Search for heavy resonances decaying to a W or Z boson and a Higgs boson in the $q\bar{q}(\gamma)bb$ final state in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS Collaboration*

ARTICLE INFO

Article history:
Received 21 July 2017
Received in revised form 13 September 2017
Accepted 22 September 2017
Available online 28 September 2017
Editor: W.-D. Schlatter

ABSTRACT

A search for heavy resonances decaying to a W or Z boson and a Higgs boson in the $q\bar{q}(\gamma)bb$ final state is described. The search uses 36.1 fb$^{-1}$ of proton–proton collision data at $\sqrt{s} = 13$ TeV collected by the ATLAS detector at the CERN Large Hadron Collider in 2015 and 2016. The data are in agreement with the Standard Model expectations, with the largest excess found at a resonance mass of 3.0 TeV with a local (global) significance of 3.3 (2.1) σ. The results are presented in terms of constraints on a simplified model with a heavy vector triplet. Upper limits are set on the production cross-section times branching ratio for resonances decaying to a W (Z) boson and a Higgs boson, itself decaying to bb, in the mass range between 1.1 and 3.8 TeV at 95% confidence level; the limits range between 83 and 1.6 fb (77 and 1.1 fb) at 95% confidence level.

© 2017 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The discovery of the Higgs boson [1,2] confirms the validity of the Standard Model (SM) in the description of particle interactions at energies up to a few hundred GeV. However, radiative corrections to the Higgs boson mass drive its value to the model’s validity limit, indicating either extreme fine-tuning or the presence of new physics at an energy scale not far above the Higgs boson mass. It is natural to expect such new physics to manifest itself through significant coupling to the Higgs boson, for example in decays of new particles to a Higgs boson and other SM particles. This Letter presents a search for resonances produced in 36.1 fb$^{-1}$ of proton–proton (pp) collision data at $\sqrt{s} = 13$ TeV which decay to a W or Z boson and a Higgs boson. Such resonances are predicted in multiple models of physics beyond the SM, e.g. composite Higgs [3,4] or Little Higgs [5] models, or models with extra dimensions [6,7].

This search is conducted in the channel where the W or Z and Higgs bosons decay to quarks. The high mass region, with resonance masses $m_{VH} > 1$ TeV ($V = W, Z$), where the V and H bosons are highly Lorentz boosted, is considered. The V and H boson candidates are each reconstructed in a single jet, using jet substructure techniques and b-tagging to suppress the dominant background from multijet events and to enhance the sensitivity to the dominant $H \to bb$ decay mode. The reconstructed dijet mass distribution is used to search for a signal and, in its absence, to set bounds on the production cross-section times branching ratio for new bosons which decay to a W or Z boson and a Higgs boson.

The results are expressed as limits in a simplified model which incorporates a heavy vector triplet (HVT) [8,9] of bosons; this choice allows the results to be interpreted in a large class of models. The new heavy vector bosons couple to the Higgs boson and SM gauge bosons with coupling strength c_{HgV} and to the SM fermions with coupling strength $(g^2/g_V)C_F$, where g is the SM $SU(2)_L$ coupling constant. The parameter g_V characterizes the interactions of the new vector bosons, while the dimensionless coefficients c_{H} and c_F parameterize departures of this typical strength for interactions with the Higgs and SM gauge bosons and with fermions, respectively, and are expected to be of order unity in most models. Two benchmark models are used: in the first, referred to as Model A, the branching ratios of the new heavy vector boson to known fermions and gauge bosons are comparable, as in some extensions of the SM gauge group [10]. In Model B, fermionic couplings to the new heavy vector boson are suppressed, as for example in a composite Higgs model [11]. The regions of HVT parameter space studied correspond to the production of resonances with an intrinsic width that is narrow relative to the experimental resolution. The latter is roughly 8% of the resonance mass. The sensitivity of the analysis to wider resonances is not tested. In addition, while the production rates of the new heavy charged and neutral states are related within the HVT model, the search pre-
sented here assumes the production of only a charged or neutral resonance and not both simultaneously.

Searches for VH resonances, V', have recently been performed by the ATLAS and CMS collaborations. The ATLAS searches (using leptonic V decays) based on data collected at $\sqrt{s} = 8$ TeV set a lower limit at the 95% confidence level (CL) on the $W' (Z')$ mass at 1.47 (1.36) TeV in HVT benchmark Model A with $g_V = 1$ [12]. Using the same decay modes, a search based on 3.2 fb$^{-1}$ of data collected at $\sqrt{s} = 13$ TeV set a 95% CL lower limit on the $W' (Z')$ mass at 1.75 (1.49) TeV [13] in the HVT benchmark Model A. For Model B the corresponding limits are 2.22 (1.58) TeV. Searches by the CMS Collaboration at $\sqrt{s} = 8$ TeV in hadronic channels, based on HVT benchmark Model B with $g_V = 3$, exclude heavy resonance masses below 1.6 TeV ($W' \rightarrow WH$), below 1.1 TeV and between 1.3 TeV and 1.5 TeV ($Z' \rightarrow ZZ$), and below 1.7 TeV (combined $V' \rightarrow VH$) [14] at the 95% CL. Using the $W' \rightarrow WH \rightarrow c\bar{c}b\bar{b}$ channel, CMS excludes new heavy vector bosons with masses up to 1.5 TeV in the same context [15]. The CMS Collaboration also carried out a search for a narrow resonance decaying to ZH in the $q\bar{q}r^+r^-$ final state, setting limits on the Z' production cross-section [16]. Searches for heavy resonances in HVT models have also been carried out in the hadronic $WW/WZ/ZZ$ channels by the ATLAS experiment at $\sqrt{s} = 13$ TeV with 3.2 fb$^{-1}$ of data [17]. For Model B, a new gauge boson with mass below 2.6 TeV is excluded at the 95% CL. The CMS Collaboration combined [18] diboson resonance searches at $\sqrt{s} = 8$ and 13 TeV [18], setting lower limits for W' and Z' singlets at 2.3 TeV and for a triplet at 2.4 TeV. As this Letter was being finalized, the CMS Collaboration released [19] a search in the same final state as studied in this Letter, using 36 fb$^{-1}$ of data collected at $\sqrt{s} = 13$ TeV. For Model B, a W' boson with mass below 2.45 TeV and between 2.78 TeV and 3.15 TeV is excluded at the 95% CL. For a Z' boson, masses below 1.19 TeV and between 1.21 TeV and 2.26 TeV are excluded at the 95% CL.

2. ATLAS detector

The ATLAS detector [20] is a general-purpose particle detector used to investigate a broad range of physics processes. It includes inner tracking devices surrounded by a 2.3 m diameter superconducting solenoid, electromagnetic and hadronic calorimeters and a muon spectrometer with a toroidal magnetic field. The inner detector consists of a high-granularity silicon pixel detector, including the insertable B-layer [21] installed after Run 1 of the LHC, a silicon strip detector, and a straw-tube tracker. It is immersed in a 2 T axial magnetic field and provides precision tracking of charged particles with pseudorapidity $|\eta| < 2.5$. The calorimeter system consists of finely segmented sampling calorimeters using lead/liquid-argon for the detection of electromagnetic (EM) showers up to $|\eta| < 3.2$, and copper or tungsten/liquid-argon for electromagnetic and hadronic showers for 1.5 $< |\eta| < 4.9$. In the central region ($|\eta| < 1.7$), a steel/scintillator hadronic calorimeter is used. Outside the calorimeters, the muon system incorporates multiple layers of trigger and tracking chambers within a magnetic field produced by a system of superconducting toroids, enabling an independent precise measurement of muon track momenta for $|\eta| < 2.7$. A dedicated trigger system is used to select events [22]. The first-level trigger is implemented in hardware and uses the calorimeter and muon detectors to reduce the accepted rate to 100 kHz. This is followed by a software-based high-level trigger, which reduces the accepted event rate to 1 kHz on average.

3. Data and simulation samples

This analysis uses 36.1 fb$^{-1}$ of LHC pp collisions at $\sqrt{s} = 13$ TeV collected in 2015 and 2016. The data were collected during stable beam conditions with all relevant detector systems functional. Events were selected using a trigger that requires a single anti-k_t jet [23] with radius parameter $R = 1.0$ (large-R jet) with a transverse energy (E_T) threshold of 360 (420) GeV in 2015 (2016). The trigger requirement is > 99% efficient for events passing the offline selection of a large-R jet with transverse momentum (p_T) > 450 GeV.

Signal processes, as well as backgrounds from $t\bar{t}$ and $W/Z +$ jets production, are modelled with Monte Carlo (MC) simulation. While multijet MC events are used as a cross-check, the primary multijet background estimation is performed using data as described in Section 6. The signal is modelled using benchmark Model A with $g_V = 1$. Results derived from this model can be directly applied to benchmark Model B by rescaling the relevant branching ratios. The signal was generated with Madgraph5_aMC@NLO 2.2.2 [24] interfaced to Pythia 8.186 [25] for parton shower and hadronization, with the NNPDF2.3 next-to-leading order (NLO) parton distribution function (PDF) set [26] and a set of tuned parameters called the ATLAS A14 tune [27] for the underlying event. The Higgs boson mass was set to 125.5 GeV, and Higgs boson decays to both bb and $c\bar{c}$, assuming SM branching ratios, were included in the simulation. The $V' \rightarrow VH \rightarrow q\bar{q}(bb + c\bar{c})$ signal cross-section in Model B ranges from 110 fb (203 fb) for neutral (charged) resonances with a mass of 1 TeV, down to 0.09 fb (0.19 fb) for neutral (charged) resonances with a mass of 3.8 TeV. Samples were generated in steps of 100 GeV or 200 GeV up to 4 TeV.

The $t\bar{t}$ background samples were generated with POWHEG-Box v2 [28] with the CT10 PDF set [29], interfaced with Pythia 6.428 [30] and the Perugia 2012 tune for the parton shower [31] using the CTEQ6L1 PDF set [32]. The cross-section of the $t\bar{t}$ process is normalized to the result of a quantum chromodynamics (QCD) calculation at next-to-next-to-leading order and log (NNLO+NNLL), as implemented in Top++ 2.0 [33]. The POWHEG VHDAMP parameter [34] was set to the top quark mass, taken to be $m_t = 172.5$ GeV. The W+jets and Z+jets background samples were generated with SHERPA 2.1.1 [35] interfaced with the CT10 PDF set. Matrix elements of up to four extra partons were calculated at leading order in QCD. Only the hadronic decays of the W and Z bosons were included. For studies with simulated multijet events, the MC samples were generated with Pythia 8.186 [25], with the NNPDF2.3 NLO PDF and the ATLAS A14 tune. The background from SM diboson and VH production is negligible and therefore not considered.

For all simulated events, except those produced using SHERPA, EvtGen v1.2.0 [36] was used to model the properties of bottom and charm hadron decays. The detector response was simulated with GEANT 4 [37,38] and the events were processed with the same reconstruction software as that used for data. All simulated samples include the effects due to multiple pp interactions per bunch-crossing (pile-up).

4. Event reconstruction

Collision vertices are reconstructed requiring a minimum of two tracks each with transverse momentum $p_T > 0.4$ GeV. The primary
vertex is chosen to be the vertex with the largest $\sum p_T^2$, where the sum extends over all tracks associated with the vertex.

The identification and reconstruction of hadronically decaying gauge boson and Higgs boson candidates is performed with the anti-k_T jet clustering algorithm with R parameter equal to 1.0. These large-R jets [39] are reconstructed from locally calibrated topological clusters [40] of calorimeter energy deposits. To mitigate the effects of pile-up and soft radiation, the large-R jets are trimmed [41]: the jet constituents are reclustered into subjets using the k_T algorithm [42] with $R = 0.2$, removing those with $p_{T,\text{subjet}} / p_{T,\text{jet}} < 0.05$, where $p_{T,\text{subjet}}$ is the transverse momentum of the subjet and $p_{T,\text{jet}}$ is the transverse momentum of the original large-R jet. In order to improve on the limited angular resolution of the calorimeter, the combined mass of a large-R jet is computed using a combination of calorimeter and tracking information [43]. The combined mass is defined as:

$$m_J \equiv m_{\text{calo}} \times m_{\text{track}}^{\text{calo}} + W_{\text{track}} \times \left(m_{\text{calo}}^2 \frac{p_{\text{calo}}}{p_T^2} \right)$$

where m_{calo} (p_{calo}) is the calorimeter-only estimate of the jet mass (p_T), and m_{track} (p_{track}) is the jet mass (p_T) estimated via tracks with $p_T > 0.4$ GeV associated with the large-R jet using ghost association [44]. To correct for the missing neutral component in the track-based measurement, m_{track} is scaled by the ratio of calorimeter to track p_T estimates. The weighting factors W_{calo} and W_{track} are $p_{T,\text{calo}}$-dependent functions of the calorimeter- and track-based jet mass resolutions used to optimize the combined mass resolution.

Track jets clustered using the anti-k_T algorithm with $R = 0.2$ are used to aid the identification of b-hadron candidates from the Higgs boson decay [45]. Track jets are built from charged particle tracks with $p_T > 0.4$ GeV and $|\eta| < 2.5$ that satisfy a set of hit and impact parameter criteria to minimize the impact of tracks from pile-up interactions, and are required to have track jet $p_T > 10$ GeV, $|\eta| < 2.5$, and at least two tracks clustered in the track jet. Track jets are matched with large-R jets using ghost association. The identification of b-hadrons relies on a multivariate tagging algorithm [46] which combines information from several vertexing and impact parameter tagging algorithms applied to a set of tracks in a region of interest around each track jet axis. The b-tagging requirements result in an efficiency of 77% for track jets containing b-hadrons, and a misidentification rate of $\sim 2\%$ ($\sim 24\%$) for light-flavour (charm) jets, as determined in a sample of simulated $t\bar{t}$ events. For MC samples the tagging efficiencies are corrected to match those measured in data [47].

Muons are reconstructed by combining tracks in the inner detector and the muon system, and are required to satisfy “tight” muon identification criteria [48]. The four-momentum of the closest muon candidate with $p_T > 4$ GeV and $|\eta| < 2.5$ that is within $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.2$ of a track jet is added to the calorimeter jet four-momentum to partially account for the energy carried by muons from semileptonic b-hadron decays. This muon correction results in a $\sim 5\%$ resolution improvement for Higgs boson candidate jets (defined in Section 5) [49]. Electrons are reconstructed from inner detector and calorimeter information, and are required to satisfy the “loose” likelihood selection [50].

Leptons (electrons and muons, l) are also used in a “veto” to ensure the orthogonality of the analysis selection with respect to other heavy VH resonance searches in non-fullly hadronic final states. The considered leptons have $p_T > 7$ GeV, $|\eta| < 2.5$ (2.47) for muons (electrons), and their associated tracks must have $|d_0|/\sigma_d < 3$ (5) and $|z_0\sin\theta| < 0.5$ mm, where d_0 is the transverse impact parameter with respect to the beam line, σ_d is the uncertainty on d_0, and z_0 is the distance between the longitudinal position of the track along the beam line at the point where d_0 is measured and the longitudinal position of the primary vertex. Leptons are also required to satisfy an isolation criterion, whereby the ratio of the p_T sum of all tracks with $p_T > 1$ GeV (excluding the lepton’s) within a cone around the lepton (with radius dependent on the lepton p_T) to the lepton momentum must be less than $p_{T,\text{iso}}$ and $|\eta|$-dependent threshold I_0. The value of I_0 is chosen such that a constant efficiency of 99% as a function of p_T and $|\eta|$ is obtained for leptons in events identified with $Z \rightarrow l^+l^-$ candidates.

The missing transverse momentum ($E_{\text{T}}^{\text{miss}}$) is calculated as the negative vectorial sum of the transverse momenta of all the muons, electrons, calorimeter jets with $R = 0.4$, and any inner-detector tracks from the primary vertex not matched to any of these objects [51]. The magnitude of the $E_{\text{T}}^{\text{miss}}$ is denoted by $E_{\text{T}}^{\text{miss}}$.

5. Event selection

Events selected for this analysis must contain at least two large-R jets with $|\eta| < 2.0$ and invariant mass $m_J > 50$ GeV, and cannot have any lepton candidate passing the veto for leptons. The leading and subleading p_T large-R jets must have p_T greater than 450 GeV and 250 GeV, respectively. The two leading p_T large-R jets are assigned to be the Higgs and vector boson candidates, and the invariant mass of the individual jets is used to determine the boson type; the large-R jet with the larger invariant mass is assigned to be the Higgs boson candidate jet (H-jet), while the smaller invariant mass large-R jet is assigned as the vector boson candidate jet (V-jet). In signal MC simulation, this procedure results in 99% correct assignment after the full signal region selections described below. Furthermore, the absolute value of the rapidity difference $|\Delta y_{VH}|$ between the two leading p_T large-R jets must be less than 1.6, exploiting the more central production of the signal compared to the multijet background. To ensure orthogonality with the ZH resonance search in which the Z boson decays to neutrinos, events are rejected if they have $E_{\text{T}}^{\text{miss}} > 150$ GeV and $\Delta\phi(E_{\text{T}}^{\text{miss}}, H\text{-jet}) > 120$ degrees.

The H-jet is further required to satisfy mass and b-tagging criteria consistent with expectations from a Higgs boson decaying to bb [45]. The H-jet mass, $m_{H,J}$, must satisfy $75 < m_{H,J} < 145$ GeV, which is $\sim 90\%$ efficient for Higgs boson jets. The number of ghost associated b-tagged track jets is then used to categorize events. The H-jets with either one or two b-tagged track jets, amongst the two leading p_T associated track jets, are used in this analysis. The H-jets with one associated b-tagged track jet are not required to have two associated track jets. The Higgs boson tagging efficiency, defined with respect to jets that are within $\Delta R = 1.0$ of a truth Higgs boson and its decay b-hadrons, for doubly- (singly-) b-tagged H-jets is $\sim 40\%$ ($\sim 75\%$) for H-jets with $p_T \approx 500$ GeV and $\sim 25\%$ ($\sim 65\%$) for H-jets with $p_T \approx 900$ GeV [49]. The rejection factor for jets from multijet production is ~ 600 (~ 50) for double (single) tags.

The V-jet must satisfy mass and substructure criteria consistent with a W- or Z-jet using a 50% efficiency working point, similar to the “Medium” working point in Ref. [52]. To be considered a W (Z)-jet candidate, the V-jet must have a mass $m_{V,J}$ within a $p_{T,\text{jet}}$-dependent mass window which varies between $m_{V,J} \in [67, 95]$ ([75, 107]) GeV for jets with $p_T \approx 250$ GeV, and $m_{V,J} \in [60, 100]$ ([70, 110]) GeV for jets with $p_T \approx 2500$ GeV. The jet must also satisfy a $p_{T,\text{veto}}$-dependent D_2 [53,54] selection (with
\(\beta = 1 \) which depends on whether the candidate is a W or a Z boson, as described in Ref. [52]. The variable \(D_2 \) exploits two- and three-point energy correlation functions to tag boosted objects with two-body decay structures. The V-jet tagging efficiency is \(\sim 50\% \) and constant in \(V \)-jet \(p_T \), with a misidentification rate for jets from multijet production of \(\sim 2\% \).

Four signal regions (SRs) are used in this analysis. They differ by the number of \(b \)-tagged track jets associated to the \(H \)-jet and by whether the \(V \)-jet passes a \(Z \)-tag or \(W \)-tag selection. The “1-tag” and “2-tag” SRs require exactly one and two \(b \)-tagged track jets associated to the \(H \)-jet, respectively. The 2-tag signal regions provide better sensitivity for resonances with masses below \(\sim 2.5 \) TeV. Above \(2.5 \) TeV the 1-tag regions provide higher sensitivity because the Lorentz boost of the Higgs boson is large enough to merge the fragmentation products of both \(b \)-quarks into a single track jet. Events in which the \(V \)-jet passes a \(Z \)-tag constitute the \(ZH \) signal regions, while events in which the \(V \)-jet passes a \(W \)-tag constitute the \(WH \) signal regions. While the 1-tag and 2-tag signal regions are orthogonal regardless of the \(V \)-jet tag, the \(WH \) and \(ZH \) selections are not orthogonal within a given \(b \)-tag category. The overlap between the \(WH \) and \(ZH \) selections in the signal regions is approximately 60%.

The final event requirement is that the mass of the candidate resonance built from the sum of the \(V \)-jet and \(H \)-jet candidate four-momenta, \(m_{jj} \), must be larger than 1 TeV. This requirement ensures full efficiency for the trigger and jet \(p_T \) requirements for events passing the full selection. The full event selection can be found in Table 1. The expected selection efficiency for both \(WH \) and \(ZH \) resonances decaying to \(q\bar{q}l(l\bar{l})^{(bb+c\bar{c})} \) with a mass of 2 (3) TeV in the HVT benchmark Model B is \(\sim 30\% \) (\(\sim 20\% \)).

6. Background estimation

After the selection of 1-tag and 2-tag events, \(\sim 90\% \) of the background in the signal regions originates from multijet events. The remaining \(\sim 10\% \) is predominantly \(t\bar{t} \) with a small contribution from \(V+jets \) (\(\lesssim 1\% \)). The multijet background is modelled directly from data, while other backgrounds are estimated from MC simulation.

Multijet modelling starts from the same trigger and event selection as described above, but the \(H \)-jet is required to have zero associated \(b \)-tagged track jets. This 0-tag sample, which consists of multijet events at the \(\sim 95\% \) level, is used to model the kinematics of the multijet background in the 1-tag and 2-tag SRs. To keep the 0-tag region kinematics close to the 1- and 2-tag regions, \(H \)-jets in 0-tag events must contain at least one (two) associated track jets when modelling the 1(2)-tag signal region.

The 0-tag sample is normalized to the 1-tag and 2-tag samples and corrected for kinematic differences with respect to the signal regions, as described below. These kinematic differences arise from the \(b \)-tagging efficiency variations as a function of \(p_T \) and \(\eta \) and because different multijet processes, in terms of quark, gluon, and heavy-flavour content, contribute different fractions to the 0-, 1-, and 2-tag samples.

The 0-tag sample is normalized to the 1- and 2-tag samples, separately, using a signal-free high mass sideband of the \(H \)-jet defined by \(145 \text{ GeV} < m_{jj} < 200 \text{ GeV} \). This sideband (SB), illustrated in Fig. 1, is orthogonal to the signal region and has similar expected event yield to the signal region. The normalization of the multijet events is set by scaling the number of events in each region of the 0-tag sample by

\[
\mu_{\text{Multijet}} = \frac{N_{\text{1(2)-tag \ Multijet}}}{N_{\text{0-tag \ Multijet}}} = \frac{N_{\text{1(2)-tag \ data}}}{N_{\text{0-tag \ data}}} - \frac{N_{\text{1(2)-tag \ jets}}}{N_{V+jets}},
\]

where \(N_{\text{1(2)-tag \ data}} \) and \(N_{V+jets} \) are the numbers of events observed in data, and predicted from \(t\bar{t} \) and \(V+jets \) MC simulation in the 0-, 1-, or 2-tag SB samples, respectively. As the selection of track jets for \(H \)-jets in 0-tag events differs when modelling the 1-tag and 2-tag regions (as stated above), \(N_{\text{0-tag \ jets}} \) differs between estimates of the \(\mu_{\text{Multijet}} \) and \(\mu_{\text{Multijet}}^{1(2)-tag} \) (or \(\mu_{\text{Multijet}}^{1(2)-tag} \) vs. \(\mu_{\text{Multijet}}^{1-2-tag} \)).

Kinematic corrections to the multijet background template are applied by reweighting events from the 0-tag sample. This is performed only for the 2-tag sample, as the modelling of the multijet background in the 1-tag SB and validation regions (described below and depicted in Fig. 1) without reweighting is observed to be adequate. The weights are derived in the SB region, from third-order polynomial fits to the ratio of the total background model to data in two distributions that are sensitive to kinematic and \(b \)-tagging efficiency differences between the 0-tag and 2-tag samples. The variables are the track \(p_T \) ratio, defined as \(p_T^{\text{lead}} / p_T^{\text{sublead}} \), and \(p_T^{\text{lead}} \) both using the \(p_T \) distributions of the leading two \(p_T \) track jets associated to the \(H \)-jet. The reweighting is performed using one-dimensional distributions but is iterated so that correlations between the two variables are taken into account. After each reweighting iteration, the value of \(\mu_{\text{Multijet}}^{1(2)-tag} \) declines.
The number of events in data and predicted background events in the sideband and validation regions. In the sideband, the data and the total background prediction agree by construction. The uncertainties are statistical only. Due to rounding the totals can differ from the sums of components.

<table>
<thead>
<tr>
<th>2-tag sample</th>
<th>Sideband region</th>
<th>Validation region (< Signal-region-like)</th>
<th>Validation region (Sideband-region-like)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No D_2</td>
<td>With D_2</td>
<td>No D_2</td>
</tr>
<tr>
<td>Multijet</td>
<td>1410 ± 10</td>
<td>13700 ± 20</td>
<td>875 ± 5</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>115 ± 10</td>
<td>12 ± 3</td>
<td>250 ± 15</td>
</tr>
<tr>
<td>$V+$jets</td>
<td>1250 ± 50</td>
<td>138500 ± 160</td>
<td>8820 ± 40</td>
</tr>
<tr>
<td>Total</td>
<td>1670 ± 20</td>
<td>14050 ± 35</td>
<td>900 ± 8</td>
</tr>
<tr>
<td>Data</td>
<td>1667</td>
<td>15013</td>
<td>7430 ± 20</td>
</tr>
<tr>
<td></td>
<td>100 ± 12</td>
<td>10 ± 35</td>
<td>426</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1-tag sample</th>
<th>Sideband region</th>
<th>Validation region (< Signal-region-like)</th>
<th>Validation region (Sideband-region-like)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No D_2</td>
<td>With D_2</td>
<td>No D_2</td>
</tr>
<tr>
<td>Multijet</td>
<td>2220 ± 30</td>
<td>1030 ± 30</td>
<td>115 ± 7</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>1480 ± 90</td>
<td>120 ± 25</td>
<td>420 ± 50</td>
</tr>
<tr>
<td>$V+$jets</td>
<td>15000 ± 75</td>
<td>140900 ± 190</td>
<td>9050 ± 50</td>
</tr>
<tr>
<td>Total</td>
<td>14973</td>
<td>135131</td>
<td>67400 ± 120</td>
</tr>
<tr>
<td>Data</td>
<td>14973</td>
<td>135131</td>
<td>66896</td>
</tr>
</tbody>
</table>

is recomputed to ensure that the normalization is kept fixed. No explicit uncertainties are associated with this reweighting as these are determined from comparison with validation regions, as described below.

Due to the small number of events in the background template in the high m_{jj} tail, the backgrounds are modelled by fitting between 1.2 and 4 TeV with power-law and exponential functions. The multijet background in m_{jj} is modelled using the functional form

$$f_{\text{Multijet}}(x) = p_0 (1 - x)^p_0 (1 + x)^{p_0 x},$$

while the merged $t\bar{t}$ and $V+$jets backgrounds are modelled using the functional forms

$$f_{\text{Other}}^{1\text{-tag}}(x) = p_d (1 - x)^{p_d x^2},$$

and

$$f_{\text{Other}}^{2\text{-tag}}(x) = p_g e^{-p_g x}$$

for the 1-tag and 2-tag samples respectively. In these functional forms, $x = m_{jj}/\sqrt{s}$, and p_d through p_g are parameters determined by the fit. These functional forms are used as they can model changes in the power-law behaviour of the respective backgrounds between high and low masses. The exponential function is used for the 2-tag $t\bar{t}$ and $V+$jets samples because it was found to model the tail of the distribution well and because a fit to the small statistics of the sample could not constrain a function with more parameters. Fits are performed separately for the 1-tag and 2-tag background estimates, and separately for each background.

The background model is validated in the two regions denoted by VR-SR and VR-SB in Fig. 1, each also with two subregions. In all of these, the V-jet is required to have mass $50 \text{ GeV} < m_{jj} < 70 \text{ GeV}$ but the D_2 selection is only applied in one of the subregions. For the signal-region-like validation regions (VR-SR) the H-jet selection is unchanged, and for the sideband-like validation regions (VR-SB) the H-jet is required to have mass $145 \text{ GeV} < m_{jj} < 200 \text{ GeV}$. Both validation regions are kinematically similar to the signal regions but orthogonal to them (and to each other).

Table 2 compares the observed data yields in the validation regions with the corresponding background estimates. The differences are used as estimators of the background normalization uncertainties, as described in Section 7. The modelling of the m_{jj} distribution in the signal-region-like validation region is shown in Fig. 2 for the 1-tag and 2-tag samples. The data are well described.
by the background model. Other kinematic variables are generally well described.

7. Systematic uncertainties

The preliminary uncertainty on the combined 2015 and 2016 integrated luminosity is 3.2%. It is derived, following a methodology similar to that detailed in Ref. [55], from a preliminary calibration of the luminosity scale using x–y beam-separation scans performed in 2015 and 2016.

Experimental systematic uncertainties affect the signal as well as the tt̄ and V+jets backgrounds estimated from MC simulation. The systematic uncertainties related to the scales of the large-R jet pT, mass and D2 are of the order of 2%, 5% and 3%, respectively. They are derived following the technique described in Ref. [39]. The impacts of the uncertainties on the resolutions of each of these large-R jet observables are evaluated by smearing the jet observable according to the systematic uncertainties of the resolution measurement [39,52]. A 2% absolute uncertainty is assigned to the large-R jet pT, mass and D2 resolutions relative 20% and 15% uncertainties are assigned, respectively. The uncertainty in the b-tagging efficiency for track jets is based on the uncertainty in the measured tagging efficiency for b-jets in data following the methodology used in Ref. [47]. This is measured as a function of b-jet pT and ranges between 2% and 8% for track jets with pT < 250 GeV. For track jets with pT > 250 GeV the uncertainty in the tagging efficiencies is extrapolated using MC simulation [47] and is approximately 9% for track jets with pT > 400 GeV. A 30% normalization uncertainty is applied to the tt̄ background based on the ATLAS tt̄ differential cross-section measurement [56]. Due to the small contribution of the V+jets background, no corresponding uncertainty is considered.

Systematic uncertainties in the normalization and shape of the data-based multijet background model are assessed from the validation regions. The background normalization predictions in the validation regions agree with the observed data to within ±5% in the 1-tag sample and ±13% in the 2-tag sample. These differences are taken as the uncertainties in the predicted multijet yield. The shape uncertainty is derived by taking the ratio of the predicted background to the observed data after fitting both to a power law. This is done separately for the 1-tag and 2-tag samples. The larger of the observed shape differences in the VR-SR and VR-SB is taken as the shape uncertainty. Separate shape uncertainties are estimated for mJJ above and below 2 TeV in order to allow for independent shape variations in the bulk and tail of the mJJ distribution in the final statistical analysis.

An additional uncertainty in the shape of the multijet background prediction is assigned by fitting a variety of empirical functions designed to model power-law behaviour to the 0-tag mJJ distribution, as described in Ref. [57]. The largest difference between the nominal and alternative fit functions is taken as a systematic uncertainty. Similarly, the fit range of the nominal power-law function is varied, and the largest difference between the nominal and alternative fit ranges is taken as a systematic uncertainty.

The impact of the main systematic uncertainties on event yields is summarized in Table 3.

<table>
<thead>
<tr>
<th>Source</th>
<th>ZH 2-tag yield variation [%]</th>
<th>ZH 1-tag yield variation [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Background</td>
<td>HVT Model B Z+ (2 TeV)</td>
</tr>
<tr>
<td>Luminosity</td>
<td>0.2</td>
<td>3.2</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>2.2</td>
<td>7.0</td>
</tr>
<tr>
<td>Jet mass resolution</td>
<td>0.6</td>
<td>9.5</td>
</tr>
<tr>
<td>b-tagging</td>
<td>1.6</td>
<td>10</td>
</tr>
<tr>
<td>tt̄ normalization</td>
<td>1.8</td>
<td>–</td>
</tr>
<tr>
<td>Multijet normalization</td>
<td>4.7</td>
<td>–</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>WH 2-tag yield variation [%]</th>
<th>WH 1-tag yield variation [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Background</td>
<td>HVT Model B W+ (2 TeV)</td>
</tr>
<tr>
<td>Luminosity</td>
<td>0.2</td>
<td>3.2</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>2.4</td>
<td>5.7</td>
</tr>
<tr>
<td>Jet mass resolution</td>
<td>1.2</td>
<td>11</td>
</tr>
<tr>
<td>b-tagging</td>
<td>1.6</td>
<td>10</td>
</tr>
<tr>
<td>tt̄ normalization</td>
<td>1.9</td>
<td>–</td>
</tr>
<tr>
<td>Multijet normalization</td>
<td>4.3</td>
<td>–</td>
</tr>
</tbody>
</table>

8. Results

The results are interpreted using the statistical procedure described in Ref. [1] and references therein. A test statistic based on the profile likelihood ratio [58] is used to test hypothesized values of μ, the global signal strength factor, separately for each model considered. The statistical analysis described below is performed using the mJJ distribution of the data observed in the signal regions. The systematic uncertainties are modelled with Gaussian or log-normal constraint terms (nuisance parameters) in the definition of the likelihood function. The data distributions from the 1-tag and 2-tag signal regions are used in the fit simultaneously, treating systematic uncertainties on the luminosity, jet energy scale, jet energy resolution, jet mass resolution and b-tagging as fully correlated between the two signal regions. Both the multijet normalization and shape uncertainties are treated as independent between the two signal regions. In addition, the multijet shape uncertainties for mJJ above and below 2 TeV are treated as independent. When performing the fit, the nuisance parameters are allowed to vary within their constraints to maximize the likelihood. As a result of the fit, the multijet shape uncertainties are significantly reduced. With the jet mass resolution, jet energy scale and multijet normalization, they have the largest impact on the search sensitivity. Fits in the WH and ZH signal regions are performed separately. The pre- and post-fit mJJ distributions in the signal regions are shown in Fig. 3.

The number of background events in the 1-tag and 2-tag ZH and WH signal regions after the fit, the number of events ob-
served in the data, and the predicted yield for a potential signal are reported in Table 4. The total data and background yields in each region are constrained to agree by the fit. There is a $\sim 60\%$ overlap of data between the WH and ZH selections for both the 2-tag and 1-tag signal regions, and this fraction is approximately constant as a function of m_{jj}. This overlap is similar when examining the signal MC simulation, for instance for the 2 TeV Z' signal MC approximately $\sim 60\%$ of events pass both the WH and ZH selections.

8.1. Statistical analysis

To determine if there are any statistically significant local excesses in the data, a test of the background-only hypothesis ($\mu = 0$) is performed at each signal mass point. The significance of an excess is quantified using the local p_0 value, the probability that the background could produce a fluctuation greater than or equal to the excess observed in data. A global p_0 is also calculated for the most significant discrepancy, using background-only pseudo-experiments to derive a correction for the look-elsewhere effect across the mass range tested [59]. The most significant deviation from the background-only hypothesis is in the ZH signal region, occurring at $m_{jj} \approx 3.0$ TeV with a local significance of 3.3 σ. The global significance of this excess is 2.1 σ, which is computed considering the full range of Z' masses examined for potential signals from 1.1 TeV to 3.8 TeV.

The data are used to set upper limits on the cross-sections for the different benchmark signal processes. Exclusion limits are computed using the CLs method [60], with a value of μ regarded as excluded at the 95% CL when CLs is less than 5%.

Fig. 4 shows the 95% CL cross-section upper limits on HVT resonances for both Model A and Model B in the WH and ZH signal regions for masses between 1.1 and 3.8 TeV. Limits on $\sigma(pp \rightarrow V' \rightarrow VH) \times B(H \rightarrow b\bar{b} + c\bar{c})$ are set in the range of

Table 4

<table>
<thead>
<tr>
<th>Region</th>
<th>ZH 2-tag</th>
<th>ZH 1-tag</th>
<th>WH 2-tag</th>
<th>WH 1-tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multijet</td>
<td>1440 ± 60</td>
<td>13770 ± 310</td>
<td>1525 ± 65</td>
<td>13900 ± 290</td>
</tr>
<tr>
<td>Other backgrounds</td>
<td>135 ± 45</td>
<td>1350 ± 270</td>
<td>110 ± 45</td>
<td>1310 ± 260</td>
</tr>
<tr>
<td>Total backgrounds</td>
<td>1575 ± 40</td>
<td>15120 ± 130</td>
<td>1635 ± 40</td>
<td>15220 ± 120</td>
</tr>
<tr>
<td>Data</td>
<td>1574</td>
<td>15112</td>
<td>1646</td>
<td>15212</td>
</tr>
<tr>
<td>Model B, $m = 2$ TeV</td>
<td>25 ± 7</td>
<td>29 ± 10</td>
<td>51 ± 10</td>
<td>62 ± 16</td>
</tr>
</tbody>
</table>

The signal samples contain Higgs boson decays to $b\bar{b}$ and $c\bar{c}$, but due to the branching ratios and b-tagging requirements the sensitivity is dominated by $H \rightarrow b\bar{b}$.

Fig. 3. The m_{jj} distributions in the VH signal regions for data (points) and background estimate (histograms) after the likelihood fit for events in the (left) 2-tag and (right) 1-tag categories. The pre-fit background expectation is given by the blue dashed line. The expected signal distributions (multiplied by 50) for a HVT benchmark Model B V' boson with 2 TeV mass are also shown. In the data/prediction ratio plots, arrows indicate off-scale points.
83 fb to 1.6 fb and 77 fb to 1.1 fb in the W and Z signals, respectively. These cross-section limits are translated into excluded Model B signal mass ranges of 1.10–2.50 TeV for W resonances and 1.10–2.60 TeV for Z resonances. The corresponding excluded mass ranges for Model A are 1.10–2.40 TeV for W resonances, and 1.10–1.48 TeV and 1.70–2.35 TeV for Z resonances.

Fig. 5 shows the 95% CL limits in the $g^2 c_F / \alpha_V$ vs. $g_V c_H$ plane for several resonance masses for both the W and Z channels. These limits are derived by rescaling the signal cross-sections to the values predicted for each point in the ($g^2 c_F / \alpha_V$, $g_V c_H$) plane and comparing with the observed cross-section upper limit. As the resonance width is not altered in this rescaling, areas for which the resonance width $\Gamma/m > 5\%$ are shown in grey. These may not be well described by the narrow width approximation assumed in the rescaling.

9. Summary

A search for resonances decaying to a W or Z boson and a Higgs boson has been carried out in the $q\bar{q}^{(*)} b\bar{b}$ channel with 36.1 fb$^{-1}$ of pp collision data collected by ATLAS during the 2015 and 2016 runs of the LHC at $\sqrt{s} = 13$ TeV. Both the vector boson and Higgs boson candidates are reconstructed using large-radius jets, and jet mass and substructure observables are used to tag W, Z and Higgs boson candidates and suppress the dominant multijet background. In addition, small-radius b-tagged track jets ghost-associated to the large-R jets are exploited to select the Higgs boson candidate jet. The data are in agreement with the Standard Model expectations, with the largest excess observed at $m_{b\bar{b}} \approx 3.0$ TeV in the Z channel with a local significance of 3.3 σ. The global significance of this excess is 2.1 σ. Upper limits on the production cross-section times the Higgs boson branching ratio to the $b\bar{b}$ final state are set for resonance masses in the range between 1.1 and 3.8 TeV with values ranging from 83 fb to 1.6 fb and 77 fb to 1.1 fb (at 95% CL) for W and Z resonances, respectively. The corresponding excluded heavy vector triplet Model B signal mass ranges are 1.1–2.5 TeV for W resonances, and 1.1–2.6 TeV for Z resonances.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan;

CMS Collaboration, Search for heavy resonances that decay into a vector boson and a Higgs boson in hadronic final states at $\sqrt{s} = 13$ TeV, arXiv:1707.01303 [hep-ex], 2017.

The ATLAS Collaboration

1 Department of Physics, University of Adelaide, Adelaide, Australia
2 Physics Department, SUNY Albany, Albany NY, United States
3 Department of Physics, University of Alberta, Edmonton AB, Canada
4 (a) Department of Physics, Ankara University, Ankara; (b) Istanbul Aydin University, Istanbul; (c) Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
5 LAP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
6 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States
7 Department of Physics, University of Arizona, Tucson AZ, United States
8 Department of Physics, The University of Texas at Arlington, Arlington TX, United States
9 Physics Department, National and Kapodistrian University of Athens, Greece
10 Physics Department, National Technical University of Athens, Zografou, Greece
11 Department of Physics, The University of Texas at Austin, Austin TX, United States
12 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
13 Instituto de Física de Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain
14 Institute of Physics, University of Belgrade, Belgrade, Serbia
15 Department for Physics and Technology, University of Bergen, Bergen, Norway
16 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States
17 Department of Physics, Humboldt University, Berlin, Germany
18 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
19 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
20 (a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics Engineering, Gaziantep University, Gaziantep; (c) Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul; (d) Babes-Bolyai University, Faculty of Engineering and Natural Sciences, Cluj-Napoca; (e) University of Bucharest, Faculty of Engineering, Bucharest; (f) West University in Timisoara, Timisoara, Romania
21 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
22 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
23 Physikalisches Institut, Universität Bonn, Bonn, Germany
24 Department of Physics, Boston University, Boston MA, United States
25 Department of Physics, Brandeis University, Waltham MA, United States
26 (a) Universidad Federal do Rio de Janeiro COPPEE/IEF, Rio de Janeiro; (b) Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSC), Sao Joao del Rei; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
27 Physics Department, Brookhaven National Laboratory, Upton NY, United States
28 (a) Transilvania University of Brasov, Brasov; (b) Maria Curie Skłodowska University of Lublin, Lublin, Poland
29 (a) Universidad Iberoamericana; (b) Universidad Nacional Autonoma de Mexico, Mexico City; (c) National Institute for Research and Development of Isotopic and Molecular Technologies, Bucharest, Romania; (d) West University in Timisoara, Timisoara, Romania
30 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
31 Department of Physics, Carleton University, Ottawa ON, Canada
32 CERN, Geneva, Switzerland
33 Enrico Fermi Institute, University of Chicago, Chicago IL, United States
34 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
35 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Physics, Nanjing University, Jiangsu; (c) Physics Department, Tsinghua University, Beijing 100084, China
36 (a) Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, China; (b) School of Physics, Shandong University, Shandong, China; (c) Department of Physics and Astronomy, Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai, China
37 Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
38 Nevis Laboratory, Columbia University, Irvington NY, United States
39 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
40 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy
41 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
42 Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
43 Physics Department, Southern Methodist University, Dallas TX, United States
44 Physics Department, University of Texas at Dallas, Richardson TX, United States
45 DESY, Hamburg and Zeuthen, Germany
46 Lehrstuhl für Experimentelle Physik II, Technische Universität Dortmund, Dortmund, Germany
47 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
48 Department of Physics, Duke University, Durham NC, United States
49 SUPA – School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
50 INFN – Laboratori Nazionali di Frascati, Frascati, Italy
51 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
52 Département de Physique Nucléaire et Corpusculaire, Université de Genève, Geneva, Switzerland
53 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
54 (a) E. Andronikashvili Institute of Physics, Jv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
55 Institute für Kernphysik, Justus-Liebig-Universität Gießen, Gießen, Germany
56 SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
57 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
58 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
59 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States
60 (a) Knutti-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
61 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
62 (a) Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; (b) Department of Physics, The University of Hong Kong, Hong Kong, China; (c) Department of Physics and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
63 Department of Physics, National Tsing Hua University, Taiwan, Taiwan
64 Department of Physics, Indiana University, Bloomington IN, United States
65 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria