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Abstract In content based video retrieval videos are often indexed with semantic labels
(concepts) using pre-trained classifiers. These pre-trained classifiers (concept detectors),
are not perfect, and thus the labels are noisy. Additionally, the amount of pre-trained clas-
sifiers is limited. Often automatic methods cannot represent the query adequately in terms
of the concepts available. This problem is also apparent in the retrieval of events, such as
bike trick or birthday party. Our solution is to obtain user feedback. This user feedback can
be provided on two levels: concept level and video level. We introduce the method Adap-
tive Relevance Feedback (ARF) on video level feedback. ARF is based on the classical
Rocchio relevance feedback method from Information Retrieval. Furthermore, we explore
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methods on concept level feedback, such as the re-weighting and Query Point Modification
(QPM) methods as well as a method that changes the semantic space the concepts are repre-
sented in. Methods on both concept level and video level are evaluated on the international
benchmark TRECVID Multimedia Event Detection (MED) and compared to state of the art
methods. Results show that relevance feedback on both concept and video level improves
performance compared to using no relevance feedback; relevance feedback on video level
obtains higher performance compared to relevance feedback on concept level; our proposed
ARF method on video level outperforms a state of the art k-NN method, all methods on
concept level and even manually selected concepts.

Keywords Video event retrieval · Relevance feedback · Information retrieval · Semantic
space · Rocchio

1 Introduction

Current video search systems, such as Youtube [4], mostly rely on the keywords typed with
the uploaded videos. In the field of content-based video retrieval, systems retrieve videos
using the content of the video within keyframes of the video. Typically concept detectors
are trained to index videos with the concepts present. One of the constraining factors in
concept-based video retrieval systems is the limited amount of concepts a system can be
trained to detect. While current state-of-the-art systems are able to detect an increasingly
large amount of concepts (i.e. thousands), this amount still falls far behind the near infinite
amount of possible (textual) queries general-purpose heterogeneous video search systems
need to be able to handle [2]. One of the challenging areas within the concept-based video
retrieval is that of event retrieval. Events can be defined as complex queries that consist of a
multitude of concepts, such as objects, actions and scenes. One example of an event query
is Attempting a bike trick. This query can be represented by more general concepts such as
bike trick, attempt and flipping bike. Creating an automatic representation of a query can,
however, include non-relevant or less representative concept detectors and, thus, decrease
retrieval performance. Furthermore, the meaning of a concept is different in different con-
texts, and therefore the quality of a concept detector might differ in the context in which it is
applied.

One approach to improve performance when less or non-relevant detectors are selected is
the use of relevance feedback. With relevance feedback the (estimated) behaviour of the user
with the system is used to improve the system. This method is well accepted and commonly
used in text retrieval. In video retrieval the trend is to either use click behaviour or to use
pseudo-relevance feedback [20, 40, 65], in which we assume that the first x videos are
relevant. In this paper, we focus on explicit user feedback, both on the retrieved videos and
on selected concepts that represent a query. We compare which relevance feedback level can
provide the highest performance gain. Furthermore, we propose a novel method on video
level. Our Adaptive Relevance Feedback (ARF) is inspired by the Rocchio algorithm [41],
that is often applied in the field of text retrieval. Whereas state of the art relevance feedback
algorithms on video level use the annotated videos to create a novel model based on nearest
neighbour or SVM type of algorithms [12, 14], we use the videos to approximate the proper
weights of the selected concepts in our query representation. The advantage of changing
the weights is that this method is able to benefit from just a few positive and negative
annotations, compared to newly trained models.
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We compare the results of our ARF algorithm on the MEDTRAIN set of the TRECVID
benchmark [38] against traditional relevance feedback approaches, such as approaches on
concept level such as re-weighting and QPM, and a k-NN based method. Results show that

1. relevance feedback on both concept and video level improves performance compared
to using no relevance feedback

2. relevance feedback on video level obtains higher performance compared to relevance
feedback on concept level

3. our proposed ARF method on video level outperforms a state of the art k-NN method,
all methods on concept level and even manual selected concepts.

2 Related work

In the related work, we focus on state of the art methods in video event retrieval and
relevance feedback methods.

2.1 Video event retrieval

In the past decades, image classification has progressed from using handcrafted features
on a few images to deep learning methods applied on large image datasets. This progress
has lead to the testbed named TRECVID Multimedia Event Detection in which the aim
is to obtain a deeper understanding of a video than only object or action recognition [38].
This deeper understanding is obtained by searching for high-level events, defined as ‘long-
term spatially and temporally dynamic object interactions’ [21]. Examples of the high-level
events are social events (birthday party) and procedural events (making a sandwich) [21].
The TRECVID MED tasks contains a supervised classification task, in which 100 or 10
training examples of the event are given, and a ‘zero-example’ task, in which only a textual
description of the event is provided [38].

A common strategy in video event retrieval is to extract features. The first type of features
are static features. These static features can be obtained from the images / frames of which
the video consists. Often a video is chopped into keyframes, which are the most determinant
images in a sequence of frames within the video. Examples of static features are SIFT [31],
SURF [1] and LBP [37] features. Currently, one of the layers of a pre-trained deep neural
network is used as the static feature vector [53]. The static features can be represented in
a Bag of Words approach [23] and be aggregated over the video using an average or max
pooling strategy [53].

Besides the static features in the image, the dynamic or motion features are used in
video event retrieval. Examples of such features are motion SIFT [5], STIP [28], dense
trajectories [9] and improved dense trajectories [56]. These features are often described in
HOG [8], HOG3D [26], HOF [54] or MBH descriptors [55]. Recently, the dynamic features
are often encoded into vectors with a fixed dimensionality using Fisher vectors [47] or
VLAD encoding [17].

The described features are used to train concept detectors. In supervised video event
retrieval, machine learning methods, such as SVMs, Bayesian Classifiers and Random
Forests [21, 30] were commonly used, but deep learning techniques have become the state
of the art [22, 48]. In ‘zero-example’ video retrieval, which is the case of our interest,
concept detectors are trained on large image datasets, such as ImageNet [11], Places [64],
FCVID [22] and/or Sports [25]. The concept detectors are applied to the test dataset and the
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query is represented as a set of related concepts. This representation can be obtained using
knowledge bases, such as Wikipedia [3] or EventNet [61], a semantic embedding, such as
VideoStory [16] or word2vec [33], or a manual mapping [63]. Often, a linear weighted sum
is used to score the videos on relevance to the query [19, 63].

2.2 Relevance feedback

The use of relevance feedback stems from the dynamic nature of information seeking [44]:
information needs can be continuously changing and be unique to each user. Relevance feedback
can be done in different ways: implicit, explicit and blind/pseudo. In implicit relevance feed-
back, implicit information, such as user clicks or dwell time, is used. The advantage of this
method is that you do not have to bother the user, but the inference of the results is much
harder. Because we focus on a subdomain of costumers in which we expect less queries, we
expect that implicit feedback will gain less compared to explicit user feedback. In explicit
relevance feedback, the user explicitly indicates if a certain item is relevant or not relevant.
This can be done using a binary scale or a gradual scale. The advantage of this method is
that you have a clear indication of the relevance and a higher performance, but the disadvan-
tage is that you have to bother the user. This user might not have time or motivation to give
such feedback. In blind or pseudo relevance feedback, the manual user part is automated.
In this automation, we assume that the first k ranked items are relevant. This assumption is
not without a risk, because in the case of rare events or new query domains, bad retrieval
systems or ambiguous queries this assumption might not hold. Human relevance feedback
(implicit and explicit) has been known to provide major improvements in precision for
information retrieval system. Dalton et al. [10] have shown that - in the domain of video
retrieval - pseudo-relevance feedback can increase Mean Average Precision (MAP) up to
25%, whereas with human judgments this number can grow up to 55% [10]. Of course the
effectiveness of pseudo relevance feedback critically depends on the assumption that the
collection contains at least a reasonable number of relevant results and that the first retrieval
pass is able to pick up a good fraction of those in the top k. It is clear that relevance feedback,
when applied correctly, can help the user in better finding results.

According to Mironică et al. [34], relevance feedback can be incorporate in three ways.
The first way is to change the query points, i.e. Query Point Modification (QPM). One of
the most well-known and applied relevance feedback algorithms in this category that has its
origins in text retrieval is the Rocchio algorithm [41]. The Rocchio algorithm works on a
vector space model in which the query drifts away from the negatively annotated documents
and converges to the positively annotated documents. The Rocchio algorithm is effective in
relevance feedback, fast to use and easy to implement. The disadvantages of the method are
that parameters have to be tuned and it cannot handle multimodal classes properly.

The second way is to change the feature representation, i.e. re-weighting. Often a doc-
ument is represented as a vector with a real-valued component (e.g. TFIDF weight [46])
for each term. The terms used to match the query with are re-weighted according to the
relevance feedback [19, 24, 32, 42, 43, 52]. Another strategy is to change the Fisher
representation [34] based on the relevance feedback.

The third way is to use classification, which include navigation-pattern and cluster-
based approaches. These approaches are explained by Zhou et al. [65] and Patil et al. [40].
The positive and negative images are used to train a classifier. Examples are classification
trees, such as Random Forests [58], and boosting techniques, such as AdaBoost [62]. Other
methods include decision trees, SVM’s, or multi-instant approaches [7]. A disadvantage of
those methods that they need sufficient annotations to work properly. Often the system will
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actively select the documents that achieve the maximal information gain [51]. Some vector
space models use k-nearest neighbour methods, such as in the studies by Gia et al. [14] and
Deselaers et al. [12]. K-NN based methods are shown to be effective, are non-parametric,
but run time is slower and it can be very inaccurate when the training set is small.

SVM’s are often used [50, 59, 60], but according to Wang et al. [57] SVM-based RF
approaches have two major drawbacks: 1) multiple feedback interactions are necessary
because of the poor adaptability, flexibility and robustness of the original visual features; 2)
positive and negative samples are treated equally, whereas the positive and negative exam-
ples provided by the relevance feedback often have distinctive properties, such as that the
positive examples are close to each other whereas negative examples are arbitrarily dis-
tributed. Within the pseudo relevance feedback, this second point is taken by Jiang et al.
[18–20], who use an unsupervised learning approach in which the ‘easy’ samples are used
to learn first and then the ‘harder’ examples are iteratively added. Regarding SVM’s, Xu
et al. [59] show that SVM-based methods can work with incrementally refining the user
query through relevance feedback. Yang et al. [60] introduce a learning-to-rerank frame-
work in combination with an adapted reranking SVM algorithm. Tao et al. [50] improves
on the SVM-based methods using orthogonal complement component analysis (OCCA).

3 Video event retrieval system

Our Video Event Retrieval System is inspired by state-of-the-art video event retrieval sys-
tems without training examples [19, 63]. The pipeline of our system is shown in Fig. 1. In
our system a user can enter a textual query (Event Query) into the search engine. This query
is represented by a combination of concepts in the module Query Interpretation using the
word2vec model and the ConceptBank. This combination of concepts is propagated back
to the user to obtain relevance feedback on concept level and the top n concepts are used
as an OR query in the Scoring+Ranking module. This module retrieves the videos in the
database, sums the evidence from individual concepts and ranks the results in descending
order of estimated relevance. These results are presented back to the user and the user can
provide relevance feedback on video level. These modules are explained in more depth in
the next subsections.

3.1 Query interpretation

The Event Query is translated to a system query (video concept representation) using a
word2vec model, which is commonly used in video retrieval [13, 20, 36, 49]. A word2vec
model uses a shallow neural network that is trained on a huge dataset, such as Wikipedia,
Gigawords, Google News or Twitter, to create semantic word embeddings. The Word2Vec
models operate on the hypothesis that words with similar meanings occur in similar contexts
[15], resulting in a good performance on associations, such as king − man + woman =
queen. We use a model that is pre-trained on Google News1. The embedding of each word
is expressed in a 300-dimensional feature vector. This model is used because it shows better
results compared to the other pre-trained word2vec models, such as the Wikipedia models.
We do not re-train the network, because this did not increase performance in our experi-
ments. Using the word2vec model, we calculate the distance between the event query and

1https://code.google.com/archive/p/word2vec/

https://code.google.com/archive/p/word2vec/
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Fig. 1 Pipeline of our Semantic Video Event Search System

each of the concepts that can be detected. The concepts that can be detected are obtained
from the ConceptBank (explained in the next subsection). In the word2vec model we cal-
culate the vector of the event query by mean pooling the vectors representing the words in
the event query, without using the vectors of stopwords, such as ‘a’. If a word in the event
query is not in the vocabulary of the word2vec model, we discard this word as well. As
shown by Lev et al. [29], mean pooling is a simple pooling method that performs well. The
words in the labels of the concepts in our ConceptBank are mean pooled as well and com-
pared to the vector representing the event query. We follow the suggestion to use the cosine
similarity, which is a robust similarity measure in this semantic space, to calculate the dis-
tance between the event query and each of the concepts that can be detected independently,
as explained in (1):

−→
q2c = L ·

−→
q

−−→||q||
, (1)

where L is a matrix with in each row the normalized word2vec vector for the label of
detector d ( ld||ld || ) and

−→
q−−→||q|| is the normalized word2vec vector for the event query.

In our experiments, we create a sparse vector
−→
q2c, because we only keep the values of

the top n detectors with the highest similarity measure, and set the other values to zero.
This choice is based on initial experiments that show that using all concepts decreases
performance. These concepts are used for 1) relevance feedback and 2) scoring.

3.1.1 ConceptBank

The ConceptBank contains labels and detectors that are trained on different datasets using
Deep Convolutional Neural Networks (DCNN). We use the eighth layer of the DCNN net-
work trained on the ILSVRC-2012 [11], which is a common strategy in this field [20, 49,
63]. We finetune the architecture on the data in the dataset for SIN [38], Places [64] and
TRECVID MED [38] to obtain more concepts (2048) than the 1000 objects used in the
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ILSVRC-2012. For finetuning, we use the original network, chop off the last layer (FC8)
and create a new FC8 layer with the appropriate amount of nodes, which is amount of con-
cept detectors to be trained. We train the network using the positive and negative examples
provided by the dataset. The nodes are labeled using the labels of the positive examples/
classes. The concepts from the TRECVID MED are manually annotated on the Research
set, comparable to Natarajan et al. [35] and Zhang et al. [63]. We purposely did not use
higher level concept detectors, such as those available in the FCVID [22] or Sports [25]
dataset, to obtain more interesting experiments using relevance feedback. We, therefore, not
aim at highest possible initial ranking, but at a gain with the use of relevance feedback. We
believe this is applicable to real world cases, because relevant high level concepts are not
always present.

3.2 Scoring and ranking

For the scoring, we use the video scores of the top n concept detectors, obtained from
the Query Interpretation module, from our database. The pre-trained concept detectors are
applied on each of the videos in our database. Because the network is trained on images, we
extract 1 keyframe per 2 seconds uniformly from a video. We use max pooling over these
keyframes to obtain a concept detector score per video. Furthermore, we use the average
concept detector scores on a background set to normalize the detector scores on the videos
in our database.

The scoring function is defined as:

sv = −→
q2c · (

−→
cdv − −→

cdb), (2)

where
−→
q2c is the query representation in concept space,

−→
cdv is the vector of concept detec-

tor scores on video v and
−→
cdb is the vector of concept detector scores on the background

set (average value). In the experiments, the background set is the BACKGROUND set
of TRECVID MED, that contains 5000 videos. The videos are returned to the user in
descending order of their overall score sv .

3.3 Feedback interpretation - adaptive relevance feedback (ARF)

Feedback can be obtained on concept level and on video level. We propose an algorithm
on video level for explicit relevance feedback, but implementations on concept level are
available in our system as well (explained in the experiments).

Our Adaptive Relevance Feedback algorithm (ARF) is inspired by the Rocchio algorithm
[41]. Different from traditional algorithms on video level [7, 39, 65], we use relevance feed-
back to update the weights for our concept detectors instead of training a new model based
on (few) annotations. We choose to update the weights to make our algorithm more robust
to few or noisy annotations. Our perceived system will have limited and unbalanced anno-
tations, because our ‘zero-example’ case is difficult and will have many negative examples
on top of the list. With a limited amount of positive examples and a possibly larger amount
of negative examples, we still aim to improve retrieval performance based on these annota-
tions. In k-NN methods, noisy annotations can have a high impact on ranking performance.
By taking into account the initial concept detector cosine distance to the query, the proposed
algorithm is more robust to this type of relevance feedback.

In text retrieval, the scoring function using a vector space model would be:

sD = −→
Q′ · −→

D′, (3)
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where
−→
Q′ is the normalized vector of words in the query with TFIDF [46] as value

( −→
Q

||−→Q ||

)

and
−→
D′ is vector of words in the document with TFIDF as value

( −→
Q

||−→Q ||

)
.

The Rocchio algorithm is defined as [41]:

−→
Qm = (a · −→

Q0) +
⎛
⎜⎝b · 1

|Dr | ·
∑

−→
Dj ∈Dr

−→
Dj

⎞
⎟⎠ −

⎛
⎜⎝c · 1

|Dnr | ·
∑

−→
Dk∈Dnr

−→
Dk

⎞
⎟⎠ , (4)

where
−→
Qm is the modified query vector,

−→
Q0 is the original query vector, Dr is the set of

relevant documents, Dnr is the set of non-relevant documents, Dj is a document in the
relevant document set, Dk is a document in the non-relevant document set, and a, b and c
are parameters.

Translating the Rocchio algorithm to the video retrieval domain, we use videos instead of
documents and concepts instead of words. Similar to the Rocchio algorithm, we can change
the original query vector q2c using the relevant and non-relevant videos, using:

−−→
q2cm = (a · −−→

q2c0) +
(

b · 1

|R| ·
∑
vr∈R

−−→
cdvr − −→

cdb

)
−

(
c · 1

|NR| ·
∑

vn∈NR

−−→
cdvn − −→

cdb

)
, (5)

where
−−→
q2cm is the modified query vector,

−−→
q2c0 is the original query vector, R is the set

of relevant videos, NR is the set of non-relevant videos,
−−−−→
cdv(r/n) is the vector of concept

detector scores on video v and
−→
cdb is the vector of concept detector scores on the background

set (average value) and a, b and c are Rocchio weighting parameters. Similar to the sparse
vector used in (1), we only adjust the values of those detectors that are non-zero, i.e. the
initial top n detectors. This is based on preliminary experiments.

The adjusted query vector,
−−→
q2cm, is used the scoring function (2), where we substitute the

original query vector
−−→
q2c0 for the adjusted query vector

−−→
q2cm. This results in new scores,

s′
v , for each video v, which is used to create an updated ranked list of videos.

4 Experiments

In our experiments, we evaluate our proposed methods in an international video retrieval
benchmark and compare performance to state of the art.

4.1 Experimental set-up

We use the MEDTRAIN data set from the TRECVID Multimedia Event Detection (MED)
benchmark [38]. This data set contains 5594 videos of user-generated content. The
MEDTEST set is often used in other papers to report performance on, but the MEDTRAIN
contains relevance judgments for forty events (i.e. queries), whereas MEDTEST contains
judgments for only twenty events. Although we purposely did not use higher level concept
detector datasets to obtain our concepts, some concepts caused a (near-) perfect performance
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Fig. 2 MAP per amount of concept detectors over all events

because of a direct match between an event and the concept. We, therefore, excluded eight
of the forty events 2. These events are not interesting for the user feedback experiments.

The number of concepts n for ARF is chosen to be 30. Our baseline experiments showed
highest performance for n = 5 as shown in Fig. 2, but our experiments showed that a higher
performance gain can be achieved by using more concepts. Furthermore, the parameter a

and b are set to 1.0 and c is set to 0.5, which is in line with text-information retrieval [41].
Visualizations of these results can be found in Fig. 3. All values for b and c from 0.0 to 2.0
with step size of 0.1 are tested on the 32 events in the MEDTRAIN dataset.

4.1.1 Evaluation

Mean Average Precision (MAP) [38], which is the official performance measure in the
TRECVID MED task, is used to measure performance. With relevance feedback on video
level, the positively annotated videos will remain on the top of the list and, thus, increase
MAP. It is, however, also interesting to know whether the algorithm is able to retrieve new
relevant videos. This is why we introduce a MAP variant. MAP* calculates MAP disregard-
ing the videos that have been viewed already by the user. We assume that a user has viewed
all videos up to the last annotated video.

Additionally, we calculate robustness of our proposed method compared to the best state
of the art method on that level by the robustness index (RI) [45] and the concept level
methods against the initial ranking using:

RI = |ZP | − |ZN |
|Z| , (6)

where ZP - ZN is the amount of queries in which the first method has higher performance
compared to the second method, and |Z| is the total number of queries.

2excluded events are Wedding ceremony; Birthday party; Making a sandwich; Hiking; Dog show; Town hall
meeting; Beekeeping; Tuning a musical instrument
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Fig. 3 MAP ∗ relative to b and c values

4.1.2 User interface

To provide the user with a quick and efficient way of viewing the concepts and the videos
in the experiment, we designed a User Interface (UI). A screenshot of the UI is presented in
Fig. 4. For the videos, we aim to show a small subset of the keyframes instead of the whole
video. For each video, the 5 keyframes with the highest scores over the top n detectors are
selected. The number 5 is based on state of the art in current search engines, such as Bing3.
A single frame is shown initially for each video in a container, under which we presented
the relevance selection tools. When a user moves the mouse over the container, a new frame
appears based on the relative position of the mouse in the container. This means that the
first frame would be visible when the user was hovering in the first 20% of the container,
the second frame when the mouse position was detected in the next 20%, and so on. This
enabled our users to get a quick overview of the relevant parts of the video, without having
to spend minutes watching each video. For the feedback on the concepts, the videos were
not shown and a list of the top 15 concept detectors was shown. This is further explained in
the next section.

4.2 Relevance feedback on concepts

Fifteen participants (12 male; 3 female; μage = 24.87; σage = 3.739) were asked to vol-
unteer in providing relevance feedback. The majority of the participants were non-native
but fluent English speakers and an education level of Bachelors or higher. The participants
were presented with a list of the 32 events on several pieces of paper with the top 15 con-
cepts (in English) per event as provided by the initial system. They were asked to evaluate
these concepts and provide relevance judgments by marking the non-relevant concepts for
each of the events. On average, participants marked 6.2 out of 15 concept detectors as non-
relevant (σ = 1.494). The average number of detectors marked as non-relevant differed
greatly per event (minimum 0.5 to maximum 11.7) and per user (minimum 3.7 to maxi-
mum 8.7). A Fleiss’ Kappa test was performed to determine user agreement in the flagging

3www.bing.com/videos

www.bing.com/videos
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Fig. 4 Screenshot of our User Interface for the event ‘Attempting a bike trick’

of non-relevant concepts, which resulted in κ = 0.514. According to the Landis and Koch
scale [27], this indicates a moderate agreement among users.

4.3 Relevance feedback on videos

For the relevance feedback on videos, a group of ten male participants (μage = 26.3,
σage = 1.567) with mainly non-native but fluent English speakers and an education level
of Bachelors or higher without dyslexia, colour-blindness, concentration problems, or RSI
problems, voluntarily participated in an experiment. The task of the participants was to
select relevant and non-relevant videos in our UI. 24 results were shown initially, and more
could automatically be loaded by scrolling to the bottom of the page. The experiment
consisted of two conditions, which correspond to the re-ranking results by ARF and the
k-NN method named RS (next subsection). In each of the conditions, 16 queries, randomly
assigned using a Latin rectangle [6], were presented to the user using our UI, after which
they performed relevance feedback on the retrieved videos.

4.4 Baseline methods

We compare our ARF algorithm with several baselines, which are presented in the next
subsections. The SVM-based methods are not included in this paper, because preliminary
experiments showed that on average performance is poor due to limited amount of positive
samples. Due to our use case, we cannot use the newer Fisher representation, because we
work on the ‘zero example’ case without a fisher vector representation.

4.4.1 No feedback

The No Feedback method is the system without the relevance feedback module. The number
of concepts n is chosen to be 5, based on the results reported in Fig. 2.
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4.4.2 Manual

An expert familiar with the TRECVID MED events, the ConceptBank and dataset was asked
to select a set of relevant concepts and their weights for each event. The number of selected
concepts varies among the events.

4.4.3 Concept level - AlterWeights

As a re-weighting method, we alter the weights of the concept detectors following an
approach inspired by the Rocchio algorithm [41]. The weights of the relevant detectors are
increased, whereas the weights of the irrelevant detectors are decreased following (7). The
values for γ and δ are the best values based on our experiments on the MEDTRAIN dataset,
testing all values between 0.0 and 2.0 with a stepsize of 0.1. These parameters, thus, pro-
vide an upper bound performance. This method is different from ARF, because this method
works on the relevance feedback on concept level and not on video level. The number of
concepts n for all concept level based experiments is set to 15, because previous experi-
ments showed that a higher amount of concepts in relevance feedback can achieve higher
performance gain compared to using only the top 5 (often positive) concepts.

q2cd,m =
{

q2cd,0 + γ · q2cd,0, if d is relevant.
q2cd,0 − δ · q2cd,0, otherwise.

, (7)

where γ = 0.4 and δ = 0.9.

4.4.4 Concept level - QuerySpace

As a QPM method, we change the semantic space of the query using the Rocchio algorithm.
Using the vector representations of both the relevant and non-relevant detectors provided
by concept level relevance feedback, we update the initial query vector −→

q0 that is used to

calculate the cosine similarity with the available concepts
−→
q2c ((1) in Section 3.2) according

to (8). Again, the values for ε and ζ are the best values based on our experiments on the
MEDTRAIN to provide optimal performance, using all values between 0.0 and 2.0 with a
step size of 0.1.

−→
qm = −→

q0 + ε ·
⎛
⎝ 1

|Cr |
∑

dr∈Cr

−→vdr

⎞
⎠ − ζ ·

⎛
⎝ 1

|Cnr |
∑

dn∈Cnr

−→vdn

⎞
⎠ , (8)

where −→
qm is the modified query vector, Cr and Cnr are the set of relevant and non-relevant

concept detectors, respectively and −−−→vd(r/n) is the word2vec vector representation of detector
d, ε = 0.6 and ζ = 0.7.

4.4.5 Concept level - DetectorSpace

Instead of changing the query space, we can also change the semantic space. We change the
concept detector labels (ld ) by moving the vector of the relevant concepts toward the vector
of the event query (−→q ), whereas we move the non-relevant concepts away from the event
query with the following equation:

−→
ld,m = −→

ld,0 + η · θd · (
−→
q − −→

ld,0), (9)
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Table 1 MAP and Standard
Deviation over all users and all
events on MEDTRAIN dataset

Method MAP (μ) Standard
Deviation
(σ )

Baseline No Feedback 0.19 0.15

Manual 0.23 0.18

Concept Level AlterWeights 0.21 0.16

QuerySpace 0.20 0.16

DetectorSpace 0.19 0.15

Video Level RS 0.20 0.17

ARF 0.24 0.17

where
−→
ld,m is the new label vector for detector d,

−→
ld,0 is the old vector of detector d and −→

q

is the event query vector, η = 0.1, θ is described as:

θd =
{ −1, if d ∈ Cnr

1, otherwise ,
(10)

where d is the detector, Cnr is the set of non-relevant concept detectors.
This new vector is used to calculate the q2c, which is used in the determination of the

relevant concepts and the scoring function ((2) in Section 3.2). This method changes the
concepts in the space and, therefore, this method can change performance on other events,
whereas in the other methods the performance on only one query is improved. This method,
however, introduces different results for different order of events. In our experiments, we
choose the average performance over 2 runs of 32 events over all 15 users.

4.4.6 Video level - RS

The final baseline is a k-NN based relevance feedback algorithm named Relevance Score
(RS). The RS algorithm is well-performing in image retrieval [12, 14] and the relevance
score relevance(v) of a video v calculated as

relevance(v) =
(

1 + dR(v)

dNR(v)

)−1

, (11)

where dR is the dissimilarity, measured as Euclidean distance, from the nearest video in
relevant video set R, dNR is the dissimilarity from the nearest video in non-relevant video
set NR. The video set is ordered such that the videos with the highest relevance score are
listed first and MAP is calculated on this list.

Table 2 MAP ∗ scores and
standard deviations on video
level on MEDTRAIN dataset

Algorithm MAP ∗ (μ) σ

No Feedback 0.13 0.01

RS 0.11 0.02

ARF 0.15 0.02
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Fig. 5 Average precision difference (AP ∗) per event

5 Results

5.1 MAP and MAP*

The MAP results on all methods are displayed in Table 1. The results show superior perfor-
mance for our ARF method. All relevance feedback methods outperform the No Feedback
run, except DetectorSpace.

This comparison is, however, not completely fair, because annotations on video level
will keep the positively annotated videos on the top of the ranked list. One method to over-
come this problem is to discard the videos which the users have already seen (MAP ∗). We
assume that all videos displayed before the last video are seen. The results in %MAP ∗ over
all video level methods, including the initial method without these videos is presented in
Table 2.

These results show that RS performs worse compared to No Feedback, because this
method might move in the wrong direction when little positive examples are annotated. A
Shapiro-Wilk test showed that the precision score distributions do not deviate significantly
from a normal distribution at p > 0.05 (p = 0.813;p = 0.947;p = 0.381, for No Feed-
back, RS, and ARF respectively). A statistically significant difference between groups was
determined by a one-way ANOVA (F(2,27) = 18.972, p <0.0005). A post-hoc Tukey’s HSD
test was performed to verify intergroup differences. The means of all algorithms differed
significantly at p < 0.05 (p = 0.006;p = 0.01; p < 0.0005, for No Feedback-RS, No
Feedback-ARF, and RS-ARF, respectively).

Fig. 6 Example of returned results for the query Working on a woodworking project. The initial result set
on the left also shows relevance selection
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Table 3 Comparison Concepts and weights for Attempting a board trick

No Feedback (0.19) Manual (0.31) AlterWeights (0.20) ARF (0.25)

c cs c cs c cs c cs

attempt 0.65 skateboard trick 0.33 trick 0.88 board game 0.72

trick 0.63 surf 0.33 board2 0.81 skateboard trick 0.54

board1 0.58 snowboard 0.33 skateboard trick 0.76 board1 0.43

board2 0.58 board game 0.74 trick 0.38

skateboard trick 0.54 flipping 0.44 attempt 0.13

5.2 Robustness

The robustness index (RI) on concept level, compared to No Feedback, is RI = 0.125
for AlterWeights (better in 18 events), RI = −0.375 for QuerySpace (better in 9 events)
and RI = −0.0625 for DetectorSpace (better in 15 events). Interestingly, QuerySpace has
higher performance compared to DetectorSpace, although RI is lower. One reason is that
in some events DetectorSpace has moved a concept in a wrong direction by which it is not
able to retrieve that concept anymore, resulting in a lower MAP.

The RI on video level is calculated by comparing RS to ARF. The RI for ARF compared
to RS is RI = 0.6875 (better in 27 events), and RI = −0.6875 for RS (better in 5 events).
The bar plot is shown in Fig. 5. Compared to No Feedback ARF improves ranking in 23 of
the events (RI = 0.4375) and RS in 12 of the events (RI = −0.25).

Giving an example of results of the methods, Fig. 6 shows the different results from the
video level methods.

Table 3 shows the weights of the top 5 concepts for the baseline and the best method for
the concept level and video level for the event Attempting a board trick. These results show
that the manual annotator is able to capture all type of board tricks, such as skateboard,
surfboard and snowboard tricks. AlterWeights does not have the general concept attempt or
two board concepts as the No Feedback, but added the concepts flipping (highly relevant)
and board game (semantically discussable relevant). ARF also has the concept board game,
even on top of the list. This indicates that the detector has relevance for this event. The
concept attempt is moved to the bottom of the list.

6 Conclusions and future work

Results show that relevance feedback on both concept and video level improves perfor-
mance compared to using no relevance feedback; relevance feedback on video level obtains
higher performance compared to relevance feedback on concept level; our proposed ARF
method on video level outperforms a state of the art k-NN method, all methods on concept
level and even manual selected concepts.

Our results are, however, bound to few events and few users. For the concept level
method, we also use an indirect performance metric, because we obtain performance on
video level. We, thus, do not take into account that relevant concepts can have bad perform-
ing detectors. We believe that these experiments clearly show that although concept level
user feedback can improve performance upon the initial ranking, video level user feedback
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is more valuable. One reason might be that this feedback can provide information on both
the relevance of the concept semantically and the accuracy of the concept detector. In future
work it might be interesting to investigate whether we can distinguish whether the concept
detector is not accurate or whether the concept is not semantically related based on the video
level feedback.

Additionally, we do not fully benefit from the insights in text retrieval. Whereas in text
retrieval the result of the Rocchio algorithm are used in a cosine similarity, our results are
used in a non-normalized scoring function. Because we score the videos per query and
evaluate using a ranking, the normalization of the query does not produce different (ranking)
results. Rocchio is used to change the query vector and, thus, using Rocchio on a non-
normalized query vector does not hurt performance. Normalization on the concept detector
scores, however, does decrease performance, because it is dominated by the many irrelevant
concepts. A first step in normalization is established by using the background score, which
might resemble a term frequency in text retrieval (although an aggretated normalized score
over the different keyframes could be a better measure compared to our normalization after
max pooling). The IDF part of TFIDF is not yet taken into account. In future work, it would
be interesting to investigate how to properly normalize the concept detector scores to fully
exploit the insights from text retrieval.
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