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Abstract. Analyzing complex problem domains is not easy. Simulation
tools support decision makers to find the best policies. Model-based system
development is an approach where a model of the application domain is
the central driving force when designing simulation tools. State-of-the-art
techniques however still require both expert knowledge of the application
domain and the implementation techniques as provided by ICT (such as
multilevel agent technology).

Domain experts, however, usually do not master ICT sufficiently.
Modeling is more insightful for the domain expert when its goal is to
formalize the language being used in that domain as a semi-natural
language. At the meta level, this language describes the main concepts
of the type of application domain. The model then is a concretization
of this meta model. The main focus of this article is (1) to propose
a natural-language-based approach to modeling application domains,
(2) to show how these models can be transformed systematically into
computational models, and (3) to propose the tool TiC (Tool in Context)
that supports the domain expert when developing a model and generating
a simulation tool. Our research methodology is based on Design Science.
We verify our approach by describing the various transformation steps in
detail, and by demonstrating the way of working via a sample session
applying a real problem of Laf Forest Reserve deforestation in North
Cameroon.

Keywords: Actor model, Multi-level Agent-based model,
Domain-specific languages, Model transformation, environmental
problems.

1 Introduction

Complex systems comprise a large number of interacting elements whose overall
characteristics cannot be deduced directly from their components. Examples are
the cells of a living organism, ecosystems, economic systems, the Internet and
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social networks. These systems have features such as the presence of several scales
of space or time and reflexive interaction, which is one of the reasons for their
non-linearity. The analysis of these systems often requires an interdisciplinary
approach combining mathematical methods with those of social sciences, geography
and computer science.

Modeling and simulation is increasingly used to provide some understanding,
solution or decision support in such complex contexts. However, modeling and
simulation often require a number of skills that are not readily mastered by domain
experts such as social scientists, geographers, and biologists. This necessitates these
researchers to enter into dialogue with ICT experts, often finding the gap between
the domain’s and the ICT languages and methods to bridge. This interdisciplinary
approach is increasingly observed in Agent-Based Models (ABM), enabling explicit
representation of interactions and thus providing a framework for taking into account
the dynamics of systems and the individual or collective logic of Decision Making. For
example, Becu et al. [1] provide a formal methodology for performing a transfer of
reality observed in Northern Thailand watershed in a computer model to explain the
management of a watershed by land users, based on representations of local actors
integrated with a multi-agent approach. Other work using the ABM methodology
in environmental problem can be found in [2] and [3].

These works show various approaches for data collection, system design and
integration of the data in the system. A common feature is, however, that the
actual work is usually done by a domain expert (e.g. social scientist, environmental
scientist) which is then delivered to a computer modeler to integrate the data and
ideas in the model that should be developed. This basically one-way communication
may cause hard-to-trace inconsistencies between the various steps in the chain (from
theory to meta-model, from meta-model to concrete model, from concrete model to
data collection, from rough data to interpreted data, from data to model and so
on). Moreover, a lack of two-way interaction may result in missed opportunities, e.g.
more efficient data collection or more explicit theory. To avoid these inconsistencies,
it would be ideal for the domain expert to be able to produce his own model from
the analysis phase to the simulation without transferring data to an ICT expert.

Generic Agent-Based Modeling and Multi-Agent Modeling approaches are
increasingly being introduced nowadays to allow domain experts to easily and rapidly
produce their own models. Among these approaches are those specially designed for
the development of agents solving specific practical or engineering problems ([4], [5]),
typically in software systems [6]. These approaches are often limited and do not cover
the entire development process [7], [8]. There is also a lack of conceptual richness on
the social-scientific and socio-economic level. This makes them not suitable for the
analysis of environmental problems. Then we also have approaches in which agents
communicate and cooperate on a single scale level, [9], [10] and [11]. The latter
weakness causes problems for land use studies because the keys to understand land
use change and therewith to design efficient solutions often lie on abstraction levels
that are higher than the land users themselves.

And finally, we have the approach that takes into account the multiplicity of levels
called Multi-Level Agent-Based Modeling MLABM [12], [13], [14], [15]. The models
proposed in this approach are very different to each other from the point of view
of the study area, the modeled scales and the approaches implemented to manage
the complexity involved by the management of the various organizational levels [16].
To use them requires advanced skills in mathematics and computer science. The
metamodels proposed in these approaches are not enriched by the concepts of the
domain and do not use a domain language. This makes them difficult to understand
and be used by the domain expert. These limitations make the approaches not
immediately suitable for modeling socio-economic and environmental problems.
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Our intention in this article is to propose a model-based development approach for
designing ICT-based solutions to environmental problems. We will call this approach
Natural Model-based Design in Context, abbreviated as NMDC. This approach
should allow a (trained) domain expert to design a conceptual model for a concrete
environmental problem. This model describes the underlying application domain in
terms of environmental concepts and neither requires specific mathematical and ICT
skills nor involves implementation details.

In particular, our intention is to design the conceptual model as a linguistic
framework for a controlled semi-natural language. On the one hand, this allows
the domain expert to describe and reason on the application domain in a language
that is close to that language normally used in that application domain while, on the
other hand, this language has an underlying formal basis as required by the system
analyst.

During the modeling process, the domain expert and system analyst develop the
syntax of this controlled semi-natural language. Furthermore, the system analyst
tries to capture the semantics of this language in interaction with the domain expert.
A general procedure for the design of a semi-natural domain language, as an interplay
between domain expert and system analyst, and the competencies required for the
domain expert and system analyst, have been described in [17] (see also [18]), and
also apply to our situation.

A major part of the design of the proposed model-based development approach
is a successive systematic transformation of the domain model into implementation
oriented models. This also involves the utilization of MLABM. Our intention is to
make benefit from existing open source tools to materialize our approach. The result
is what we will call Tool in Context (TiC). As a special feature, TiC also offers a
syntax-directed editor to assist domain experts in designing a model for a concrete
application by themselves.

Summarizing, our intentions in this article are as follows.

I1 To provide a framework in terms of a metamodel to describe a class of
environmental problem.

I2 To describe how a concrete model can be compiled and transformed into a running
application using multi-level agent technology.

I3 To describe a tool for environmental experts to help them in developing and
entering concrete models.

I4 To demonstrate how this metamodel is used in a complex situation, leading to a
concrete model.

The layout of this article is as follows. Section 2 summarizes our methodology.
Section 3 gives the background for our research. In Section 4 we describe the
conception of the actor model and shows how multiple levels are assigned to modeling
the approach. Section 5 introduces the Action in Context (AiC) meta-model, followed
by the proposed AiC agent architecture in Section 6. Then in Section 7 we transform
the AiC meta-model into the AiC Domain Specific Language. Section 8 describes
the design of TiC and the extension with its simulation tool, and shortly describe a
sample session. In Section 9 we propose an empirical validation of our approach to
demonstrate its usefulness. Finally in Section 10 we draw some conclusions.

2 The Methodology

In this article, we make a distinction between a general approach for the problem area
and its application to a concrete problem (see Figure 1). The general approach covers
a broad class of problems (environmental problems in our case). This is extended to
a concrete model for a given application domain by describing the actors involved,
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and the actions that they may perform. This general framework is the base for a tool
that can be used to enter concrete problems and to generate applications (simulation
tools in our case).

Figure 1. The various levels of abstraction and application (DPSIR - Driving
forces-Pressures-State-Impacts-Response [52])

The methodology we use is based on the Design Science Research Method (DSRM)
which is the standard research methodology used in the Information Systems
discipline for designing new artifacts that solve unsolved problems or improve upon
existing solutions (see [19], [20]). Based on a broad design science literature review,
inspired by the seminal paper [19], [21] proposes a methodology for design science
research consisting of the following six steps:

1. Problem identification and motivation: Define the specific research problem
and justify the value of a solution.

2. Definition of the objectives for a solution: Infer the objectives of a solution
from the problem definition and knowledge of what is possible and feasible.

3. Design and development: Create the artifact. Such artifacts are potentially
constructs, models, methods, or instantiations.

4. Demonstration: Demonstrate the use of the artifact to solve one or more
instances of the problem. This could involve its use in experimentation,
simulation, case study, proof, or other appropriate activity.

5. Evaluation: Observe and measure how well the artifact supports a solution to
the problem. Depending on the nature of the problem venue and the artifact,
evaluation could take many forms.

6. Communication: Communicate the problem and its importance, the artifact,
its utility and novelty, the rigor of its design, and its effectiveness to researchers
and other relevant audiences, such as practicing professionals, when appropriate.

Our work is organized in accordance with these 6 steps. The problem identification,
motivation, and the objectives for a solution are discussed in the introduction and
are supported by Section 3 and Section 4. Design and development are addressed in
Section 5, Section 6, Section 7 and Section 8. Then we demonstrate the working of
the proposed model-based development approach in Section 9 with the Laf Forest
Reserve deforestation case. A demonstration of the approach, described in this
article, in a comparable, application area can be found in [22]. As a first evaluation,
we give a sample session to show how well this approach will help to build a
simulation tool for an environmental problem. Finally, the present document, as
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well as the discussions in [23] are communication mediums that were used to assess
the novelty and the rigor of our modeling framework.

3 Background

In this section, we present the difficulties encountered by domain experts in the
modeling and simulation process and take a look at existing solutions that can
overcome these difficulties, while bringing out the limiting factors that will be taken
into account in our work.

3.1 Difficulties Related to Modeling and Simulation

During the last decades, the contributions of computer science and models have
played a very important role in the representation and understanding of complex
phenomena. However, the modeling and simulation process presents itself as a
delicate and rather difficult exercise. It requires the researcher to know perfectly
the concepts of the domain, the phenomena to be modeled and the technical tools
to represent these phenomena and concepts in order to be able to simulate them.

A number of obstacles and difficulties must be overcome if modeling is to be
made useful to life scientists more broadly than is the case today. The development
of a sophisticated computational model requires both a conceptual foundation and
implementation. Challenges related to conceptual foundations can be regarded as
mathematical and analytical; challenges related to implementation can be regarded
as computational or, more precisely, as related to computer science [24].

Several works in literature have identified difficulties related to modeling and
simulation, [25], [24]. These difficulties usually involve strict compliance with the
modeling process (analysis, design, implementation, deployment), data collection,
the time required to construct the model and the calibration of the simulation
parameters. On the technical side, there is a longer time devoted to computer
questions than domain questions, the representation of domain concepts, and finally
a difficulty to transfer and integrate the data. Nowadays this work is carried out by
a multidisciplinary team.

Solutions have been already proposed to many of these difficulties (see [26], [27]),
but some of them still persist, notably the transfer and integration of data and
the representation of the domain concepts. Because the design and implementation
phase still use technical tools that are not necessarily mastered by domain experts,
which implies a transfer of data and problems of data inconsistency that may have
occurred. To these are added the difficulty of taking into account the multiplicity of
the levels of scale in the models. We present in the next section some solutions in
terms of MLABM that have already been proposed to these difficulties.

3.2 Multi-level Agent-based Modeling Approaches

Agent-based modeling (ABM) has been recognized as an effective means to model
social life as interactions among adaptive agents who influence one another
in response to the influence they receive. [28], [29]. [30] also discusses the
application of ABM to real-world business problems. In [31] the following aspects
are distinguished when studying such applications: (1) theoretical, (2) experimental,
and (3) computational.

Applications may show a hierarchical structure in agent cooperation, see [32]. [33]
discusses the reasons for the inclusion of multiple organizational levels in models by
grouping them into: (1) the representation of interactions between a large number of
system components and the justification of learning and (2) adaption of agents in a
group by observing the behavior of other agents at different levels. There is a need for
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entity descriptions evolving at different spatial and temporal scales, corresponding to
different organizational levels of the system [34], [16]. New approaches to modeling a
complex system design therefore are interested in extending the agent characteristics
with a multi-level agent approach, see [35], [36], [37].The aim is to integrate into a
single model the knowledge and/or operating rules from different levels of analysis
considered by the system designer. These systems are at the center of various
fields such as biomedical research [38], flow modeling [39], social simulation [40],
for explanatory insight into the collective behavior of agents obeying simple rules.
This makes them particularly difficult to build and verify due to the quantity of
data flows to consider and the number of interactions to take into account. The
current development and programming solutions offer very little abstractions and
highly technical methodological support is often limited to treat these aspects.

According to [34] the studies on MLABM engineering can be grouped into two
main categories: meta-models and platforms. Among the works on meta-models we
can mention the GEneric Architecture for MultiAgent Simulation (GEAMAS) [12],
the pioneering of MLABM, which is based on the description of a three-level
MLABM framework that integrates agent representation at the micro level, the
system point of view at the macro level and the representation of agent aggregation in
a specific context at the meso level. The inter-level communication is asynchronous.
Although GEAMAS was proved to be very helpful in understanding and analyzing
the behavior of agents and to master the complexity of natural phenomena, it
requires careful designing and long computing time. These issues can be explained
by the fact that during simulations, agents usually face the same kinds of conditions
and the repetition of the same action leads the system to become less powerful.
Moreover, it is an architecture oriented methodology but the agent meta-model is
not explicit and very abstract especially for domain experts. The design phase is
still less detailed compared to various current challenges of scalability. [13] has
proposed the Influence Reaction Model for Multi-level Simulation (IRM4MLS)
meta-model. It is a generic meta-model that aims to specify and execute MLABM.
This meta-model specifies the relations of perception and influence between levels
with digraphs. IRM4MLS provides additional concepts on existing methodologies
in the literature, including the representation of the hierarchical multi-level system,
with different spatial and temporal dynamics, multi-level agents or environments
and agents that are dynamically introduced in levels. However, its implementation
remains very difficult due to various mathematical concepts used to represent its
rules. Moreover, the specification of the reaction function is very difficult since
it uses a discrete time model. Thus it will not be easy for other domain experts
than mathematicians and ICT experts to use IRM4MLS model without assistance.
Another generic meta-model PADAWAN is presented in [14]. It is a multi-scale ABM
meta-model based on a compact matrical representation of interactions, leading to
a simple and elegant simulation framework. And finally, the AA4MM meta-model,
described in [41], provides a multi-modeling or model coupling meta-model applied
to ML-ABM.

Concerning studies based on platforms, we can mention GAMA [15] which is a
platform development of MLABM to offer the developer an easy and appropriate
language allowing to build and reuse complex models combining various agent
architectures, environment representations, and levels of abstraction. [42] has
proposed SPARK, a Simple Platform for Agent-based Representation of Knowledge
which is a framework for multi-scale ABM, dedicated to biomedical research. Some
complementary work on the platforms are found in [39].

The challenges of multi-level systems are discussed by Blair and Grace [43].
The authors state that the challenge of multiple levels as such is not the most
difficult to overcome. Rather, the challenge lies in the heterogeneity of the processes
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involved. Indeed, a multi-level system is not necessarily strongly divided in terms
of geographical distance or number of parties involved; the relevant characteristic
is its’ vertical spread over different levels of scale. Thus [44] defines a multi-level
system as a system distributed vertically on several levels of different sizes in one or
more dimensions (geographical, network, etc.).

This complies with what we have seen about AiC and its actor’s field, albeit that
the actor’s field concept, being actors-based rather than system-oriented, allows to
use the same core components (action, actor, options, motivations) on all levels. Even
though actors obviously take their options and motivations from different system
levels (farmers from the local level, merchants from the regional market level, World
Bank from the global level), there is no need to fully model these levels themselves.

Although these works allow developing MLABM effectively, the models proposed
are very different to each other from the point of view of the study area, the modeled
scales and the approaches implemented to manage the complexity involved in the
management of the various organizational levels [16]. To use them requires advanced
skills in mathematics and computer science. Furthermore, many of them are based
on ad-hoc meta-models. This makes the transferability of ideas from one to another
not obvious and usually hard. Very few of them offer the design of a central model.

In our work, we design a generic methodology of modeling environmental problems
using multilevel agent-based technology through a Specific Language, which can be
reused, step by step, by domain expert to design a new model for a specific domain.

3.3 Conceptual Modeling

Object-Role Modeling (ORM) is a method for conceptualizing and explicitly
representing data and processes in an application domain. The philosophy behind
ORM is that it tries to describe this domain by reflecting the communication between
its members as a semi-natural language. An ORM scheme basically is a grammar
describing that communication. This grammar is also referred to as information
grammar. An ORM diagram is a graphical representation of this grammar. The
information grammar not only describes the structuring of the information but also
describes constraints on how the structure may be populated. For an overview on
expressivity in conceptual data modeling, based on [45], see Appendix A.

The information grammar describes the elementary sentences that are valid in
the associated Universe of Discourse. From these sentences, other sentences may
be formed. Object Role Calculus (ORC) ([46]) and ORM2 ([47]) are examples of
such generic systems for constructing sentences. In formal terms, the information
grammar may be seen as the signature of a first-order logic theory ([48]), together
with a set of axioms, derived from the population rules. The associated logic theory
is a basis for formal reasoning about the domain. Proof assistants (such as the Coq
Proof Assistant ([49]) may help policymakers.

4 A Framework for Environmental Problem Analysis

We start this section with a presentation of the context in which the AiC framework
is positioned. All starts with the study of environmental problems and the desire
to design solutions to them. Because the design of a solution requires knowledge of
causal chains (roughly, what causes the problem and why), causal frameworks hold
a position of priority, rather than spatial [50] or mathematical methods [51].

4.1 Problem-in-Context (PiC)

Problem-in-Context (PiC) is an extension of the well-known Driving
forces-Pressures-State-Impacts-Response (DPSIR) framework, proposed by De
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Groot [52] and used inter alia by [53] to analyze, explain and solve environmental
challenges. Compared to DPSIR, PiC makes the normative side of environmental
problems explicit and adds much more details to their social causes. Figure 2
gives the essentials. In its problem-analytical part, PiC contains two parallel

Figure 2. Problem-in-Context framework (PiC), adapted from [52]

causal chains. The left one is factual and indicates which human activities cause
environmental effects and, onwards, impacts on society (called ’final variables’).
The other chain is normative, running from desired societal goals (e.g. poverty
alleviation or biodiversity conservation) to environmental standards and further
downward to human activity prescriptions (’environmental capacity’). These two
chains are connected in a comparative manner, e.g. factual poverty compared to
poverty alleviation goals, environmental facts compared to environmental standards
and factual versus prescribed activities, defining the environmental problem at
these different levels in the double chain.

Focusing on the social explanation of problematic human activities, PiC further
contains the Action-in-Context sub-framework that is used as the meta-model (see
Section 4.2) in the present study. This allows the analysis of human actions to remain
explicitly connected to their environmental relevance, i.e. their contributions to the
environmental problem or its solution.

Thus in the Problem-in-Context framework, one entry point to analyze an
environmental problem is the activity or action that sets it off. This action leads
to a chain of effects on the environment, e.g. those predicted in environmental
impact studies. The relevance (evaluation) of an impact depends on the normative
context (e.g. policy principles on poverty and biodiversity) that induces the chain
of environmental standards and provides a reference for the analysis. At the level
of the activity (actions) variables, the chain of norms ends with the environmental
capacity (carrying capacity), which may be split into the required number of actors
and/or the required intensity of action per actor and may also be mapped, as in
land evaluation.

4.2 Action-in-Context (AiC)

The sub-framework Action-in-Context (AiC) is depicted in some more detail in
Figure 3. It focuses on the empirical explanation of the activity (actions) element
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in PiC. Going upwards in the figure, the arrows indicate the causal direction.
The direction of the explanation, amounting as it does to repeatedly asking the
why-question, therefore runs downward in Figure 3.

Figure 3. The AiC framework, adapted from [52]

For any action, AiC shows the actors involved and their options and motivations
related to this action. Options are defined as what the actor can do (alternative
courses of action), and motivations are the actor’s reasons that come into play for
choosing one or another option. This allows AiC to explicitly represent the process
of actors’ decision-making that integrates economic factors, political context and
sociocultural perceptions (the merits of the action and the subjective interpretation
of these merits).

Actor decisions can be modeled using any theory that contains the options and
motivations concepts one way or another, such as a rational choice theory or a
theory of reasoned action (see next section). In AiC, this is supported by four
concepts that underlie the options/motivations triangle. They are (C1) potential
options, defined as everything the actor could consider if he would have enough
resources (C2) autonomy, defined as all resources (’capitals’) of the actor, such as
financial, social and cognitive, minus possible restrictions such as prohibitions or
taboos, (C3) merits, defined as more or less objective reasons for the actor to act,
such as financial gain, hours of work, calories of food, and (C4) interpretations,
defined as the subjective (personal or cultural) beliefs about the good or bad of
the merits, e.g. the degree they express loyalty, reputation or honesty. These four
elements are then grounded in micro and macro structures that might also be called
systems at the meso and macro levels.

From all this, we could say that it is a balanced summary of the regular social
sciences. Uniquely for AiC however, the actor’s options and motivations (hence
decision) may also be seen as influenced by other actors that find their own options
and motivations defined at system levels higher than those of the original actor. We
will refer to this as AiC concept C5. One example may be a government issuing a
prohibition on a certain type of land use, based on a nationwide land evaluation
or food security study. Through the prohibition, the government actor reduces the
options of farmers based on its assessment on the national level. In other words,
if we include the government as an actor in a model additional to land users and
connect them through the prohibition action, the model becomes multi-level through
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this specific, one could say vertical or causal, type of being multi-agent [54]. Note
that in its turn, the government actor may be influenced by global actors such as
the International Monetary Fund (IMF) setting conditions on government discretion
(options) through, for instance, a Structural Adjustment Program. In AiC this causal
arrangement between actors is called the actor’s field (see Figure 3), defined as the
composition of all significant causal linkages from the action-to-be-explained (e.g.
land use by farmers) to other actors through causal actions originating from these
other actors.

4.3 The Need for an AiC Meta-model
Figure 3 does not provide a precise definition of how to network the possible linkages
between actors and actions. For example, causal actions may influence elements
that influence the actor’s decisions, e.g. adding or subtracting potential options (e.g.
through agricultural extension), elements of autonomy (e.g. through micro-credit
or prohibitions), merits of options (e.g. by taxing some or subsidizing others) or
interpretations (e.g. by propaganda or cultural debate) which are actions affecting
options and/or motivations of other actors. For such a precise definition modeling
languages such as Unified Modeling Language (UML) and ORM are used in practice.

Lacking such a precise definition makes it difficult (1) for a domain expert to
precisely describe the application at hand, and (2) for the ICT expert to transform
that description into a computational model that is easily comprehensible and thus
can be used to develop a simulation or support tool.

Since we assume that the domain expert not necessarily (nor likely) will be an ICT
expert, we need a precise description of the AiC framework that is comprehensible
on both sides. For the domain expert, the technique to model an application domain
should be close to the language used by domain experts. That way, the domain
expert will not be hindered by technology issues when describing the application at
hand as an AiC framework.

The precise description of the AiC framework is referred to as the AiC meta-model.
The term meta-model is used since this model actually describes concrete AiC
frameworks. In the next section, using the design approach proposed by ORM, we
show how to move from the AiC framework into the AiC meta-model.

5 The AiC Meta-model
In this section, we begin the design activity of our approach. According to March and
Smith [55], Hevner et al. [19] point to four types of artifacts that can be produced
at the end of the design process:
• Constructs that provide the vocabulary and symbols used to define problems and

solutions of the domain.
• Models that consist of a set of propositions or statements relating constructs.
• Methods that are defined as the set of steps that allow you to perform a task.
• Instantiation which are none other than the actual realization of an artifact in

its environment.
In our work, we develop our artifacts inspired by the cycle view of research activities
in design science proposed by Hevner et al. [56].

Thus, in this section, we defined the vocabulary of the domain (’Constructs’)
through the AiC framework (Capital, Resource, Action, Actor,...) using ORM
technique. Also in this section, we focus on the actors in the actor field and define
a set of propositions or statements (’Models’) which overview the essential concepts
and their relations as used by the actors to make their decisions as described in the
previous subsection. It may also be used as a basis for inter-agent communication,
but that is outside the scope of this paper.
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The AiC meta-model is displayed in Figure 4 in the style of the ORM modeling
technique (see Section 3.3). Each AiC application then can be seen as an instantiation
(population) of this meta-model.

Figure 4. The AiC Conceptual Model

The essentials of Section 4.2 are summarized by the following elementary
sentences. Actions are identified by their action ID; they require capitals as inputs
and produce benefits as outputs. A capital is some quantity of some resource type.
Actors, identified by the actor ID, dispose of capitals. This is formulated by the
following elementary sentences:

AiC 1. Capital: Quantity of Resource_type.
AiC 2. Action requires Capital.
AiC 3. Actor can use Capital.

The sentence AiC 3 expresses the autonomy of the actor (AiC concept C1). The
merits (AiC concept C3) are represented in the following elementary sentence:

AiC 4. Gain: Expected net benefit of Action

So an actor has as options all action for which the actor disposes of all required
capitals. The following rule defines options (AiC concept C1) in terms of other
elementary sentences. So an option does not correspond to an elementary sentence
since it is a derivable sentence (derivable sentences are marked red in Figure 4).

AiC 5. LET Option BE Action requiring less Capitals than Capitals that can be used by
Actor
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The option that is chosen by the actor is registered in the following elementary
sentence:

AiC 6. ChosenOption IS Option with highest Gain

According to the previous Section (See Section 4), actors also have motivations
for options (representing AiC conceptC4). The reason is that an actor chooses the
option with the highest expected net benefit. We imply by net benefit, the Gross
benefit minus the expenses used to perform the action. Finally, actors may influence
each other (AiC concept C5) by influencing the gain of actions. In other side, actors
also influence options, e.g. by offering new knowledge or prohibiting certain options.
A typical example is when the government wants to stimulate specific actions by
increasing some of the resource types it produces, in the first case, and, in the
second case, we can have a law prohibiting action. This is formulated as:

AiC 7. Actor influences Gain.
AiC 8. Actor influences Option.

This elementary sentence will be the basis for defining hierarchical levels for actors.

5.1 Managerial Actor Levels
Action-in-Context offers an alternative way of creating a multi-level model that
is much less concerned with perceptions and more with direct causality. Let us
assume that farmers are influenced by the fertilizer price, where it functions as one
decision factor (motivation) on the farmers level. Let us assume further that the
fertilizer price is co-determined by a subsidy issued by the Ministry of Agriculture.
The level of subsidy is determined by the Ministry’s own motivations at its own level,
connected, for instance, with the need for national food security, and its subsidy
level options, connected, for instance, with the other ministries. Thus, the fertilizer
subsidy connects the farmer causally with the national food system, without any
perception of this system by the farmer being needed. On the next level, similarly, for
instance, the IMF may have put an abolishment of fertilizer subsidies as a condition
to a loan to the government. The IMF ”lives” on a level of its own, e.g. composed
of national governments as actors and neo-classic economics as the dominant value
system. Thus, in spelling out the micro and macro structural and cultural elements
of the decision contexts of actors in the actor’s field, the AiC multi-agent model
becomes multi-level and multi-scale automatically, exactly to the extent causally
relevant to the problem at hand [54], without cross-level considerations of perceptions
needed.

Our intention is to implement AiC models by multi-level agent-based models. In
AiC the basis for actor hierarchy is the following derivable sentence, that defines
how actors govern other actors by their ability to influence the merits of actions:

AiC 9. LET Actor is governing Actor BE Actor influences Existence or Gain of Options or
Actor.

As a next step, we define a partition scheme for actors based on this sentence.
This is done as follows. As a short-hand notation, we will write g(a,b) as an

abbreviation for the sentence Actor a is governing Actor b. There are several ways to
add an partial order relation:
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1. (governor-based) a ≡g b ≜ ∀c [g(c,a)⇔g(c,b)].
2. (subordinate based) a ≡s b ≜ ∀c [g(a,c)⇔g(b,c)].
3. (combined) a ≡c b ≜ a ≡g b∧a ≡s b.

It is easily verified that these three relations all are equivalence relations. In this
paper, we will assume that the governor-based approach ≡g is being used. So each
equivalence class consists of all agents that are governed by exactly the same agents.
An equivalence class thus also may be seen as a managerial level. The levels that we
introduce are the equivalence classes (managerial levels) of this relation.

It will be convenient to represent the managerial levels as a directed graph
that indicates the managerial relations between the various managerial levels. The
equivalence classes will be the nodes of the graph. The governing relation defines
the edges between the nodes. There will be an edge from node a to node b if for
some (and thus for each) agent in the equivalence class a there exists an agent b
such that g(b,a).

We will write a → b when there is a path from node a to node b. Depending on the
properties of the path relation, we can have different managerial styles. For example,
in a strict hierarchical management structure the relation → is a strict (irreflexive)
partial order, which is characterized by:

1. no agent is in control of its peers: ¬a → a
2. transitivity: a → b∧b → c⇒a → c
3. strictly hierarchical: a → b⇒¬b → a.

Another managerial style would replace the latter condition by: option could be
that no managerial class is in control of all the other, or:

3. no dictator: ∀a∃b [a → b]. So each managerial class is governed by at least one
other class. The consequence is that we will have managerial cycles in this case.

With each managerial class we can consider the options and motivations of that
class. We will use the conceptual language to define these sets. For this purpose, we
extend the conceptual model of Figure 4 to cover levels and the edges.

AiC 10. Level POWERSET OF Actor.
AiC 11. LET Level is governing Level BE Level containing Actor is governing EACH Actor

in Level.
AiC 12. LET Level has Action BE Level containing ACTOR having enough resources for

Action.

Note that in a similar way we can extend actor properties to level properties.

6 The AiC Architecture
6.1 Agent Characteristics
In the ABM context, an agent is defined as an entity, situated in an environment,
acting autonomously and flexibly to achieve its objectives (adapted from [57]) located
in a level with other actors or objects with whom it interacts. It is characterized by
various methods supplemented by three other additional properties such as identity,
state, and behavior.

Usually, the goal of ABM is to search for explanatory insight into the collective
behavior of agents obeying simple rules.

An agent can receive sensory input from its physical and social environment and
can perform actions that are likely to change this environment in achieving its goals.
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It can act independently without the intervention with other agents. This is well
observed in the AiC metamodel because the actors are in different scales that can
be located at the macro or micro levels and therefore each of their action may change
the state of that level. Several architectures of agents exist. What differentiates the
architectures in particular is the way in which perceptions are related to the actions.
Thus there are three main architectures of agent:

• Reactive agents: who react only to the changes which occur in their environment.
• Deliberative agents: who make a decision based on their purpose to choose their

actions.
• Hybrid agents: integrating the two previous features.

In our work, we focus on deliberative architecture, more precisely the architecture
of decision-making based on utility.

In many situations, the goals are not sufficient to generate a high quality of
decision. For instance, if there are several choices to achieve an objective, some
will be more efficient than others. In this situation, the agent reasoning only with
goals has no means to make the best choice, if goals only provide a simple distinction
between states being satisfactory or not. Instead, the agent must be able to recognize
degrees of satisfaction. In such cases, the agent will prefer one state above the other
based when that state has a higher utility than the other.

6.2 AiC Agent Architecture

For an operationalization of the AiC metamodel (see Figure 3) we will first determine
the associated programming model.

From the agent architecture based on utility [58], (see Figure 5), we are bringing
out the similarity between AiC and a utility-based architecture. The resulting actor
architecture defines the AiC programming model (see Figure 6) close to the agent
model according to the description of AiC conceptual model.

Figure 5. Agent utility-based architecture proposed by Russel [58]

Utility is a functionality that enables intelligent agents to make the best choice to
achieve their goal. Utility strongly depends on the merits of actions and the resources
(including capital) available to the agent. Utility and motivations determine and
justify the behavior of the agents. Options and motivations of AiC framework can
meet respectively with the agent questions concerning the possible future and future
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Figure 6. Adaptation of AiC framework to an agent architecture based on the utility

desired and thus contribute to the conceptual specification of the utility function that
determines the actions to be performed by the agent.

The AiC actor architecture differs somewhat from wider-known ones such as
Belief Desire Intension (BDI) [59] or the Theory of Planned Behaviour (TPB) [60].
Basically, it puts more emphasis on specifying the options the actor actually has.
This makes the model suitable to also simulate actors in situations of poverty,
where people may have strong intentions but very few options to act. Furthermore,
AiC skips the intermediary ’attitude’ and ’intention’ concepts that often lead to a
strong focus on attitudes and then later run into the dreaded ’attitude-behavior gap’.
Instead, AiC focuses on motivations, that is, the criteria that actors use to arrive
at their actions in a given action context. These criteria can be extremely simple
(e.g. pure utility as in rational choice theory) or enumerative-additional (e.g. a set
of criteria that add on to each other as in broad rational choice or multi-criteria
models), or highly qualitative, e.g. the fit of an action into the overall life plan
and identity. And finally, the actual ’decision calculus’ is left open. It can be
the maximization of something (e.g. welfare as in rational choice) or ’satisfying’,
for instance (’work until I have enough’). Thus, AiC may provide much modeling
flexibility without conceptual burdens, much like the suggestion of Elster [61] whose
primary actor model is to distinguish between opportunities (option in AiC) and
desires (motivations in AiC). A full discussion of this issue is not our intention
here, however, because our focus lies on the multi-level issue rather than modeling
separate actors.

7 The AiC Domain Specific Language

Combined with the previous sections, this section presents the set of steps for
transforming a type of object (’Methods’).

In literature several definitions of Domain Specific Language (DSL) have been
proposed, see for instance [62] and [63]. In each definition, the DSL depends on the
domain application and the targeted user community. The definition from [62] seems
to be the most accepted: a DSL is a programming language whose specification is
dedicated to a specific application area, offering good abstractions of this area to the
user (SQL, regular expressions, Datalog, etc.). By focusing on a particular domain,
domain-specific languages offer custom programming solutions in order to effectively
meet the specific needs of the associated domain. Consequently, domain-specific
languages offer many advantages compared to general programming languages in
terms of productivity, verification and programming ease. Today these languages
are an interesting and serious alternative to traditional approaches of software
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development [64], because they offer a high level of abstraction for the domain in
question, facilitating the construction and verification of software systems.

The goal of domain-specific languages is to narrow the gap between the application
domain and its implementation. Therefore such languages must satisfy (see [65]):
1. conceptual proximity: the domain concepts must be proximal to their

corresponding language concepts
2. representational proximity: the representation of concepts in the application

domain is proximal to the representation in the domain specific language.
Domain-specific languages are commonly represented by a meta-model that

describes the relevant concepts in the application domain and their relations. In
this paper, we use ORM to define the conceptual scheme. In ORM representational
proximity is guaranteed by the modeling approach that requires for concept type a
standard way of representing its associated concepts in a way that is derived from
the description given by the domain expert. Conceptual proximity is also guaranteed
from the specific modeling approach advocated by ORM.

In this section we describe how the AiC meta-model can be systematically
converted into an Xtext format description. The Xtext description is the basis for
the automatic construction in the Eclipse environment of a corresponding parser,
linker, type checker, compiler as well as providing editing support for Eclipse, IntelliJ
IDEA and a variety of web browsers (see the Xtext website [66]).

7.1 Transforming the Abstract Syntax into Concrete Syntax

In the ORM approach, the abstract syntax is the syntax that is described by the
sentence types from the conceptual scheme, the AiC meta-model in our case. In this
section we will give a representation of abstract syntax in terms of Xtext (see [67]
and [68] and the website [66]). This description is referred to as the concrete syntax.

Xtext is a framework for the development of programming languages and
domain-specific languages. Xtext requires a description of the underlying conceptual
scheme in the specific Xtext format. In this section, we transform the AiC
meta-model from Figure 4 into Xtext format. We follow the approach described
in [69] to transform ORM into UML.

7.2 The Data Transformation Algorithm

The transformation of an ORM scheme into a relational scheme (also referred to as
the data transformation algorithm) consists of the following main steps (see [70]):
1. Transform the object types to their identification. This step will lead to the

primary keys of the relational tables.
2. Process the fact types. Functional fact types lead to properties of the associated

independent object types. Non-functional fact types describe relations between
the associated (independent) object types and therefore lead to separate tables
that describe relations between their dominant object types. In terms of the
relational model, the independent object types in such a relation are foreign keys
to the associated object defining tables.

3. Process constraints. All constraints are formulated in terms of the relational
scheme formed in the first steps.

The main step of this data transformation algorithm is the grouping of all
fact types to associate them with their dominant object type. In the case of a
transformation into a multivalued relational scheme, the representational model
allows repeated values. The consequence is that step 2 in the procedure above may
be relaxed. A non-functional fact type may also be represented by a multivalued
relation. We assume that a multivalued attribute can also be a key for a relation.
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7.3 Transforming AiC Meta-model into AiC Relational Scheme

We follow the steps from the transformation scheme above to transform the
conceptual AiC scheme into the relational AiC scheme. We make an straightforward
association of fact types to dominant object types as displayed in Figure 7, where
we try to keep the number of generated relations minimal. Note that we introduced
a superfluous identification for levels (LevelID); this will simplify the handling of
levels. This leads to the following relational AiC model:

R1. Actor ( ActorID,
(can use (Quantity, Resource_type))*,
(influences ((ActionId), (Quantity, Resource_type)))?,
(is governed by ActorID)?,
(has option (ActionId))*,
(has chose (ActionId))?

)
R2. Action ( ActionID,

(requires (Quantity, Resource_type))?,
(produces (Quantity, Resource_type))?

)
R3. Level ( LevelID,

(has member (ActorID))*,
(is governed by ((ActorID))*)?

)

Figure 7. Grouping the fact types

Note that this transformation does not capture all constraints that can be derived
from the AiC meta-model. We will come back to this in Section 7.5.
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7.4 Describing the AiC Relational Scheme in Terms of XText

Next we will reformulate the relations from the AiC relational model in terms
of XText. For each relation R(I1, . . . , Im, A1, . . . ,An), where I1, . . . , IM are the
(independent) identifying attributes for R-instances, and A1, . . . ,An the dependent
attributes, we make an XText description by first describing the standard naming
for R-instances, followed by (between curly brackets) a description for each of its
properties (A1, . . . ,An):

R-rule returns R:
standard name for R involving independent attributes I1, . . . , Im
'{'

for each dependent attribute Ai from A1, . . . ,An
a rule that describes how Ai is connected to this R-instance

'}'

Applying this general principle leads to the following AiC XText Meta-model:

1. According to relational R1 scheme, the actor is identified by the ActorID,
and may have as dependent attributes (1) a quantity of resource_type, (2) an
influence a quantity of resource of action (3) a governing actor, (4) a list of option
(5) a list of action preferences. These attributes are represented as Xtext rules.

ActorRule returns Actor:
'Actor' (ActorID=EString) '(' iAttribute+=ID ')' '{'

('can-use''('quantity+=EInt','resource+=EString')')*
('influences''('action+=ActionRule','quantity+=EInt', 'resource_type+=EString'))?
('is governed by' ':' actor+=ActorRule)?
'has-option' ':' (action+=ActionRule)*
'has-chose' ':' (action+=ActionRule)?

'}';

2. According to relational scheme R2, the action is identified by the ActionID, and
may have as dependent attributes (1) requires a quantity of resource_type and
(2)produces a quantity of resource_type. These two attributes are represented
as Xtext rules.

ActionRule returns Action:
'Action' (ActionID=EString) '(' (iAttribute+=ID)* ')' '{'
('requires''('quantity+=EInt','resource_type+=EString'))?
('produces''('quantity+=EInt','resource_type+=EString'))?

'}';

3. According to relational scheme R3 Level is identified by the LevelID and may
have as dependent attributes (1) has a member actor and (2) is governed by
actor. These two attributes are represented as Xtext rules.

LevelRule returns Level:
'Level' (LevelID=EString)? '('(iAttribute+=ID)*')'
'{'

( (actors+=ActorRule))*
('is-governed-by' ':' (actor+=ActorRule)*)?

'}';

Thus the specification of our AiC language using grammar Xtext is as follows:

AIC_SPECIFICATION_RULE returns Model:
'Model_AIC'
'{'
('ModelVariable' ':' (Variable+=ID',')*)?
(Level+=LevelRule)*

'}';

EInt returns ecore::EInt:
'-'? INT;

EString returns ecore::EString: STRING | ID;

Here the rule Variable is used for declaring global variables or parameters of the
model and the rule EInt is used for generating the numerical type.
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7.5 Adding Validation Rules

After the XText grammar construction constraints specified in the AiC meta-model
are added to guarantee valid instantiations only. This can be done by the static
validator AICValidator that is written in XTend. We verify (leaving out the
AICValidator details):
• the name of an Actor (ActorID) is unique
• an actor or level cannot govern itself
• an actor cannot be governed by more than one other actor (strict hierarchy)
• the names of the options (ActionID) must be distinct.

8 The Design of TiC

Xtext not only provides a syntax-driven editor, it also generates a DSL editor. Our
customized editor knows about the keywords of the corresponding language and
where to place them, it knows about all the grammatical constructs, and it includes
useful tools such as syntax coloring, code completion, and validation ((See Section
9.1, Figure 10)). It also allows to detect certain errors directly after the entry through
the Quickfixes features (the possibility of renaming a variable to the duplicated name
such as LevelID, ActorID and ActionID), thus it does not wait for the compilation
like other conventional language editor to detect any errors. It provides an Outlines
View to help visualize program structure.

8.1 Adding a Simulation Tool

In the previous sections, we have shown how a conceptual domain model (described
in ORM) in general, and the AiC meta-model in particular, can be transformed via
a relational model into an XText description, which is the basis of generating various
tools such as a syntax driven editor and the extensions described in previous section.
This forms the basis of the Tool-in-Context (TiC). In this section we go one step
further, and show how TiC can develop a simulation tool for the application domain
that was originally described by the conceptual model.

8.2 Transformating the AiC XText Model to Netlogo

In this section we describe how the XText grammar in general, and the AiC XText
description in particular can be transformed to the NetLogo language and functions
offered by NetLogo. NetLogo is a programming environment for modeling and
simulating natural collective phenomena. It is well suited for modeling complex
systems composed of hundreds or thousands of agents acting concurrently [71]. The
set of transformation rules are defined in the TiC package that consists of two main
classes:
1. the TranfoFunction.java class that contains the different functions of transformation

and
2. the MlabmToNetlogo.java class that contains the main class that performs the

transformation by calling the above functions.
The steps are:
1. Variable: The local and global variable of our language are transformed in

NetLogo variable. Their transformation is performed by the two functions
TransfoGlobalVar() and TransfoLocalVar().

2. Function: Concerning the functions, we define according to each language
concepts functions for creating and transforming these concepts in NetLogo.
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These functions are in the class TransfoFunction.java. Thus the concept Action and
the dependant attributes of Actor and Action will be transformed as the functions
performed by an agent.

3. Agent: The concepts of our language transformed into agent concerned Actor
and Level. Furthermore, note that the agent link will use to create governance
relationships between different levels and different classes of agents.

4. Transition and execution: This describes the transformation of our model as
presented in Section 6. In the proposed model, the agent architecture is based on
utility (Actor evaluates Profit with Score). Our agents are seeking to maximize
their profit by evaluating gains. The observer will allow other agents to assess at
every step the consequences of their actions at the time. The transformation is
done according to the programming model presented in Section 6.

9 Validation: a Sample Session
As a first evaluation of Natural Model based Design in Context (NMDC) we apply it
to the deforestation process, and show how the design helps to explain, simulate and
analyze scenarios for more rational management of the Laf Forest Reserve located
in the Northern Cameroon region [72].

Figure 8. Analysis of the environmental problem in the Laf Forest Reserve [72]. Left and
right are facts and norms, respectively. Factual causal chains run primarily up towards the
final variables (farmers’ welfare etc.). In bold are the most important output variables of
the model. The pluses indicate positive relations (more of A, then more of B); the minuses
indicate the inverse

Fotsing et al. [50] and Kameni et al. [23] have analyzed the deforestation process
around the Laf Forest Reserve on the basis of remote data sensing and field interviews
and proposed guidelines for planning and sustainable management. This is based
on an analysis that takes into account the perception of the actors involved, their
strategies and the impact of their decisions on the environment.

Figure 8 presents an analysis of the situation observed following the PiC
framework (concretization of Figure 2 for the Laf Forest Reserve problem). This
figure shows the effects of deforestation that result in the intrusion of populations in
the protected area for agropastoral and timber harvesting activities. These practices
lead to land saturation and reduced agricultural yields.
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Figure 9. The social causation submodel of the environmental problem in Laf Forest
Reserve [72]. This figure shows modelled actors (farmers as primary actor, wood merchant
as secondary actor and government as tertiary actor). Options and motivations are depicted
as connected to structures (systems) on three scale levels: local, regional, national

Figure 9 illustrates the social causes of the deforestation processes around the
Laf Forest Reserve following the AiC sub-framework (concretization of Figure
3 for the Laf Forest Reserve problem). This figure also highlights the impact
relations between the activities of (1) the wood merchant, (2) the authorities of
the forest administration and (3) the options and motivations of farmers practicing
deforestation. The main reasons for deforestation are (1) creating sorghum fields
and the need to increase earning through (2) the sale of firewood. The choice
of this latter option is favored by the high demand for wood and motivated by
the cost of corruption (authorization uncontrolled cutting) and the importance of
income derivatives from this activity. As recommended in [73], this figure highlights
the scales of action between actors and the scales of effect as a crucial point for
environmental problem design.

9.1 Populating the Laf Forest Reserve Process AiC Conceptual Scheme
Using Natural Language

In this section we reformat the description of previous subsection into the structured
semi-natural language format as prescribed by the AiC metamodel (see [72]). We
illustrate here from some examples on the case of the Farmer how our natural
language is used, the general and integral description of all the actors being in
[72]. So, Farmers are involved in the following fact types:

• fact type: Actor can use Capital.
Farmers start with some initial capital. This is described by:

Farmer-1: Farmer can use $n1 - $n2 : ” of ’FCFA’.
Farmer-2: Farmer can use $t1 - $t2 : ’/week’ of ’hours’.

The actual values of $n1, $n2, $t1 and $t2 are simulation parameters that
are set by the domain expert upon starting a simulation session. The actual
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farmers then will get a start capital according to some normal distribution
function as set by the domain expert.

• derived fact type: LET Option BE Action requiring less Capitals than Capitals
that can be used by Actor.
The population of this sentence type is derived from the actual action
requirements and actor disposition. Assuming their initial capital suffices,
the following would be derived:

Farmer-3: Farmer can use enough capital for ’mouskwari cultivation’.
Farmer-4: Farmer can use enough capital for ’firewood extraction’.
Farmer-5: Farmer can use enough capital for ’unfertilized cultivation’.
Farmer-6: Farmer can use enough capital for ’fertilized cultivation’.
Farmer-7: Farmer can use enough capital for ’cut local wood’.
Farmer-8: Farmer can use enough capital for ’buy wood’.
Farmer-9: Farmer can use enough capital for ’plant trees’.

• derived fact type: ChosenOption IS Option with highest Gain. An option is
proven beneficial, when (1) no other action can bring more profit and (2)
no action with the same profit is higher appreciated by the actor. For
the farmer, the following two options are chosen during the start of the
simulation session. Both the government and the wood merchants will try
to influence this choice.

Farmer-10: Option (’firewood extraction’, Farmer) is chosen.
Farmer-11: Option (’mouskwari cultivation’, Farmer) is chosen.

• fact type: Actor influences Option.
From the interviews with the farmers we have to conclude:

Farmer-12: Farmer influences ’firewood extraction’
Farmer-13: Farmer influences ’mouskwari cultivation’

• fact type: Actor influences Gain.
Farmer-14: Farmer influences Gain of ’firewood extraction’
Farmer-15: Farmer influences Gain of ’mouskwari cultivation’

In practise this activity is supported by the syntax-directed editor that is provided
by TiC (see Section 8 for more details). Once our editor is generated, we have
developed a plugin. This plugin allows eclipse to recognize our language and thus
facilitate the creation of a program in our language by a user (see Figure 10).

TiC can also check for inconsistencies, and offers other support facilities to help
the domain expert to reformulate the natural sentences describing the application
domain into the structured variants of the AiC metamodel. When the description
has led to a consistent population of the AiC metamodel, the domain expert may
let the simulation tool start a simulation session (see Section 8 for more details) and
explore the effects of particular choices on the final norms, goals, and objectives.

Our approach is as follows. We group the actors according to their level. So we
see ’farmer’ as a group name for individuals (actors) who are acting as farmers.
Basically we describe the properties of the actors as properties for the levels. The
actual actors will act according to the rules described for their level. In the simulation
(TiC), we will assume that the actual actor properties are statistically described.
So for instance, we may indicate that the farmer is to be disposed of some money
supply. Then the simulator will provide each actor of that level (each actual farmer)
with an actual money supply according to a normal distribution with mean value
the level money supply, and some variance to be specified.

Figure 11 and Figure 12 show the NetLogo code generated from our conceptual
language concerning the Laf Forest Reserve deforestation process. This code consists
of the functions and procedures such as the creation of agents, the initialization
of the environment, the declaration of parameters and finally an implementation
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Figure 10. Model of Laf Forest Reserve deforestation process obtained from the developed
language domain

Figure 11. Laf Forest Reserve generating NetLogo code for function declarations
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scheme of agents decision. The function bodies are obtained by transforming the
conceptual behavior descriptions (as described by the domain expert) into the
concrete implementation language.

Figure 12. Laf Forest Reserve Process generating NetLogo code for parameter declarations

As main functions, the TiC tool allows:
1. To modify sentence types: for instance to implement a new policy for the

authorities.
2. To modify the distribution parameters for auto-generated object types (for

example, the number of farmers, or the property that farmers dispose of).
3. To transform the domain concepts in the target language while keeping the logical

construction of these concepts.
4. To generate a general structure of the model source code.

Moreover, we compared our approach with other existing metamodeling
approaches according to the four criteria proposes by [74]: generating instances,
editing metamodels (or models), user intervention, and error detection. Table 1
summarizes the result of this comparison.

Table 1. Comparison between the main approaches of meta-modeling

Author Tool Criteria for comparison

Generating Editing User Error
instances (meta)models intervention detection

Automatic Manual No Yes No Edited Parameter Automatic Manual

[13] IRM4MLS/ • • • •
SIMILAR

[75] GEAMAS • • • •

[42] SPARK • • • •

Our Approach NMDC/TiC • • • •

We see that in addition to presenting identical properties with the existing
approaches, our approach allows to generate an instance of the model that we wish
to develop.

The experimentation of our approach in a case study of Laf Reserve Deforestation
[72], clearly reveals the process taking into account the diversity of situations related
to the process of actors decision-making at various levels, potentially from local to
regional systems. Comparing this approach with [23], we can see that our approach
takes better account of the determining concepts such as Level, resource and profit
to clearly represent the process. It also allows a simplified representation of the
concepts of the domain through tools and ’technology’ language, thus facilitating
communication in the development process.

According to [76], our transformation generates about 30% of the NetLogo code
see (Figure 12 and Figure 11), these results are very conclusive compared [23].
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10 Conclusion and Future Work

In this article we have divided the description of a general class of problems into the
description at a higher (meta) level and the description at a lower (concrete) level
(see Figure 1). At the meta level we find general concepts that are relevant for the
class of problems at hand, at the concrete level we find the adaption to the actual
problem case. In our case, the meta level is designed as a grammar for a semi-natural
(controlled) language that allows the domain expert to reason about the application
domain in a language close to the actual domain language used.

By using accepted models for the class of environmental problems in Section 4
we derived the conceptual meta model (intention I1, see Introduction). We showed
how concrete models can be stepwise systematically transformed, while preserving
data consistency, into a running application, taking benefit of available open source
software projects (intention I2), hiding the various technical issues and challenges
involved from the domain expert.

The TiC tool not only supports the construction of a simulation tool for concrete
application domains, it also can be used as a syntax-directed editor that supports the
domain expert in developing a concrete model (intention I3). This allows the domain
expert to develop a model-driven application without the need for advance ICT
competencies, as is intended by Natural Model based Design in Context (NMDC).

With respect to validation, we put most effort in formally describing the NMDC
approach and its transformation implementation oriented models. To demonstrate
the usefulness of the NMDC approach, we shortly described a sample session as a
proof of concept (intention I4).

With respect to further research, the transformation of NMDC to NetLogo code is
still in its preliminary state. The transformation may be elaborated in more detail in
order to capture all language aspects of NetLogo, including options for optimization
of the resulting code. Furthermore, the functionality of TiC may be extended. Some
suggestions are:
• Definition of a graphical language interface based on the semantics of the AiC

language, allowing the non-computer scientist to easily edit their program.
• Expand the model to refine the empirical assumptions in order to improve both

the multi-level character and the model realism.
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A Appendix. Overview of ORM Concepts

Figure 13.
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