
185ISSN 1479-6694Future Oncol. (2017) 13(2), 185–19410.2217/fon-2016-0194 © Robin L Jones

REVIEW

Promising novel therapeutic approaches 
in the management of gastrointestinal 
stromal tumors

Zoltan Szucs1, Khin Thway1, Cyril Fisher1, Ramesh Bulusu2, Anastasia Constantinidou1, 
Charlotte Benson1, Winette TA van der Graaf1,3 & Robin L Jones*,1

1The Royal Marsden Hospital NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK 
2Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, UK 
3The Institute of Cancer Research, Cotswold Road, Sutton, SM2 5NG, UK 

*Author for correspondence: Tel.: +44 207 808 2137; Fax: +44 207 808 2113; robin.jones4@nhs.net

Primary and secondary resistance to currently available licensed tyrosine kinase inhibitors 
poses a real clinical challenge in the management of advanced gastrointestinal stromal 
tumors. Within the frame of early phase clinical trials novel systemic treatments are currently 
being evaluated to target both the well explored and novel emerging downstream effectors 
of KIT and PDGFRA signaling. Alternative therapeutic approaches also include exploring 
novel inhibitors of the KIT/PDGFRA receptors, immune checkpoint and cyclin-dependent 
kinase inhibitors. The final clinical trial outcome data for these agents are highly anticipated. 
Integration of new diagnostic techniques into routine clinical practice can potentially guide 
tailored delivery of agents in the treatment of a highly polyclonal, heterogeneous disease 
such as heavily pretreated advanced gastrointestinal stromal tumor.
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The KIT tyrosine kinase receptor plays a vital role in the pathogenesis of gastrointestinal stromal 
tumors (GISTs) and therefore has become a universal therapeutic target. Imatinib is the first choice 
drug for the treatment of advanced/metastatic GISTs, four out of five patients clearly benefiting 
from treatment with a median overall survival (OS) of approximately 50 months [1]. While major-
ity of GIST patients respond to imatinib treatment, approximately 10–15% of them show primary 
resistance with a further 40–50% developing secondary resistance to the agent with a median time 
to progression of about 24 months [2]. Sunitinib and regorafenib have been approved for the treat-
ment of imatinib-resistant GIST, with far less impressive clinical efficacy and more disadvantageous 
toxicity profile as compared with imatinib [3,4].

Ongoing preclinical and clinical research has provided powerful tools in the explanation, predic-
tion and management of primary resistance. A strong link has been established between mutational 
status and sensitivity to tyrosine kinase inhibitors (TKIs), for instance PDGFRA exon 18 D842V-
mutant GISTs are unlikely to respond to imatinib [5]. The acquisition of secondary mutations in 
KIT or PDGFRA represents the most frequent mechanism of imatinib resistance in GIST [6,7]. We 
elaborate to great length on the relevance of specific genetic changes leading to primary and second-
ary treatment resistance in our twin-review written on the topic of genetic subtypes of GIST [8].

The objective of this manuscript is to highlight the most relevant and recent novel therapeutic 
attempts trying to overcome complex, mostly polyclonal resistance to currently available TKIs. We 
focus on promising, previously less discussed emerging therapeutics including inhibitors of the KIT/
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PDGFRA receptor, drugs targeting dysregulated 
downstream signaling pathways, immune check-
point inhibitors and cyclin-dependent kinase 
inhibitors (Table 1). Clinical trial data are mostly 
immature for these agents therefore final results 
are highly anticipated.

Novel KIT/PDGFRA receptor inhibitors
Even with newer licensed multitarget kinase 
inhibitors such as regorafenib, resistance develops 
over time. However, the oncogenic KIT depend-
ency of GIST persists even after failure of stand-
ard treatment options as ATP-mimetic TKIs do 
seem to provide some clinical benefit in this 
setting. A number of alternative ATP mimetics 
(nilotinib, masitinib, sorafenib, dovitinib, pazo-
panib) have been explored in treatment-resistant 
GIST with disappointingly mixed results; none 
of the clinical trials with these agents have led 
to regulatory body licensing [28]. Ponatinib is 
one of the more promising ATP-competitive 
KIT-inhibitors that was tested against a variety 
of KIT-mutant GISTs. Unlike currently avail-
able approved KIT inhibitors, ponatinib has also 

shown activity against the KIT exon 17 D816-
mutant kinases [29]. In a Phase II trial of 45 mg 
daily dose ponatinib in heavily pretreated GIST 
patients with KIT exon 11 mutated tumors [9] 
the clinical benefit rate (CBR) (complete remis-
sion [CR], partial remission [PR] or SD) at 16 
weeks was 37% (10/27) [30]. Another Phase 
II trial of the German Arbeitsgemeinschaft 
Internistische Onkologie Group is currently 
evaluating ponatinib at 30 mg daily dose in 
imatinib-resistant GIST [10].

New classes of non-ATP mimetic (switch pocket 
kinase inhibitors, such as DP-2976) have shown 
in vitro activity and could represent a promising 
strategy in the fight against TKI resistance [31].

As a means to suppress drug-resistant cell 
clones, sequential administration, as well as rota-
tion of TKIs are being evaluated. Trying to ame-
liorate the TKI addiction of heavily pretreated 
GISTs a currently open Phase Ib study explores 
the safety and tolerability of sunitinib alternat-
ing with regorafenib in participants progressing 
on all standard approved therapies (imatinib, 
s unitinib and regorafenib) [32].

Table 1. Promising therapeutic agents in development for the treatment of advanced gastrointestinal stromal tumor.

Target Class of agent (specific activity) Drug(s) Trial/Phase (combination) Results Ref.

KIT/PDGFRA Multitargeted TKI (KIT exon 17 
D816-mutant kinases) 

Ponatinib NCT01874665 Phase II 37% CBR at 16 weeks [9]

    AIO-STS-0115 Phase II Awaited [10]

  Multitargeted TKI (PDGFRA D842V) Dasatinib Phase II 32% PR; 21% PFS at 
6 months

[11]

      NCT01643278 Phase I (+ipilimumab) Awaited [12]

  Multitargeted TKI Crenolanib NCT01243346 Phase I/II study 31% CBR [13]

  KIT D816V/PDGFRA D842V inhibitor BLU285 NCT02508532 Phase I Awaited [14]

PI3K PI3K inhibitor BYL719 NCT01735968 Phase I Awaited [15]

  Selective PI3K catalytic p110α subunit 
inhibitor

Buparlisib Phase I Awaited [16]

BRAF V600E BRAF inhibitor Vemurafenib NCT02304809 Phase II Awaited [17]

MEK MEK inhibitor Binimetinib NCT01991379 Phase Ib/II (+imatinib) 33% PR [18]

  MEK1/MEK2 TKI Trametinib NCT02342600 Phase II (+pazopanib) Awaited [19]

MET Dual MET and KIT small-molecule 
inhibitor

Cabozantinib Phase I Long-lasting SD as best 
response

[20]

      NCT02216578 Phase II Awaited [21]

FGFR  Pan-FGFR inhibitor BGJ398 NCT02257541 Phase Ib/II (+imatinib) Awaited [22]

IGF1R IGF1R inhibitor Linsitinib NCT01560260 Phase II 45% CBR; 52% PFS, 80% OS 
at 9 months

[23]

HSP90 Nonansamycin HSP90 inhibitor Onalespib NCT01560260 Phase I 36% CBR [24]

      NCT01294202 Phase II (±imatinib) Awaited [25]

CTLA4 Anti-CTLA4 antibody Ipilimumab NCT01738139 Phase I (+imatinib) Single PR [26]

      NCT01643278 Phase I (+dasatinib) Single durable SD for 
59+ weeks

[12]

CDK CDK4/6 inhibitor Palbociclib NCT01907607 Phase II Awaited [27]
CBR: Clinical benefit rate; CR: Complete remission; HSP: Heat shock protein; NCT: ClinicalTrials.gov Identifier; PFS: Progression-free survival; PR: Partial remission, SD: Stable disease; 
TKI: Tyrosine kinase inhibitor.
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The Australasian Gastro-Intestinal Trials 
Group in collaboration with the European 
Organisation for Research and Treatment of 
Cancer Scandinavian Sarcoma Group are cur-
rently evaluating whether alternating imatinib 
and regorafenib in the first-line treatment of 
advanced GIST would delay the onset of TKI 
resistance with the primary outcome measure of 
PFS at 24 months [33].

A Phase II Study with the novel human anti-
PDGFRα monoclonal antibody olaratumab in 
previously treated patients with unresectable 
and/or metastatic GIST [34] has been terminated 
early due to lack of efficacy.

●● PDGFRA D842V-mutant inhibition
GISTs harboring the PDGFRA D842V mutation 
represent the overwhelming majority of GISTs 
with primary imatinib and sunitinib resistance, 
while exhibiting some moderate response to 
regorafenib. A number of novel agents are being 
tested with an enhanced potential of targeting 
this very specific receptor mutation, including 
dasatinib, crenolanib and BLU-285 (Table 1).

Dasatinib is an oral multitarget TKI with 
an enhanced binding affinity for KIT and 
PDGFR. In preclinical studies imatinib-resistant 
PDGFRA D842V or imatinib-sensitive PDGFRA 
(DeltaDIM842–844)-mutant GIST cells and 
cell lines were treated with dasatinib, sorafenib, 
nilotinib and IPI-504 at different concentra-
tions. The effect of these agents on proliferation, 
survival and signaling was examined. Of these 
agents only dasatinib showed potent inhibition 
of the PDGFRA D842V isoform with an IC(50) 
value of 62 nmol/l [35]. In a Phase II trial assess-
ing the antitumor activity of dasatinib in patients 
with advanced GIST who were refractory to 
imatinib and sunitinib the PR rate was 32% 
(15/47) by Choi criteria and 21% patients (10/47) 
were progression free >6 months [11]. Dasatinib 
is currently assessed in combination with ipili-
mumab for patients with advanced GISTs and 
other s arcomas within a Phase I trial [12].

Crenolanib is a unique type I small-molecule 
inhibitor of FLT3 and the PDGFR receptors 
(including the D842V-mutated kinase). In pre-
clinical studies crenolanib proved to be a potent 
inhibitor of imatinib-resistant PDGFRA kinases 
(D842I, D842V, D842Y, DI842–843IM and 
deletion I843). In an isogenic model system cre-
nolanib exhibited a 135-fold increased activity 
against the D842V-mutant GIST as compared 
with imatinib [36].

In a most recent Phase I/II study [13] creno-
lanib proved to be the first and only TKI to show 
activity in PDGFRA D842V-mutant advanced 
GIST. In this early phase trial 2/16 patients 
achieved a PR and 3/16 achieved SD, corre-
sponding to a CBR of 31% (5/16 patients). More 
encouragingly seven patients remained on cre-
nolanib for over 6 months and one patient each 
for 1 year and 2 years, respectively. Crenolanib 
was well-tolerated when given to patients on a 
chronic basis. Only four out of 20 PDGFRA-
mutant GISTs were 18F-fluorodeoxyglucose avid 
on baseline PET imaging [13]. A randomized pla-
cebo-controlled study of crenolanib in advanced 
D842V GIST has accordingly been initiated.

BLU285 is a mutation-specific inhibitor of 
KIT D816V and PDGFRA D842V mutated 
kinases conferring resistance to most currently 
available TKIs [37]. In a TKI-resistant KIT exon 
11/17-mutant GIST patient derived xenograft 
model the BLU-285 compound showed dose-
dependent marked inhibition of tumor growth, 
proliferation, KIT signaling and induction of 
apoptosis. At the 30 mg/kg dose BLU-285 treat-
ment resulted in striking tumor regression with 
a 73% reduction of baseline measurements. At 
the same 30 mg/kg dose BLU-285 treatment led 
to a 3.4-fold increase in apoptosis as compared 
with control. At a lower 10 mg/kg dose BLU-
285 stabilized the tumor volume led to a 27-fold 
decrease in the proliferative index. Treatment 
with both doses decreased significantly the 
 activity of pMAPK and KIT signaling [38].

A Phase I trial of this orally administered 
agent is currently open to enrollment for adult 
patients with advanced GIST and other solid 
tumors [14]. The dose expansion component 
of the trial includes a cohort of patients with 
D842V mutated tumors. If successful as a single 
agent, with its very narrow inhibition profile [37] 
BLU285 could become in the future a candidate 
for combination trials.

Inhibition of downstream signaling pathways
KIT/PDGFRA-mutant GISTs feature onco-
genic signaling via both the PI3K/mTOR and 
RAS/MAPK pathways. Li and colleagues tried 
to further elucidate the biological and clinical 
relevance of these pathways in GISTs that lose 
KIT/PDGFRA dependence [39]. Their 17 patient 
study included patients with high-risk or meta-
static GIST that were either KIT/PDGFRA/SDH 
wild-type or KIT-mutant with progression on 
TKI but no secondary KIT mutation. They 
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also developed GIST cell lines to assess the 
biologic role and clinical implications of PI3K 
and/or RAS pathway oncogenic activation. 
Eight GISTs had mutations activating the PI3K 
and/or RAS pathways, seven with both PI3K and 
RAS pathway derangements. The KIT-mutant 
GIST882 sublines with PTEN and NF1 inac-
tivation, or with NF1 inactivation alone, were 
imatinib-resistant, whereas parental GIST882 
and a subline with PTEN inactivation alone 
remained imatinib-sensitive. A novel GIST line, 
NS72, with NF1 inactivation and both PIK3CA 
and PTEN mutations was imatinib-resistant. 
These findings prove that co-activation of the 
RAS and PI3K pathways in GIST fosters KIT-
independence and contributes to TKI resistance. 
While RAS pathway activation in GIST models 
leads to imatinib resistance, PI3K pathway acti-
vation alone does not. Continued efforts should 
focus on developing cotargeting strategies for the 
RAS and PI3K pathways in GIST.

Van Looy and colleagues tested the in vivo 
efficacy of three PI3K inhibitors (PI3Ki) in 
patient-derived GIST xenograft models carry-
ing diverse KIT genotypes and PTEN genomic 
status [40]. The studied oral PI3Kis were bupar-
lisib (BKM120) a pan-PI3Ki, BEZ235 – a dual 
pan PI3K/mTOR inhibitor and BYL719 – a 
selective inhibitor of the PI3K catalytic p110α 
subunit. PI3Ki monotherapy led to signifi-
cant tumor volume reduction or stabilization, 
mitotic activity and PI3K signaling inhibition. 
Combining imatinib with PI3Kis showed a 
marked synergistic antitumor activity. Response 
to the imatinib-PI3Ki combination was found 
dependent on the KIT genotype and specific 
model-related molecular characteristics. In the 
light of their results the authors suggested KIT 
genotype driven patient selection for clinical 
t rials exploring such combinations.

A Phase I study was performed to deter-
mine the maximum tolerated dose and/or 
recommended Phase II dose of a combination 
of imatinib and the selective inhibitor of the 
PI3K catalytic p110α subunit BYL719 in the 
third-line treatment of GIST patients [15]. This 
study is ongoing, but closed to further recruit-
ment. Results of a closed Phase Ib dose-finding 
study [16] with the pan-PI3Ki BKM120 (bupar-
lisib) in combination with imatinib in patients 
with GIST who have failed prior therapy with 
imatinib and sunitinib are eagerly awaited.

Alternate signaling pathway mutations, 
such as BRAF exon 15 activating mutations 

can be one of the potential reasons for primary 
imatinib resistance [41]. The BRAF inhibitor 
dabrafenib showed some promising efficacy 
in BRAF V600E-mutant GIST, however, in 
the context of a single patient case report [42]. 
More efforts shall be focused on exploring the 
activity of BRAF inhibitors in this select popu-
lation within the frame of prospective clinical 
trials. In order for easy access to vemurafenib for 
patients with BRAF-mutant tumors, the French 
National Cancer Institute (INCa) launched the 
AcSé V program [17], funding both access to 
molecular diagnosis in the 28 INCa molecu-
lar genetic centers and an exploratory Phase II 
trial testing the drug. Interestingly patients with 
BRAF non-V600 mutations (on exon 11 or 15) 
or other BRAF alterations identified through a 
pan-genomic tumor profile are also eligible and 
included into a miscellaneous cohort. The pro-
ject aims to perform around 3000 molecular 
tests and to recruit up to 500 patients from 150 
centers over 3 years.

Further novel systemic approaches are cur-
rently being evaluated in targeting the well 
explored and novel emerging downstream effec-
tors of KIT and PDGFRA signaling, which we 
discuss below.

ETV1/MEK inhibition
The ETS (E 26) family transcription factor 
ETV1 shows high protein and mRNA level 
expression in GIST, and is essential for tumor 
growth and survival in both imatinib-sensitive 
(GIST882) and imatinib-resistant (GIST48) 
cell lines [43]. Activating KIT mutations coop-
erate with ETV1, the cellular levels of which 
are controlled by the KIT MAPK3/1 (ERK1/2) 
cascade to bring about GIST oncogenesis [43,44]. 
Under basal conditions, oncogenic and/or wild-
type KIT and wild-type PDGFRA cooperatively 
activate ERK, thereby preventing ETV1 deg-
radation. High levels of ETV1 stimulate cell 
proliferation and tumorigenesis by hyperactivat-
ing ICC/GIST-specific transcriptional output, 
including KIT expression [45]. In KIT-mutant 
GIST, inhibition of PDGFRA disrupts the 
KIT–ERK–ETV1–KIT signaling loop by inhib-
iting ERK activation and facilitating ETV1 deg-
radation. Reduced ETV1 levels limit cell prolif-
eration via reduced transcriptional ac tivation of 
target genes including KIT [45].

Considering the role of ETV1 as a master reg-
ulator of the ICC lineage, required for GIST ini-
tiation and proliferation, it has been considered 
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as a new key therapeutic target [43–45]. The 
dual lineage targeting of KIT by imatinib and 
ETV1 by the MEK inhibitor MEK162 induced 
more apoptosis than single-agent imatinib or 
MEK162 in human GIST cells. The combina-
tion therapy resulted in complete tumor regres-
sion, whereas single-agent imatinib or MEK162 
treatment led to disease stabilization in human 
GIST xenograft studies. Moreover, combina-
tion therapy also induced more tumor fibrosis 
than single-agent imatinib or MEK162 treat-
ment in g enetically engineered mouse models 
of GIST [44].

The combination of imatinib and the MEK 
inhibitor/binimetinib is currently investigated 
in the first-line treatment of advanced GIST 
patients. In a Phase Ib/II trial [18] for a heavily 
pretreated patient population, nine out of the 
15 evaluable patients treated with the combina-
tion had stable disease at 8 weeks and five had a 
partial response according to the Choi criteria.

Trametinib is a MEK1/MEK2 kinase inhibitor 
indicated for the treatment of patients with unre-
sectable or metastatic melanoma with BRAF V600E 
or V600K mutations. A Phase II pilot trial [19] is 
to assess the efficacy of trametinib in combination 
with pazopanib in imatinib/sunitinib-refractory 
advanced GIST patients.

MET signaling inhibition
The acquired expression of activated forms of the 
MET oncogene was observed in human GIST 
specimens that acquired imatinib resistance. 
Similar MET activation also developed after 
imatinib therapy in a mouse model of GIST 
(KitV558del/+ mice) and in imatinib-sensitive 
human GIST cell lines after imatinib treatment 
in vitro. The dual MET and KIT small-molecule 
inhibitor cabozantinib proved to be markedly 
more effective than imatinib in multiple pre-
clinical models of both imatinib-sensitive and 
imatinib-resistant GIST [46].

In a Phase I trial cabozantinib administered 
60 mg daily appeared to be well tolerated and 
antitumor activity was observed in heavily pre-
treated GIST patients with long-lasting SD 
as best response [20]. A multicenter, multina-
tional, open label, single arm Phase II study of 
single-agent cabozantinib is to be opened by 
the European Organisation for Research and 
Treatment of Cancer. The study [21] will be 
assessing the safety and activity of cabozantinib 
in patients with metastatic GIST who have pre-
viously progressed on imatinib and sunitinib and 

have not been exposed yet to other KIT – or 
PDGFR-directed TKIs.

●● FGFR inhibition
Gene expression data have revealed that FGF2 and 
FGFR1 are overexpressed in all primary GIST 
samples examined, suggesting that FGFR signal-
ing may limit imatinib’s efficacy [47]. Combination 
of imatinib with BGJ398, a potent and selective 
small-molecule inhibitor of FGFR 1–3 increased 
growth inhibition in imatinib-sensitive GIST 
cell lines (an effect observed in the presence or 
absence of added FGF2) and enhanced effi-
cacy in patient-derived GIST xenografts. In the 
absence of added FGF ligands, prolonged expo-
sure of KIT-mutant GIST cells to imatinib was 
associated with ERK signaling reactivation. The 
ERK reactivation was further accompanied by 
FGFR activation, while the ERK rebound was 
repressed by the FGFR inhibitor BGJ398. It seems 
imatinib treatment induces feedback activation of 
FGFR signaling that can attenuate the antitumor 
effects of imatinib [47]. These preclinical results 
provided a rationale for combining imatinib and 
FGFR inhibitors, such as BGJ398, in the first-line 
therapy of GIST. A current trial [22] evaluates the 
pan-FGFR inhibitor BGJ398 in combination with 
imatinib in untreated advanced GIST, with no 
published results yet available.

●● IGF1R inhibitors
In succinate dehydrogenase deficient KIT/
PDGFRA wild-type GISTs upregulation of 
HIF1-α may lead to increased growth signal-
ing through the IGF1R and the VEGFR [48,49]. 
IGF1R amplification may itself represent another 
mechanism of de novo or acquired imatinib 
resistance. A Phase II Study [23] evaluated the 
efficacy of IGF1R inhibitor linsitinib (OSI-
906) in pediatric and adult KIT/PDGFRA 
wild-type. All 20 eligible patients in the stage 
I of the study were adults and had advanced 
KIT/PDGFRA wild-type GIST. Treatment 
with linsitinib was well tolerated. While no 
objective responses were seen, qualitative par-
tial and stable 18F-fluorodeoxyglucose metabolic 
responses were seen in 6/17 (35%). CBR (CR, 
PR and SD ≥9 months) at 9 months was 45%. 
Kaplan–Meier estimates were 52% for PFS and 
80% for OS at 9 months.

●● HSP90 inhibitors
TKI-resistant KIT oncoproteins seem to require 
HSP90 chaperoning and thus are potently 
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inactivated by HSP90 inhibitors. However, 
there are constrains to their clinical application 
by significant toxicity resulting from concomi-
tant inactivation of various other HSP90 client 
proteins [28].

Onalespib (AT13387), a small molecule 
inhibitor of HSP90 showed promising clinical 
activity in GIST in a Phase I clinical trial, one 
patient had PR lasting for 10 months, and three 
had SD for up to 8 months [24]. The promising 
results of the Phase I trial prompted initiation 
of a Phase II trial in GIST [25], but the results 
are still pending. A recent publication [50] high-
lighted the role of CDC37 as a crucial HSP90-
cofactor in both imatinib-sensitive and imatinib-
resistant GIST. Targeting CDC37 is expected 
to be KIT/PDGFRA selective and represents 
a promising future strategy for inactivating 
KIT/PDGFRA oncoproteins in TKI-resistant 
GIST patients.

Immune checkpoint inhibitors
The immune system represents a swiftly emerg-
ing therapeutic target in all solid tumors. The 
PD-1/PD-L1 pathway is a key player in inhib-
iting the anticancer immune response. More 
recently anti-PD1 and anti-PDL1 drugs showed 
increasingly promising results in patients 
with solid tumors such as lung cancer and 
melanoma [51,52].

There are very little published data avail-
able on the expression of checkpoint proteins 
such as PD1/PDL1 in GIST. DNA microarray 
analysis for PDL1 expression in clinical sam-
ples of 139 operated imatinib-untreated local-
ized GISTs [53] showed a heterogeneous PDL1 
expression. PDL1 expression values varied over 
three decades on the logarithmic scale, provid-
ing the opportunity to search for histopathologi-
cal–clinical feature correlations. In multivariate 
analysis, the PD-L1-low group was associated 
with a higher metastasizing risk, independent 
from clinicopathologic risk stratification and 
KIT mutational status.

The SARC trial evaluated pembrolizumab, 
an antibody that targets the PD-1 receptor, in 
advanced sarcomas [54]. Unfortunately, while the 
trial entry criteria had not specifically excluded 
GIST patients none were enrolled to the study.

In a murine model of spontaneous GIST it 
was found that the immune system contrib-
utes substantially to the antitumor effects of 
imatinib [55]. Imatinib therapy activated the 
CD8+ T cells and induced Treg apoptosis 

within the murine tumor by reducing tumor cell 
expression of the immunosuppressive enzyme 
indoleamine 2,3-dioxygenase. Moreover, con-
current immunotherapy with CTLA-4 block-
age enhanced imatinib activity in murine 
GIST. In freshly obtained human GIST speci-
mens, the T-cell profile showed a correlation 
with imatinib sensitivity and indoleamine 
2,3-dioxygenase expression. T cells seem to 
play a crucial part in the a ntitumor effects of 
imatinib in GIST.

Concomitant immunotherapy given along-
side targeted agents could synergistically 
enhance antitumor T-cell activation, thus 
improving outcomes in the treatment of solid 
tumors. In a recent Phase I trial [26] combination 
therapy of imatinib and ipilimumab immuno-
therapy was explored in metastatic or unresect-
able solid tumors. Among the 26 patients three 
objective responses were seen, in one GIST (PR) 
and two melanoma patients (CR + PR), respec-
tively. Notably, both melanoma responders had 
KIT mutations, while the GIST responder was 
of KIT/PDGFRA wild-type. Responders in this 
trial suggested that this combination at maxi-
mum tolerated dose has antitumor activity in 
KIT/PDGFRA wild-type GIST and KIT-mutant 
melanoma and merits further investigation.

Early results of a still recruiting trial 
(NCT01643278) investigating the combination 
of the dasatinib and ipilimumab (anti-CTLA-4 
antibody) were promising with one out of the 
eight GIST patients treated showing a durable 
SD for 59+ weeks [12].

●● Cyclin-dependent kinase inhibitors
CDKN2A (coding for the p16INK4a tumor suppres-
sor protein) loss is a common genetic aberration 
in metastatic GIST [56]. The prognostic power of 
a 67 gene expression signature related to genome 
complexity (Complexity INdex in SARComas 
– CINSARC) was evaluated in GISTs. p16 
(CDKN2A) and retinoblastoma (RB1) gene 
deletions were likely causal events leading to 
increased CINSARC gene expression, chromo-
some rearrangement and ultimately development 
of metastasis [57]. Low p16INK4a expression was 
associated with response to the cyclin-dependent 
kinase inhibitor PD-0332991 in several in vitro 
tumor models [58]. Considering the preclinical 
data a Phase II trial of PD-0332991 (palbociclib) 
was initiated in advanced GIST patients refrac-
tory to imatinib and sunitinib with compara-
tive genomic hybridization confirmed alteration 
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of p16INK4a. This study is currently recruiting 
participants [27].

Conclusion
The efficacy of standard treatment options to 
control advanced GIST is inevitably limited 
by resistance. Ongoing preclinical and clini-
cal research is focusing on evaluating novel 
therapeutic approaches to overcome primary 
and secondary resistance to imatinib and the 
other two currently available licensed medi-
cations, sunitinib and regorafenib. Targeting 
deregulated downstream pathways shall pro-
vide further treatment options in the man-
agement of imatinib/sunitinib/regorafenib-
insensitive/resistant GISTs.

Future perspective
Repeat biopsy genotype analysis in TKI-resistant 
GIST is limited by intra- and interlesional muta-
tional heterogeneity of secondary mutations dur-
ing the course of treatment. To overcome these 
limitations blood-derived circulating tumor 
DNA can be used in the future as biomarkers 
for prediction of treatment response. Identifying 
resistance mutations in plasma DNA would allow 
early switch to alternative TKIs or dose escala-
tion of imatinib for optimal disease control [59]. 
Results of the Phase III GRID trial [60] were 

encouraging as 84% concordance was found 
between plasma and tissue for detection of pri-
mary KIT mutations. However, the assay was less 
sensitive for the detection of primary KIT exon 11 
mutations in plasma DNA. These discrepancies 
in part might be attributed to the extensive het-
erogeneity of primary KIT exon 11 mutations and 
the difficulty to develop specific assays for each 
possible mutation. Bearing in mind its’ poten-
tial limitations, further optimization of ‘liquid 
biopsy’ as a routine clinical diagnostic technique 
is certainly a promising path to follow.
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EXECUTivE SUMMARY
Novel treatment options

 ●  Ponatinib is a promising ATP-competitive KIT inhibitor under further clinical evaluation.

 ●  The multitargeted tyrosine kinase inhibitor (TKI) dasatinib and crenolanib have showed promising results in the 
treatment of PDGFRA D842V-mutant gastrointestinal stromal tumor (GIST).

 ●  Phase I trial results with the promising KIT D816V/PDGFRAD842V-mutant-specific inhibitor BLU-285 are eagerly awaited.

 ●  The BRAF inhibitor dabrafenib showed therapeutic efficacy in BRAF-mutant GIST, awaiting further clinical evaluation.

 ●  The ETS family transcription factor ETV1 is universally highly expressed in GIST. Dual lineage targeting of KIT by 
imatinib and ETV1 by the MEK inhibitor binimetinib is currently evaluated in a Phase Ib/II clinical trial.

 ●  Acquired expression of activated forms of the MET oncogene was observed in human GIST specimens that acquired 
imatinib resistance. Cabozantinib, a dual MET and KIT small-molecule inhibitor has already shown some efficacy in a 
Phase I clinical trial, awaiting further evaluation.

 ●  FGF2 and FGFR1 are highly expressed in all primary GISTs. The pan-FGFR inhibitor BGJ398 in combination with imatinib 
is currently evaluated in untreated advanced GIST.

 ●  Targeting upregulated IGF1R expression with linsitinib has already shown promising clinical activity.

 ●  The immune system represents an emerging therapeutic target in all solid tumors, including GIST. The anti-CTLA-4 
antibody ipilimumab is currently assessed in combination with TKIs for the treatment of advanced GISTs.

 ●  The efficacy of the cyclin-dependent kinase inhibitor palbociclib is assessed in advanced GIST patients refractory to 
imatinib and sunitinib.
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