.3</td>
<td>PYTHIA 8.212</td>
<td>A14</td>
<td>NNPDF2.3</td>
<td>NLO [36]</td>
</tr>
<tr>
<td>$t\bar{t}^*$</td>
<td>MG5_AMC@NLO 2.2.3</td>
<td>PYTHIA 8.1868.186</td>
<td>A14</td>
<td>NNPDF2.3</td>
<td>NLO + NNLL [36]</td>
</tr>
</tbody>
</table>
POWHEG-BOX or MG5_AMC@NLO was performed with c cross sections, as indicated in Table I. The modeling of available NLO or next-to-next-to-leading order (NNLO) various weightings are used to derive limits for different PYTHIA 8.186 with the A2 UE tune[63] and MSTW2008LO scatter event. Minimum-bias events were generated using pp interactions (pileup) were included by overlaying to agree well with the full simulation. Multiple overlapping faster detector simulation of signal samples, and was found through a full simulation of the ATLAS detector [61] with respect to the primary vertex (signal electron must have a longitudinal impact parameter [67]. Finally, their trajectory impact parameter in the transverse plane (BIV) is derived through a full simulation of the ATLAS detector called Atlfast-II [61] was used for faster detector simulation of signal samples, and was found to agree well with the full simulation. Multiple overlapping pp interactions (pileup) were included by overlaying simulated minimum-bias events onto the simulated hard-scatter event. Minimum-bias events were generated using PYTHIA 8.186 with the A2 UE tune [63] and MSTW2008LO PDF set [64]. The simulated events are weighted such that the distribution of the average number of pp interactions per bunch crossing agrees with data.

IV. EVENT RECONSTRUCTION

Events and individual leptons and jets are required to satisfy several quality criteria to be considered by the analysis. Events recorded during stable beam and detector conditions are required to satisfy data-quality criteria [65]. Each event is required to have a primary reconstructed vertex with two or more associated tracks with $p_T > 400$ MeV, where the primary vertex is chosen as the vertex with the highest Σp_T^2 of associated tracks. Two stages of quality and kinematic requirements are applied to leptons and jets. The looser baseline requirements are first applied, and baseline leptons and jets are used to resolve any misidentification or overlap between electrons, muons, and jets. The subsequent tighter signal requirements are then applied to identify high-quality leptons and jets in the kinematic phase space of interest.

Electron candidates are reconstructed from energy deposits in the electromagnetic calorimeter matched to a charged-particle track in the ID. Baseline electron candidates must have $p_T > 10$ GeV, $|\eta| < 2.47$, and satisfy a loose electron likelihood identification [66]. Signal electrons must pass the baseline electron selection, have $p_T > 40$ GeV, $|\eta| < 2.5$, $|z_0^{PV}| \sin \theta < 0.5$ mm, and $|d_0^{PV}|/\sigma_{d_0^{PV}} < 3$. As with electrons, muons must satisfy the p_T-dependent loose track-based isolation criteria. Events containing a poorly measured signal muon, as determined by having incompatible momentum measurements in the ID and the MS, are rejected. Absolute requirements of $|z_0^{PV}| < 1$ mm and $|d_0^{PV}| < 0.2$ mm on the impact parameters of signal muons are applied to reject cosmic muons.

Jets are reconstructed using the anti- k_t algorithm [69,70] with a radius parameter $R = 0.4$ from clusters of energy deposits in the calorimeters [71]. Jets are corrected for pileup contamination on an event-by-event basis using the jet area subtraction method [72,73]. Jets are further calibrated to account for the predicted detector response in MC simulation, and a residual calibration of jets in data is derived through in situ measurements [74]. Baseline jet candidates are required to have $p_T > 20$ GeV and $|\eta| < 2.8$. Jets with $p_T < 60$ GeV and $|\eta| < 2.4$ are required to satisfy pileup-rejection criteria based on charged-particle tracks and implemented through the jet vertex tagger algorithm [72]. Signal jets must pass the baseline jet selection and have $p_T > 60$ GeV. Events are rejected if they contain a jet that fails the loose quality criteria [75], reducing contamination from calorimeter noise bursts and noncollision backgrounds. Jets within $|\eta| < 2.5$ that are initiated by b-quarks are identified using the multivariate $MV2c10$ b-tagging algorithm [76,77], which exploits the impact parameters of charged-particle tracks, the parameters of reconstructed secondary vertices, and the topology of b- and c-hadron decays inside a jet. The working point is chosen to provide a b-tagging efficiency of 77% per b-jet in simulated $t\bar{t}$ events with a rejection factor of approximately 130 for jets initiated by gluons or light-flavor quarks and 6 for jets initiated by c-quarks [77]. Correction factors are applied to events to compensate for differences between data and MC simulation in the b-tagging efficiency for b-jets, c-jets, and light-flavor jets.

To avoid reconstructing a single detector signature as multiple leptons or jets, an overlap removal procedure is performed on baseline leptons and jets. The requirements are applied sequentially, and failing particles are removed from consideration in the subsequent steps. If an electron and muon share a track in the ID, the electron is removed. Any jet that is not b-tagged and is within a distance $^{2}\Delta R(\ell', \text{jet}) \leq 0.2$ of a lepton is removed. If the jet is

\[\Delta R = \sqrt{(\Delta y)^2 + (\Delta \phi)^2}, \]

where Δy is their distance in rapidity and $\Delta \phi$ is their azimuthal distance. The distance with respect to a jet is calculated from its central axis.

2The distance between two four-momenta is defined as $\Delta R = \sqrt{(\Delta y)^2 + (\Delta \phi)^2},$ where Δy is their distance in rapidity and $\Delta \phi$ is their azimuthal distance. The distance with respect to a jet is calculated from its central axis.
b-tagged, the lepton is removed instead in order to suppress leptons from semileptonic decays of c- and b-hadrons. Finally, any lepton that is $\Delta R(\ell', \text{jet}) \leq 0.4$ from a jet is removed.

The trigger, reconstruction, identification, and isolation efficiencies of electrons [67] and muons [68] in MC simulation are corrected using events in data with leptonic Z and J/ψ decays. Similarly, corrections to the b-tagging efficiency and mis-tag rate in MC simulation are derived from various control regions in data [77].

V. EVENT SELECTION

To identify the pair production of stops, events are required to have at least two leptons and two jets. If more than two leptons or two jets are found, the two highest-p_T
leptons and jets are selected. At least one of the two leading jets must be b-tagged. The selected leptons are required to have opposite charge, and one of them must be consistent with the associated single-lepton trigger. This trigger requirement is highly efficient for signal events, with an efficiency of 93% for the $\mu\mu$ channel, 95% for the $e\mu$ channel, and 98% for the ee channel.

The lepton-jet pair from each $t\bar{t}$ decay generally reconstructs the invariant mass $m_{b\bar{b}}$ of the original t. In an event with two leptons and two jets, two pairings are possible; one that reconstructs the correct $t\bar{t}$ masses, and one which inverts the pairing and incorrectly reconstructs the masses. As the two masses should be roughly equal, the pairing that minimizes the mass asymmetry $m_{b\bar{b}}$ is chosen, defined as

$$m_{b\bar{b}}^{\text{asym}} = \frac{m_{b\bar{b}}^0 - m_{b\bar{b}}^\ell}{m_{b\bar{b}}^0 + m_{b\bar{b}}^\ell}.$$

Here $m_{b\bar{b}}^\ell$ is chosen to be the larger of the two masses. Events are further selected to have small mass asymmetry $m_{b\bar{b}}^{\text{asym}} < 0.2$. This reduces the contamination from background processes, whose random pairings lead to a more uniform $m_{b\bar{b}}^{\text{asym}}$ distribution.

Two nested signal regions (SRs) are constructed to optimize the identification of signal over background events. The signal regions are optimized using MC signal and background predictions, assuming $t\bar{t}$ decays of $B(t\rightarrow b\ell) = B(t\rightarrow b\mu) = 50\%$. A primary kinematic selection of the signal regions is on $m_{b\bar{b}}^0$, with SR800 requiring $m_{b\bar{b}}^0 > 800$ GeV and SR1100 requiring $m_{b\bar{b}}^0 > 1100$ GeV. By defining two signal regions the sensitivity to high-mass signals above 1100 GeV is improved, while maintaining sensitivity to lower-mass signals. Several other kinematic selections, common to both SRs, are defined to reduce the contribution from the largest backgrounds. As the $t\bar{t}$ decay products are generally very energetic, a selection on their p_T sum,

$$H_T = \sum_{i=1}^{2} p_{T}^{\ell_i} + \sum_{j=1}^{2} p_{T}^{\text{jet}_j},$$

is applied, such that $H_T > 1000$ GeV. To reduce contamination from $Z +$ jets events, a requirement is placed on the invariant mass of two same-flavor leptons, with $m_{\ell\ell} > 300$ GeV. A large fraction of the background from processes involving a top quark is suppressed through the requirement on $m_{b\bar{b}}^0$ and $m_{b\bar{b}}^{\text{asym}}$, with correctly reconstructed top quark masses falling well below the signal region requirements. However, top quark decays in which the lepton and b-jet decay products are mispaired can enter the SRs if the incorrectly reconstructed masses happen to be large. In such cases it is the rejected pairing that properly reconstructs the top quark decay, with one of the two $b\ell'$ pair masses below the kinematic limit for a top quark decay.

To suppress such backgrounds, events are rejected if the subleading $b\ell'$ mass of the rejected pairing, $m_{b\bar{b}}^{\ell'}(\text{rej})$, is compatible with that of a reconstructed top quark, with $m_{b\bar{b}}^{\ell'}(\text{rej}) < 150$ GeV.

The distribution of predicted signal and background events is shown for the SR800 region in Fig. 2 for $m_{b\bar{b}}^\ell$, H_T, $m_{b\bar{b}}^{\text{asym}}$, $m_{\ell\ell}$, and $m_{b\bar{b}}^0(\text{rej})$, demonstrating the potential for background rejection. For the model with a t mass of 1000 GeV (1500 GeV), the SR800 selections are 21% (24%) efficient for events with two $t\rightarrow b\ell$ decays, 16% (16%) for events with two $t\rightarrow b\mu$ decays, and 0.1% (0.3%) for events with two $t\rightarrow b\tau$ decays.

VI. BACKGROUND ESTIMATION

For each of the relevant backgrounds in the signal regions, one of two methods is used to estimate the contribution. The minor backgrounds from diboson, $t\bar{t} + V$, and $W +$ jets processes are estimated directly from MC simulation and the normalization is corrected to the highest-order theoretical cross section available. For the dominant $t\bar{t}$, single-top, and $Z +$ jets backgrounds, the expected yield in the SRs is estimated by scaling each MC prediction by a normalization factor (NF) derived from three dedicated control regions (CRs), one for each background process. Each control region is defined to be kinematically close to the SRs while inverting or relaxing specific selections to enhance the contribution from the targeted background process while reducing the contamination from other backgrounds and the benchmark signals.

To derive a background-only estimate, the normalizations of the $t\bar{t}$, single-top, and $Z +$ jets backgrounds are determined through a likelihood fit [78] performed simultaneously to the observed number of events in each CR. The expected yield in each region is given by the inclusive sum over all background processes in the ee, $e\mu$, and $\mu\mu$ channels. The NF for each of the $t\bar{t}$, single-top, and $Z +$ jets backgrounds are free parameters of the fit. The systematic uncertainties are treated as nuisance parameters in the fit and are not significantly constrained.

Several validation regions (VRs) are defined to test the extrapolation from the CRs to SRs over the relevant kinematic variables. The VRs are disjoint from both the CRs and SRs, and are constructed to fall between one or more CRs and the SRs in one of the extrapolated variables. The VRs are not included in the fit, but provide a statistically independent cross-check of the background prediction in regions with a negligible signal contamination. Three VRs are constructed to test the extrapolation in the $m_{b\bar{b}}^0$, $m_{b\bar{b}}^{\ell'}(\text{rej})$, and H_T observables. A fourth VR is constructed to validate the extrapolation of the $Z +$ jets CR in $m_{\ell\ell}$. Details of the selection criteria in each CR and VR are presented below, and a summary of the selections is provided in Table II.
TABLE II. Summary of the selections of the signal, control, and validation regions. All regions require at least two oppositely charged leptons and at least two jets. Each region requires at least one of the two leading jets to be b-tagged, and VRZ, which requires zero b-tagged jets in the event. A mass asymmetry selection of \(m_{\ell\ell}^{2\text{max}} < 0.2 \) is applied to all regions. The contrasverse mass selection \(m_{\text{CT}} \) [Eq. (1)] is only applied to events in CRtt with exactly two b-tagged jets, as indicated by the *, ensuring the region is orthogonal to CRst.

<table>
<thead>
<tr>
<th>Region</th>
<th>(N_b)</th>
<th>(m_{\ell\ell}^{0}) [GeV]</th>
<th>(H_T[\text{GeV}])</th>
<th>(m_{\ell\ell}(\text{rej})[\text{GeV}])</th>
<th>(m_{\ell\ell}[\text{GeV}])</th>
<th>(m_{\text{CT}}[\text{GeV}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR800</td>
<td>(\geq 1)</td>
<td>(> 800)</td>
<td>(> 1000)</td>
<td>(> 150)</td>
<td>(> 300)</td>
<td>(\cdots)</td>
</tr>
<tr>
<td>SR1100</td>
<td>(\geq 1)</td>
<td>(> 1100)</td>
<td>(> 1000)</td>
<td>(> 150)</td>
<td>(> 300)</td>
<td>(\cdots)</td>
</tr>
<tr>
<td>CRst</td>
<td>(= 2)</td>
<td>([200,500])</td>
<td>(< 800)</td>
<td>(< 150)</td>
<td>(> 120)</td>
<td>(> 200)</td>
</tr>
<tr>
<td>CRtt</td>
<td>(\geq 1)</td>
<td>([200,500])</td>
<td>([600,800])</td>
<td>(< 150)</td>
<td>(> 300)</td>
<td>(< 200^{*})</td>
</tr>
<tr>
<td>CRZ</td>
<td>(\geq 1)</td>
<td>(> 700)</td>
<td>(> 1000)</td>
<td>(\cdots)</td>
<td>([76.2,106.2])</td>
<td>(\cdots)</td>
</tr>
<tr>
<td>VRm(m_{\ell\ell}^{0})</td>
<td>(\geq 1)</td>
<td>(> 500)</td>
<td>(> 600,800)</td>
<td>(< 150)</td>
<td>(> 300)</td>
<td>(\cdots)</td>
</tr>
<tr>
<td>VRm(m_{\ell\ell}(\text{rej}))</td>
<td>(\geq 1)</td>
<td>([200,500])</td>
<td>([600,800])</td>
<td>(> 150)</td>
<td>(> 300)</td>
<td>(\cdots)</td>
</tr>
<tr>
<td>VRH(\ell)</td>
<td>(\geq 1)</td>
<td>([200,500])</td>
<td>(> 800)</td>
<td>(< 150)</td>
<td>(> 300)</td>
<td>(\cdots)</td>
</tr>
<tr>
<td>VRZ</td>
<td>(= 0)</td>
<td>([500,800])</td>
<td>(> 1000)</td>
<td>(> 150)</td>
<td>(> 300)</td>
<td>(\cdots)</td>
</tr>
</tbody>
</table>

A. Single-top control region

The single-top background enters the SR through the Wt process, when the b-jet and lepton produced in the semileptonic top quark decay are incorrectly paired with the lepton from the W decay and an additional jet, respectively. The CRst control region is designed to target the Wt production in a less-energetic kinematic region or where the rejected \(b\ell \) pairing correctly combines the decay products of the top quark. To separate CRst from the SRs, the \(H_T \) and \(m_{\ell\ell}^{0} \) requirements are reversed such that \(H_T < 800 \) GeV and \(200 < m_{\ell\ell}^{0} < 500 \) GeV. To target events in which the top quark is reconstructed in the rejected \(b\ell \) pairing, the selection on \(m_{\ell\ell}(\text{rej}) \) is reversed, requiring \(m_{\ell\ell}(\text{rej}) < 150 \) GeV. As there is no dilepton resonance in this background process the \(m_{\ell\ell} \) selection is lowered to increase the CRst yield and improve the statistical precision of the constraint.

After these selections the control region is dominated by \(\bar{t}t \) production, which has a significantly higher cross section than the SR process, when the \(\bar{t}t \) is reconstructed in the SRs, the \(H_T \) and \(m_{\ell\ell}^{0} \) requirements are reversed such that \(H_T < 800 \) GeV and \(200 < m_{\ell\ell}^{0} < 500 \) GeV. The selection on \(m_{\ell\ell}(\text{rej}) \) in CRst, such that \(N_b = 2 \). The \(m_{\text{CT}} \) distribution of the backgrounds in CRst is shown in Fig. 3(a) when no \(m_{\text{CT}} \) requirement is applied, and a significant single-top contribution above 55% is seen for \(m_{\text{CT}} > 200 \) GeV.

B. \(\bar{t}t \) control region

The CRtt control region is constructed to target \(\bar{t}t \) events with kinematics similar to the SRs. As with CRst, the \(H_T \) and \(m_{\ell\ell}^{0} \) requirements are inverted such that \(600 < H_T < 800 \) GeV and \(200 < m_{\ell\ell}^{0} < 500 \) GeV. The selection on \(m_{\ell\ell}(\text{rej}) \) in CRtt, such that one of the two top quarks is reconstructed in the rejected \(b\ell \) pairings. The distribution of \(m_{\ell\ell}(\text{rej}) \) in CRtt is shown in Fig. 3(b), showing the mispairing of \(\bar{t}t \) events is well modeled in MC simulation. Due to the larger cross section of the \(\bar{t}t \) process, contamination from Wt events is minimal. However, to maintain orthogonality with CRst, a requirement of \(m_{\text{CT}} < 200 \) GeV is applied to events in which both leading jets (and only the leading jets) are b-tagged, with \(N_b = 2 \).

C. \(Z + \) jets control region

The CRZ control region targets \(Z + \) jets events by applying a selection on the invariant mass of the dilepton
both leptons are required to be of the same flavor. The m_{ll} selection is effective in removing signal contamination, and the SR H_T selection is left unchanged, while the m_{bl} selection is slightly relaxed to $m_{bl} > 700$ GeV to enhance the event yield.

D. Validation regions

Four disjoint validation regions are used to test the extrapolation of the background fit from the CRs to the SRs. A full list of the region selections is given in Table II. The $VRm_{bl}^{0}(rej)$, $VRm_{bl}^{1}(rej)$, and VRH_T test the extrapolation from CRst and CRtt to the SRs in the $m_{bl}^{0}, m_{bl}^{1}(rej)$, and H_T observables by requiring $m_{bl}^{0} > 500$ GeV, $m_{bl}^{1}(rej) > 150$ GeV, and $H_T > 800$ GeV, respectively. In this way $VRm_{bl}^{0}, VRm_{bl}^{1}(rej)$, and VRH_T all lie between the SRs and both CRtt and CRst, with signal contamination below 1% for all signal mass values. No requirement is placed on m_{CT} in any VR, allowing both the $t\bar{t}$ and Wt contributions to be validated.

A fourth validation region, VRZ, is used to test the extrapolation from CRZ to the SRs in the m_{ll} observable, requiring $m_{ll} > 300$ GeV. As the m_{ll} variable provides the only separation between CRZ and the SRs, the requirement on m_{bl}^{0} is relaxed to $500 < m_{bl}^{0} < 800$ GeV, and any event with a b-tagged jet is rejected, such that $N_b = 0$. The $Z +$ jets MC prediction is found to model the data well in both m_{bl} and N_b, with a signal contamination in VRZ below 5% for mass values above 1000 GeV.

The observed data yield and the postfit background prediction for each CR and VR are shown in Fig. 4. Good agreement is seen in all validation regions, with differences between the data and SM prediction below 1σ. The modeling of the extrapolated variable for each VR is shown in Fig. 5, demonstrating good agreement in the shape of the variables of interest.

VII. SYSTEMATIC UNCERTAINTIES

Systematic uncertainties in the signal and background predictions arise from theoretical uncertainties in the expected yield and MC modeling, and from experimental sources. The dominant uncertainties are summarized in Table III.

Experimental uncertainties reflect the precision of the energy and momentum calibration of jets and leptons, as well as the assumptions about the identification and reconstruction efficiencies in MC simulation. The dominant experimental uncertainties are related to jets, including those in the jet energy scale and resolution [80,81] and the calibration of the b-tagging efficiency for b-jets, c-jets, and...
light-flavor jets [77]. The largest experimental uncertainties in the fitted background prediction in SR800 (SR1100) are from the
\[b\]-tagging efficiency of light-flavor jets and the jet energy resolution. The experimental uncertainties associated with leptons each have a small impact on the final measurement, and include uncertainties in the energy scale and resolution of electrons [67] and muons [68], and the calibration of the lepton trigger, identification, reconstruction, and isolation efficiencies. The 3.2% uncertainty in the measured integrated luminosity also has a marginal effect on the final result.

Theoretical and MC modeling uncertainties of the \(t\bar{t}\) and \(Wt\) backgrounds account for the choice of event generator, underlying-event tune, and their parameters. The uncertainties are derived separately for each background process and are treated as uncorrelated nuisance parameters. The uncertainties in the background estimate due to the choice of MC event generator is estimated for \(t\bar{t}\) and \(Wt\) by light-flavor jets [77]. The largest experimental uncertainties in the fitted background prediction in SR800 (SR1100) are from the \(b\)-tagging efficiency of light-flavor jets and the jet energy resolution. The experimental uncertainties associated with leptons each have a small impact on the final measurement, and include uncertainties in the energy scale and resolution of electrons [67] and muons [68], and the calibration of the lepton trigger, identification, reconstruction, and isolation efficiencies. The 3.2% uncertainty in the measured integrated luminosity also has a marginal effect on the final result.

Theoretical and MC modeling uncertainties of the \(t\bar{t}\) and \(Wt\) backgrounds account for the choice of event generator, underlying-event tune, and their parameters. The uncertainties are derived separately for each background process and are treated as uncorrelated nuisance parameters. The uncertainties in the background estimate due to the choice of MC event generator is estimated for \(t\bar{t}\) and \(Wt\) by

<table>
<thead>
<tr>
<th>Source \ Region</th>
<th>SR800</th>
<th>SR1100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental uncertainty</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b)-tagging</td>
<td>3%</td>
<td>5%</td>
</tr>
<tr>
<td>Jet energy resolution</td>
<td>2%</td>
<td>10%</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>1%</td>
<td>3%</td>
</tr>
<tr>
<td>Electrons</td>
<td>1%</td>
<td>4%</td>
</tr>
<tr>
<td>Muons</td>
<td>1%</td>
<td>3%</td>
</tr>
<tr>
<td>Theoretical modeling uncertainty</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC statistical uncertainty</td>
<td>8%</td>
<td>17%</td>
</tr>
<tr>
<td>(t\bar{t})</td>
<td>8%</td>
<td>45%</td>
</tr>
<tr>
<td>Single-top</td>
<td>21%</td>
<td>22%</td>
</tr>
<tr>
<td>(Z + \text{jets})</td>
<td>2%</td>
<td>4%</td>
</tr>
<tr>
<td>Diboson</td>
<td>4%</td>
<td>3%</td>
</tr>
<tr>
<td>(\bar{t}\bar{t} + W/Z)</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>(W + \text{jets})</td>
<td>1%</td>
<td>1%</td>
</tr>
</tbody>
</table>

TABLE III. Summary of the dominant experimental and theoretical uncertainties in SR800 and SR1100 before the likelihood fits, quoted relative to the total prefit MC background predictions. The individual uncertainties can be correlated, and do not necessarily add in quadrature to the total postfit background uncertainty.
The theoretical uncertainties of the $Z + \text{jets}$, diboson, and $t\bar{t} + V$ samples are estimated by varying event generator parameters related to the factorization, renormalization, resummation, and CKKW matching scales. The envelope of these variations is taken as the theoretical uncertainty in the predicted yield in each SR. As the diboson and $t\bar{t} + V$ samples are not normalized in the CRs, the uncertainty in the theoretical cross section is also included. The uncertainty in the NLO cross section is taken to be 6% for the diboson process [84] and 13% for the $t\bar{t} + V$ process [51]. A 50% uncertainty is applied to the small $W + \text{jets}$ yield in both SRs.

The stop signal model uncertainties are dominated by the cross-section uncertainty, derived from the envelope of cross-section predictions from several distinct PDF sets and varying the factorization and renormalization scales, as described in Ref. [36]. The uncertainty in the cross section varies from 13% for the 600 GeV mass value to 27% for the 1600 GeV mass value. The electron efficiency uncertainties are between 3% and 4% for the various stop masses when assuming $B(\ell \to e\nu) = B(\ell \to \mu\nu) = 50\%$, and are between 5% and 8% when assuming $B(\ell \to e\nu) = 100\%$. Similarly, the muon efficiency uncertainties are between 2% and 4% when assuming $B(\ell \to e\nu) = B(\ell \to \mu\nu) = 50\%$, and rise to 6% when assuming $B(\ell \to e\nu) = 100\%$. The electron, muon, and jet energy scale and resolution uncertainties are generally below 1% for the stop signal models, reaching 1% for masses near the m_{stop} threshold of 800 GeV for SR800 and 1100 GeV for SR1100. The b-tagging efficiency uncertainties are between 1% and 3%, reaching the largest value for the 600 GeV signal model.

VIII. RESULTS

The observed yields and fitted background predictions in SR800 and SR1100 are shown in Table IV. One event is included.
observed in SR1100 and two are observed in SR800, in agreement with the SM prediction. The SR1100 event is included in SR800 by definition, and both events are found in the \(\mu\mu \) channel. The SR1100 event has a high \(H_T \) due to a high-\(p_T \) muon with a large \(p_T \) uncertainty. The observed and predicted \(m_{b\ell}^0, H_T, m_{b\ell}^{\text{asym}}, m_{b\ell}, \) and \(m_{b\ell}^{\text{rej}} \) distributions in SR800 are shown in Fig. 2.

For each SR, model-independent upper limits are derived on the visible cross section of potential BSM processes at a 95% confidence level (C.L.). A likelihood fit is performed to the number of observed events in all three CRs and the target SR, and a generic BSM process is assumed to contribute to the SR only. No theoretical or systematic uncertainties are considered for the signal model except the luminosity uncertainty. The observed (\(S_{\text{obs}}^{95} \)) and expected (\(S_{\text{exp}}^{95} \)) limits on the number of BSM events are derived at 95% C.L. in each flavor channel and inclusively, and are shown in the lower rows of Table IV. Also shown are the observed limits on the visible cross section \(\sigma_{\text{vis}} \), defined as \(S_{\text{obs}}^{95} \) normalized to the integrated luminosity, and representing the product of the production cross section, acceptance, and selection efficiency of a generic BSM signal. Limits on \(\sigma_{\text{vis}} \) are set between 0.08 and 0.13 fb, with the weaker limit set in the \(\mu\mu \) channel due to the two observed events.

Exclusion limits are derived at 95% C.L. for the \(\tilde{t} \) signal samples. Limits are obtained through a profile log-likelihood ratio test using the \(\text{CL}_{s} \) prescription [85], following the simultaneous fit to the CRs and a target SR [78]. The signal contributions in both the SR and CRs are accounted for in the fit, although they are negligible in the latter. Exclusion fits are performed separately for various branching ratio assumptions, sampling values of \(B(\tilde{t} \rightarrow b\ell), B(\tilde{t} \rightarrow b\ell), \) and \(B(\tilde{t} \rightarrow b\ell) \) whose sum is unity in steps of 5%, and reweighting events in the signal samples according to the generated decays. For both SR800 and SR1100, limits are derived in the \(ee, e\mu, \mu\mu, \) and inclusive channels. Observed limits are reported for the SR and channel combination with the lowest expected
be between 600 and 1000 GeV, while those with larger
branching ratio \(B\) for electrons than for muons. Stops
decay to \(t\bar{b}\) slightly stronger for increasing \(B\) in the final state is largest. Expected limits are
where the expected number of events with electrons or muons in the final state decreases,
reducing the mass reach of the exclusion.

\[
B(\bar{t} \to be) \quad (\bar{t} \to b\mu) \quad (\bar{t} \to b\tau)
\]

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios. The sum of \(B(\bar{t} \to be)\),
\(B(\bar{t} \to b\mu)\), and \(B(\bar{t} \to b\tau)\) is assumed to be unity everywhere, and points of equality are marked by a dotted gray line. The limits are obtained using the nominal \(\bar{t}\) cross-section predictions. As the branching ratio \(B(\bar{t} \to b\tau)\) increases, the expected number of events with electrons or muons in the final state decreases, reducing the mass reach of the exclusion.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.

The observed lower limits on the \(\bar{t}\) mass at 95\% C.L. as a function of \(\bar{t}\) branching ratios.
Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [86].

[80] ATLAS Collaboration, Jet energy resolution in proton-proton collisions at $\sqrt{s} = 7$ TeV recorded in 2010

(ATLAS Collaboration)

1Department of Physics, University of Adelaide, Adelaide, Australia
2Physics Department, SUNY Albany, Albany New York, USA
3Department of Physics, University of Alberta, Edmonton Alberta, Canada
4Department of Physics, Ankara University, Ankara, Turkey
5LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
6High Energy Physics Division, Argonne National Laboratory, Argonne Illinois, USA
7Department of Physics, University of Arizona, Tucson Arizona, USA
8Department of Physics, The University of Texas at Arlington, Arlington Texas, USA
9Physics Department, National and Kapodistrian University of Athens, Athens, Greece
10Physics Department, National Technical University of Athens, Zografou, Greece
11Department of Physics, The University of Texas at Austin, Austin Texas, USA
12Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
13Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain
14Institute of Physics, University of Belgrade, Belgrade, Serbia
15Department for Physics and Technology, University of Bergen, Bergen, Norway
16Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
17Department of Physics, Humboldt University, Berlin, Germany
18Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
19School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
20Department of Physics, Bogazici University, Istanbul, Turkey
21Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
22Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
22aINFN Sezione di Bologna, Italy
22bDipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
23Physikalisches Institut, University of Bonn, Bonn, Germany
24Department of Physics, Boston University, Boston Massachusetts, USA
25Department of Physics, Brandeis University, Waltham Massachusetts, USA
26Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
26aDepartment of Physics Engineering, Gaziantep University, Gaziantep, Turkey
26bIstanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
26cBahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
26dInstituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
27Physical Department, Brookhaven National Laboratory, Upton New York, USA
28Transilvania University of Brasov, Brasov, Romania
29Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
28bDepartment of Physics, Alexandru Ioan Cuza University of Iasi, Iasi, Romania
28cNational Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca, Romania
28dUniversity Politehnica Bucharest, Bucharest, Romania
28eWest University in Timisoara, Timisoara, Romania
29Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina

032003-23
PHYS. REV. D 97, 032003 (2018)
International Center for Elementary Particle Physics and Department of Physics,
The University of Tokyo, Tokyo, Japan
Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
Tomsk State University, Tomsk, Russia
Department of Physics, University of Toronto, Toronto Ontario, Canada
INFN-TIFPA, Italy
University of Trento, Trento, Italy
TRIUMF, Vancouver British Columbia, Canada
Faculty of Pure and Applied Sciences, and Center for Integrated Research in Fundamental Science and
Engineering, University of Tsukuba, Tsukuba, Japan
Department of Physics and Astronomy, Tufts University, Medford Massachusetts, USA
Department of Physics and Astronomy, University of California Irvine, Irvine California, USA
INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy
ICTP, Trieste, Italy
Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
Department of Physics, University of Illinois, Urbana Illinois, USA
Instituto de Fisica Corpuscular (IFIC), Centro Mixto Universidad de Valencia—CSIC, Spain
Department of Physics, University of British Columbia, Vancouver British Columbia, Canada
Department of Physics and Astronomy, University of Victoria, Victoria British Columbia, Canada
Department of Physics, University of Warwick, Coventry, United Kingdom
Waseda University, Tokyo, Japan
Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
Department of Physics, University of Wisconsin, Madison Wisconsin, USA
Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik,
Bergische Universität Wuppertal, Wuppertal, Germany
Department of Physics, Yale University, New Haven Connecticut, USA
Yerevan Physics Institute, Yerevan, Armenia
Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3),
Villeurbanne, France
Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
Deceased.
*Also at Department of Physics, King’s College London, London, United Kingdom.
*Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
*Also at Novosibirsk State University, Novosibirsk, Russia.
*Also at TRIUMF, Vancouver BC, Canada.
*Also at Department of Physics & Astronomy, University of Louisville, Louisville, KY, USA.
*Also at Physics Department, An-Najah National University, Nablus, Palestine.
*Also at Department of Physics, California State University, Fresno CA, USA.
*Also at Department of Physics, University of Fribourg, Fribourg, Switzerland.
*Also at II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany.
*Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain.
*Also at Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Portugal.
*Also at Tomsk State University, Tomsk, and Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
*Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing, China.
*Also at Universita di Napoli Parthenope, Napoli, Italy.
*Also at Institute of Particle Physics (IPP), Canada.
*Also at Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania.
*Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.
*Also at Borough of Manhattan Community College, City University of New York, New York City, USA.
*Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece.
*Also at Centre for High Performance Computing, CSIR Campus, Rosebank, Cape Town, South Africa.
*Also at Louisiana Tech University, Ruston LA, USA.
*Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain.
*Also at Department of Physics, The University of Michigan, Ann Arbor MI, USA.
*Also at Graduate School of Science, Osaka University, Osaka, Japan.
Also at Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany.

Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands.

Also at Department of Physics, The University of Texas at Austin, Austin TX, USA.

Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia.

Also at CERN, Geneva, Switzerland.

Also at Georgian Technical University (GTU), Tbilisi, Georgia.

Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan.

Also at Manhattan College, New York NY, USA.

Also at The City College of New York, New York NY, USA.

Also at Departamento de Física Teórica y del Cosmos, Universidad de Granada, Granada, Portugal.

Also at Department of Physics, California State University, Sacramento CA, USA.

Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.

Also at Departament de Physique Nucléaire et Corpusculaire, Université de Genève, Geneva, Switzerland.

Also at Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain.

Also at School of Physics, Sun Yat-sen University, Guangzhou, China.

Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria.

Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia.

Also at National Research Nuclear University MEPhI, Moscow, Russia.

Also at Department of Physics, Stanford University, Stanford CA, USA.

Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.

Also at Giresun University, Faculty of Engineering, Turkey.

Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.

Also at Department of Physics, Nanjing University, Jiangsu, China.

Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.

Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia.

Also at LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France.