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ABSTRACT
This paper states the case for the principle of minimal necessary
data: If two recommender algorithms achieve the same effectiveness,
the better algorithm is the one that requires less user data. Apply-
ing this principle involves carrying out training data requirements
analysis, which we argue should be adopted as best practice for the
development and evaluation of recommender algorithms. We take
the position that responsible recommendation is recommendation
that serves the people whose data it uses. To minimize the imposi-
tion on users’ privacy, it is important that a recommender system
does not collect or store more user information than it absolutely
needs. Further, algorithms using minimal necessary data reduce
training time and address the cold start problem. To illustrate the
trade-off between training data volume and accuracy, we carry out
a set of classic recommender system experiments. We conclude that
consistently applying training data requirements analysis would
represent a relatively small change in researchers’ current practices,
but a large step towards more responsible recommender systems.
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1 INTRODUCTION
Conventionally, recommender algorithms are developed to exploit
all available training data. Although there is wide-spread awareness
of the downsides of such data greed during algorithm training and
deployment, the convention stands largely unquestioned. In other
words, researchers generally know that prediction performance
saturates after a certain amount of data has been collected from
users, and additional data only increases training times. However,
this knowledge is currently not translated into best practice for the
development of recommender systems algorithms.

In this paper, we state the case for the practice of analyzing
training data requirements during the development and evaluation
of recommender system algorithms. Such an analysis implements
the principle of minimal necessary data: If two recommender al-
gorithms achieve the same effectiveness, the better algorithm is
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the one that requires less user data. Our position is that any new
recommender algorithm should be judged by the way in which
it trades off between accuracy and amount of training data used.
Beyond a certain point, additional training data will not have a
meaningful effect on predictions. Effectively, the extra training data
will have an “invisible” impact on user experience. We argue that
pushing the collection and use of user data beyond this point should
be discouraged. In short, a responsible recommender system takes
no more from users than it needs to. The case for training data re-
quirements analysis is closely related to the 2013 idea of Differential
Data Analysis [6], which creates characterizations of which data
contributes most to the accuracy of a recommender algorithm. The
extended arXiv version of [6] emphasizes that data is a liability:
services providers need to protect it, and they need to respond to
subpoenenas. Data breaches are a serious worry for companies
storing data. Considerations of privacy and data security are be-
coming increasingly important as Europe continues to emphasize
users controlling their own personal data (cf. the EU General Data
Projection Regulation1, which goes into force in 2018).

With this paper, we build on the motivation of [6], and also echo
the question, “Is all this data really necessary for making good
recommendations?” We first argue for the importance of training
data requirements analysis in recommender system research. Then,
we report on classic experiments showing that lengthening the
history-length of the training set does not necessarily improve
prediction accuracy. The picture that emerges is that recommender
systems have much to gain, and actually nothing to lose, in moving
towards minimal necessary data.

2 BACKGROUND AND MOTIVATION
This section looks at aspects of the current state of recommender
system research that motivate minimal necessary data.
Addressing the Data Greed Habit Looking at the field of recom-
mmender system research and development as a whole, unques-
tioned data greed is quite surprising. We point to the work on
cold-start recommendation, and in particular to [8], as evidence
that researchers are well aware that after a certain saturation point
more data does not necessarily translate into better performance.
We suspect that data greed is simply a bad habit developed when
standard, static data sets are used for evaluation. With such data
sets the assumption that “more is always better” does not lead to
any obvious negative consequences. On the contrary, comparison
of results on standard data sets requires standardized test/training

1http://ec.europa.eu/justice/data-protection
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splits. In other words, using less than all available data is actually as-
sociated with faulty methodology. Adopting training data analysis
as a best practice would maintain comparability between research
results, while at the same time allowing application of minimal
necessary data.
Fulfilling Non-Functional Requirements Recent years have
seen a push towards evaluating recommender systems with respect
to not only functional, but also non-functional requirements [26].
During this time, analysis of resource use has become more com-
mon in the literature, and the development of algorithms with
unnecessary computational complexity or high response time has
been discouraged. Training data requirements analysis is another
form of resource analysis that supports understanding of the prac-
tical usefulness of recommender algorithms in real-world settings.
Seen in this way, minimal necessary data is a continuation of an
existing evolution.
Ensuring User-centered Recommendation Recently, research
studies have demonstrated that algorithm accuracy does not nec-
essary play a dominant role in the reception of a recommender
system by users [7, 10]. If performance improvements achieved by
using more data to train a recommender system are too slight or
subtle for users to notice, the additional data is adding no value, and
should not be used. We understand responsible recommendation as
recommendation that serves the people whose data it uses. Consci-
entious service of users requires formulating an explicit definition
of success that characterizes the goals of the recommender system.
The definition should contain a specification of the trade-off be-
tween accuracy levels and user experience. Such a definition throws
a spotlight on where recommender systems are collecting, storing,
and using data that is not needed. Using more data than needed
imposes on users’ privacy, and, collecting user data that does not
serve a specific goal cannot be justified.

In sum, if the convention of data greed has no principled justifica-
tion, and the recommender system community is already focusing
on non-functional requirements and user experience, it is an obvi-
ous and relatively small step to focus on minimal necessary data.

3 RELATEDWORK
Here, we overview previous work related to trade-offs between
training data volume and recommender system prediction perfor-
mance.

3.1 Analyzing Training Data Requirements
Papers analyzing training data requirements are scattered through-
out the recommender system literature. In 2008, [27] evaluated the
performance of algorithms on the NetFlix Prize dataset against the
number of users in the training data. There is a clear saturation
between 100,000-480,000 users, i.e., the algorithm does not achieve
continued improvement. The plot is on log scale, and the authors
are focused on what can be achieved by 0-100,000, and do not men-
tion the saturation effect. Also in 2008, [21] analyzed the impact
of the number of using ratings on news item recommendation.
In 2010, [22] analyzed the number of weeks of training data on
the recommendations of seminar events at a university. On the
whole, we find that attention to minimal necessary data has been
the exception rather than the rule.

3.2 Doing More with Less
In addition to work that looks at the impact of training data volume
on specific algorithms, other work is dedicated to actually devel-
oping algorithms that do more with less. In the general machine
learning literature, there is clear awareness that certain algorithms
are better suited than others for performing under conditions of
limited data, e.g., [11]. Here, we mention some other examples of
work that we are closely connected to. Cold start is the classic case
in which recommender system algorithms must be capable of doing
more with less. Different sizes of datasets have been studied in
order to investigate different levels of cold start [8, 9]. Further [8]
shows that there is a difference between algorithms with respect
to data requirements. The idea of minimal necessary data can be
seen as the proposal to take the ability of algorithms designed to
address cold start conditions and applying it as broadly as possible.

In [23], we touched on the privacy benefits of algorithms that
do not need to store data in association with user IDs for long peri-
ods. Explicit attention to minimal necessary data will promote the
development of such algorithms. We note that algorithms that use
minimal personal data are useful to address news recommendation,
where user IDs might be unstable or unavailable [16].

3.3 Timed-based Training Data Analysis
The closest work to the experiments presented in this paper is work
on time-aware recommender systems. The survey article [4] dis-
cusses techniques that weight ratings by freshness and mentions
that the more extreme version of such an approach is time trunca-
tion, i.e., actually dropping ratings older a specified threshold. They
authors cite only two time-truncation papers. The first is [5], which
demonstrates that using information near the recommendation
date improves accuracy on the CAMRa 2010 Challenge. The second
is [13], which reports interesting results using a time-window filter-
ing technique intended to capture fluctuations in seasonal demand
for items. Perhaps the most well-knownwork on time-aware recom-
mendation is Collaborative Filtering with temporal dynamics [18].
Here, we adopt [18] as a baseline to demonstrate the effect of time
truncation above and beyond time-based weighting.

4 EXPERIMENTAL SETUP
Next, we turn to a set of experiments that illustrate the trade-off
between data volume and prediction accuracy using a timed-based
training data requirements analysis. In this section, we describe
our data sets, recommender algorithms, and analysis methodology.
Our experiments support the position that this trade-off should
not be considered a a tweak to be taken care of by engineers at
deployment time. Rather, training data size has substantial measur-
able impact in common experimental set ups used by recommender
system researchers. Here, we study time truncation since it is a
well-established method for identifying training data that is less
valuable. We emphasize that other approaches, such as sampling,
are important for training data requirements analysis.

4.1 Data sets
We choose to experiment on three data sets. The data sets were
chosen because of their long temporal duration, and the fact that
they are widely used, which supports reproducibility. The first two,
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MovieLens 10M and NetFlix were selected because they are ‘classic’,
in the sense that they are well understood by the community. The
third, a dataset from Amazon, is representative of a highly sparse
recommender problem.

Basic statistics of the datasets are shown in Table 1. We briefly
mention the temporal ranges and further details about each. The
MovieLens 10M dataset [14] has a data range from January 1995
to January 2009 (14 years). The Netflix dataset[3] was collected
between October 1998 and December 2005 (7 years). To make the
dataset size manageable we randomly selected 10% of users. We
observed that our sample is big enough to cover almost all the
movies and that the distribution of ratings has the same shape in
the sample and in the original dataset. Furthermore, the temporal
window of the sample is almost as long as the original dataset.

The Amazon dataset [19] consists of ratings collected from June
1995 to July 2005 (10 years). We use only the products that belong
to the four main product groups: books, DVDs, music and videos.

Dataset #Users #Items #Ratings Density

ML-10M 69.878 10.681 10M 4,47%
Netflix 480.180 17.770 100,5M 1,2%
Amazon 1.553.447 401.961 7,5M 0,001%

Table 1: Datasets statistics

4.2 Recommender framework
We use four different algorithms to train our models. The experi-
ments are implemented using WrapRec [20], an open source evalu-
ation framework for recommender systems. The experiment were
run on a machine with 16 CPU cores with clock speed of 2.3 GHz
and 16 GB of memory. The following algorithms are used in this
work where the first three are used for rating prediction and the
last one is used for the top-N ranking task.
BiasedMatrix Factorization (BMF): Thismethod [18] is themost
widely-used model-based algorithm for rating prediction problems.
This method is the standard Matrix Factorization model with user,
item and global biases. In this work, we used the MyMediaLite [12]
implementation of BMF with its default hyper-parameter values.
The optimization algorithm is Stochastic Gradient Descent (SGD)
with a learning rate of 0.01. The latent factors are initialized with
a zero-mean normal distribution with standard deviation of 0.1.
The number of latent factors, however, is varied. Our experiments
demonstrate the effect of latent factors.
Factorization Machines: Factorization Machines [24] are state-
of-the-art models for rating prediction problems. In this work, we
used the more advanced optimization method of Markov Chain
Monte Carlo (MCMC), that is implemented in LibFm [24]. The only
hyper-parameter of the MCMC algorithm, i.e., the standard devia-
tion of the initializer distribution, is set to 0.1, the default value in
the LibFm implementation [24].
Time-Aware Factor Model: This method [17] is also a latent fac-
tor model for rating prediction problems. The temporal effect of
user preferences is modeled with a time-dependent bias function.
This method yielded top performance in the Netflix prize. The
hyper-parameters are the default values of the MyMediaLite imple-
mentation of Time-Aware model.

Figure 1: An Overview of the sliding process.

Figure 2: Representation of sliding window for one fold.

Bayesian Personalized Ranking (BPR): This method [25] is an
state-of-the-art method for ranking problems where the learning
involves optimization for ranking. Since this method is designed for
datasets with unary positive-only feedback, we consider the ratings
above user average rating as a positive feedback. BPR uses SGD
for optimization. The learning rate is set to 0.05 and the standard
deviation of the initializer is set to 0.1.

4.3 Sliding-window Cross-validation
Our experiments use sliding window cross-validation, which allows
us to maintain the temporal ordering of the data (also referred to
as ‘forward chaining’). We start by partitioning the data into 11
temporal segments. Each fold of the cross-validation consists of
a data window that is split into test and training data. The test
data consists of the temporally most recent segment. To create
multiple folds, the data window is slid backwards in time by one
segment, such that the test data is different for each fold. The sliding
process is illustrated in Figure 1. We vary the size of the training
dataset by increasing its history length, i.e., the length of time that
the training dataset extends into the past. We test seven history
lengths, indicated by the arrows in Figure 2. Each history length is
created by adding one segment to the next-shortest history length.
Since our initial split created 11 segments, increasing the history
length by one segment means increasing the training data by 10%.

Our data partitioning method makes it possible to validate the
results using a training set up to the length of seven segments
preceding the test set in each fold. We could have extended the
training set with additional segments, but, as we will see in the
next section, seven are sufficient to illustrate the phenomenon of
saturation that motivates our research. We also noted that the
different datasets have different trends in density development as
the history length of the training set grows longer. Although we
do not measure it formally here, this gives us confidence that the
effects we observe are not caused by density trends.
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Figure 3: Empirical comparison of the performance and the training time of the two methods of BMF and FM on our three
datasets with respect to the training set size (history-length of training set measured in segments).

5 EXPERIMENTS AND RESULTS
We perform three different experiments in order to observe the
effect of increasing the history length based on different models.

5.1 Impact of Training Data History-Length
In this experiment, we apply our recommender algorithms while
increasing the training set size by extending the history-length of
the training window (see Figure 1). The experiment has a relatively
a naïve formulation: we simply observe what happens when we
apply time-truncation when training classic recommender system
algorithms out of the box. For this experiment, we used Biased
Matrix Factorization (BMF) and Factorization Machines (FM). The
performance of the models are evaluated using the Root Mean
Squared Error (RMSE) metric. We also measured the training time
of the two models based on different number of segments. Both
models were trained with 30 iterations and 10 latent factors. As can
be seen in Figure 3, as the history length of the training dataset
increases, a certain saturation effect can be observed with all three
datasets. At the same time, the training time increases linearly with
the history length. The saturation is quite dramatic with MovieLens
10M. However, in all cases there is a clear fall off in the added
value of extra data once the training set reaches a certain size.
These results show that a large reduction of training data requires
a relatively small trade-off of prediction accuracy.

Next, we dive more deeply to investigate whether the choice of
the number of latent factors explains the saturation effect. The left
column of Figure 4 shows the influence of the number of latent

factors. For this experiment, we use the BMF model and two data
sets, MovieLens 10M and Netflix. The figures confirm that the
saturation effect dominates the impact of the choice in the number
of factors. In other words, increasing the number of latent factors
does not necessarily cause the model to benefit from more data.

5.2 Exploiting Temporal Dynamics
In this section, we look more closely at temporal effects. The pur-
pose of this experiment is to eliminate the possibility that the obser-
vations in the previous section can be attributed to time-truncation
acting as a primitive method for incorporating temporal dynam-
ics into a model. We use the time-aware factor model, introduced
in [17], where the temporal aspect of user preferences are exploited
using a time-dependent bias function. We use same procedure as in
previous experiments to increase the size of the training set. The
middle column of Figure 4 reports results on the MovieLens 10M
and Netflix datasets. The fact that we find saturation effects using
an algorithm that models temporal dynamics, suggests that time-
truncation of training data should be used in addition to exploiting
temporal dynamics.

5.3 Top-N Recommendations
Next, we turn to Top-N Recommendation and explore the effect of
training set size on a learning-to-rank method. We used Bayesian
Personalized Ranking (BPR) [25] to train our model, and report
results in terms of recall at three different cut-off levels N . We
used same number of iterations and latent factors as the naïve
experiment (Section 5.1). To calculate recall, we apply a procedure
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Figure 4: The effect of number of latent factors (left column), saturation effect on the time-aware latent factor model (middle
column) and the effect of history-length size on a ranking model (right column)

known as one-plus-random [9]: For each test point, 1000 random
items that are not rated by the user are sampled and the target
item is added. This set of 1001 items are ranked using the trained
model. If the target item appears in one of the top-N positions of
the ranked list, we count that test point as having achieved a hit. As
can be seen in the right column of Figure 4, a smaller training set
benefits more from additional data than a larger training set. The
results are in this way comparable to what we found in our rating
prediction experiments in Sections 5.1 and 5.2. We also calculated
performance with respect to Mean Reciprocal Rank (MRR), which
is not depicted here for space reasons. For both recall and MRR, we
observe diminishing returns effects.

5.4 Discussion
Our experiments illustrate saturation effects as the size of the train-
ing dataset increases, but also reveal aspects of data reduction that
are not yet thoroughly understood. Following the idea of Differ-
ential Data Analysis [6], we would like to have insight into when
and why we observe saturation, i.e., diminished returns from addi-
tional data. Users in the test set are likely to be represented in the
segments temporarily closest to the test set. Ideally, we would like
to understand how much of the effect can be attributed to pruning
inactive users, and how much is related to taste/item shift, or its op-
posite, information redundancy. A detailed understanding of these
effects would make it possible to designs schemes for data collec-
tion and retention that have minimal impact on user privacy. For
example, if inactive users are no longer contributing to improving
predictions, their data should simply be deleted.

When to apply time-truncation is not easy to predict. During our
exploratory experiments, we found that prediction accuracy using
the smaller data set MovieLens 1M, with 1M ratings and a time span
of 3 years (leading to much shorter segments than with ML 10M),
does not saturate. This effect suggests that further investigation is
needed into the relationship between training data history length
and performance for shorter history lengths. We believe, however,
that very recent history is very valuable. For example, [15] demon-
strates the value of adding information on the most recent history
items that the user has interacted with to the prediction for the
current item using ML 1M. To better support privacy, we would
like to give further consideration to user-specific data dropping, i.e.,
truncating specific user histories when certain conditions hold. For
example, future research could focus on optimizing algorithms that
exploit only the very most recent interactions of the user, and delete
older interactions. Our initial experiments in this area revealed that
it is not trivial. User truncation, could, however, ultimately lead to
recommender systems that are not only privacy-sensitive, but also
more even handed, and do not favor active users.

6 CONCLUSION AND OUTLOOK
In this paper, we have made a case for recommender systems re-
search to adopt training data requirements analysis as a best prac-
tice when developing and evaluating new algorithms. Specifically,
researchers developing a recommender system should explicitly
analyze the trade-off between the amount of data that the system
requires, and the performance of the system. When the improve-
ment in prediction performance becomes negligible, more data



FATREC’17, 31 August 2017, Como, Italy M. Larson et al.

should not be used. If two algorithms achieve the same prediction
performance, the algorithm that uses less data should be preferred.

We have presented experimental evidence that trade-offs be-
tween objective metrics and the amount of data used deserve in-
creased attention in recommender research. We argue that the
recommender system community is well aware of results of this
sort, and implicitly already understands the disadvantages of data
greed and also of the benefits of doing more with less. Carrying
out an analysis that demonstrates that an algorithm uses mini-
mal necessary data represents a straightforward application of this
awareness. A relatively small shift in research practices represents
a large step towards more responsible recommender systems.

As mentioned in the introduction, there is a connection between
algorithms that determine the usefulness of data, and user pri-
vacy [6]. Obfuscation can protect users and does not necessarily im-
pact recommender performance. Techniques involving obfuscation
have been used to anonymize data sets, enabling their release for re-
search purposes, as in [2]. Moving forward, we feel that the idea of
minimal necessary data can provide an entry point for researchers
in becoming interested in developing obfuscation techniques.

We close with a warning about adopting the position that ‘some-
one else is doing it’. A metareviewer of a previous version of this
paper commented, “How to obtain good recommendations from
a minimal amount of data is an interesting problem. At the same
time, the idea the the predictive modeling performance improves
as the training data grows but eventually tends to level off has been
well established in machine learning and is quite well understood
(i.e., the concept of learning curves is machine learning reflects
exactly that).” We agree with this statement. A recent article in The
Economist [1] quotes Google’s chief economist commenting on
the “decreasing returns to scale” of data. However, we are left won-
dering why a well-understood idea in machine learning remains
apparently so severely underexploited in recommender system re-
search. When it comes to questioning in the assumption of data
greed in recommender systems, it appears that ‘someone else is
not doing it’, and that more effort needs to be made to move the
community towards minimal necessary data.

Writing this paper gave us a direct experience of how easy it is
to overlook the wider implications of data use. A reviewer pointed
out that the NetFlix data set, used here, has been removed from
public availability, citing its deanonymizability. Ironically, this con-
sideration escaped us during our experimentation. We must count
ourselves among the researchers who face the challenge of under-
standing the full implications of a commitment to best practices
including minimal necessary data.

In sum, we argue that recommender system research must look
at how much data is really necessary to accomplish a given recom-
mendation task. However, we find that moving towards minimal
necessary data represents a relatively small change in current prac-
tices. Recommender system researchers have acquired years of
experience addressing cold start. It is time to shift our perspective
to realize that cold start is not only a problem, it is also a solution.
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