The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/175187

Please be advised that this information was generated on 2018-02-17 and may be subject to change.
Importance of response time in assessing the cerebral dynamics of spoken word production: comment on Munding et al. (2016)

Ardi Roelofs and Natalia Shitova
Centre for Cognition, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands

ARTICLE HISTORY
Received 12 October 2016; Accepted 5 December 2016

Introduction
The cerebral dynamics of spoken word production is a lively debated issue. Recently, Munding, Dubarry, and Alario (2016a) wrote an opinion article on this issue, which was published together with several commentaries by colleague experts, and a response to the commentaries by Munding, Dubarry, and Alario (2016b). Here, we address a critical issue that has been only briefly mentioned in some of the commentaries (i.e. Laganaro, 2016; Piai, 2016), namely the importance of taking response time (RT) into account when assessing the cerebral dynamics of word production.

Munding et al. (2016a) performed a meta-analysis of magnetoencephalography (MEG) studies to evaluate serial, cascaded, and parallel models of spoken word production. In serial models, a particular stage of word planning begins only if the previous stage has been completed; in cascaded models, stages are sequential, but a particular stage may begin before the previous stage is done; and in parallel models, stages are not sequential but concurrent. Based on their analysis, Munding et al. state that “the ensemble of activity is not indicative of serial processing stages but rather suggestive of concurrent or a strong temporally overlapping cascade of processes” (p. 449). Moreover, the meta-analysis was used to evaluate stage duration estimates by Indefrey and Levelt (2004; Indefrey, 2011). According to Munding et al., articulatory activity occurred before 400 ms, where Indefrey (2011) proposes an onset of 600 ms post-stimulus. Likewise, phonological code retrieval is frequently reported 75 ms before predicted, and onsets for lemma selection are spread to both sides of the predicted onset of 200 ms. (p. 455)

In estimating the stage onsets for picture naming, Indefrey and Levelt (2004) assumed a mean naming latency of 600 ms, but latencies may, of course, be different. In particular, mean latencies varied between about 500 and 1000 ms across studies in the meta-analysis of Munding et al. (2016a). Clearly, if the mean RT is 1000 ms, speakers do not complete all planning stages within 600 ms and then wait for 400 ms to initiate articulation. Thus, some kind of rescaling is needed for the stage durations if the mean RT is shorter or longer than 600 ms. Consequently, depending on the RT in a study, stage onsets may occur earlier or later than estimated by Indefrey and Levelt. We demonstrate that if RTs, and consequently stage durations, differ among studies, collapsing time windows of MEG activity across studies yields overlap of stage activity even under serial models.

Rescaling of stage durations
Assume that word planning stages are serial. The estimates of the stage durations by Indefrey and Levelt (2004; Indefrey, 2011) held for a mean naming RT of 600 ms. Mean RTs ranged from about 500 to 1000 ms across studies in the meta-analysis of Munding et al. (2016a). Thus, rescaling is needed for the stage durations if the mean RT is shorter or longer than 600 ms, as Laganaro (2016) and Piai (2016) pointed out in their commentary to Munding et al. In their response, Munding et al. (2016b) indicated to be sceptic about rescaling because “the scaling function is unknown” and “fractionating speech response times into meaningful durations has proven difficult even based on recordable responses measured on single trials” (p. 480). However, although it seems difficult to rescale the empirically observed MEG responses, rescaling may be applied in deriving predictions from models.

In discussing the issue of rescaling, Indefrey (2011) argued that there are two straightforward options, namely proportional or informed rescaling. In
proportional rescaling (e.g. Schuhmann, Schiller, Goebel, & Sack, 2009), each duration estimate of Indefrey and Levet (2004) is increased or decreased to the extent that the observed mean RT was longer or shorter than 600 ms. In informed rescaling (cf. Laganaro, Valente, & Perret, 2012), only some duration estimates are rescaled based on knowledge about the factors that caused the mean RT to be longer or shorter than 600 ms. Based on event-related brain potential evidence, Laganaro et al. argued that individual differences in naming RT are for the most part due to differences in lemma retrieval duration (i.e. lexical selection). These individual differences concerned the RTs for a single set of pictures (ranging from 714 ms for fast speakers to 926 ms for slow speakers), whereas participants as well as materials differed among the MEG studies in the meta-analysis of Munding et al. (2016a) with RTs ranging between about 500 and 1000 ms. Thus, it seems unlikely that the difference in RTs among MEG studies is mostly due to individual differences in lemma retrieval duration. Still, it would be important to examine what the predictions of serial models are when the duration of only a single stage (i.e. lemma retrieval) is rescaled.

In examining the consequences of rescaling, we restricted ourselves to the picture naming studies with RTs in the meta-analysis of Munding et al. (2016a), while excluding studies with delayed naming and studies of word reading and phrase production. As pointed out by Laganaro (2016), the estimates of Indefrey (2011) for picture naming cannot straightforwardly be applied to these other tasks. We ended up with seven MEG studies of picture naming with mean RTs ranging from 537 to 998 ms. For each of these studies, we rescaled the stage durations based on the mean RT using both proportional and informed procedures. We assumed a model with strictly discrete stages, following Indefrey (2011): perception and conceptualisation, lemma retrieval, phonological code retrieval, syllabification, and phonetic encoding and articulation. For a mean RT of 600 ms, the estimates of the durations of these stages are 200 ms (perception and conceptualisation), 75 ms (lemma retrieval), 80 ms (phonological code retrieval), 100 ms (syllabification), and 145 ms (phonetic encoding and articulation). The following example numerically illustrates the proportional and informed rescaling procedures. For an empirically observed mean RT of 879 ms and proportional rescaling, the duration of the perception and conceptualisation stage would become \(\frac{879}{600} \times 200 \text{ ms} = 293 \text{ ms} \), the duration of lemma retrieval would become \(\frac{879}{600} \times 75 \text{ ms} = 110 \text{ ms} \), and so forth for the other stages. With informed rescaling, the difference between the observed mean RT and 600 ms, here \(879 - 600 = 279 \text{ ms} \), would be added to the lemma retrieval duration of 75 ms, thus this duration would become \(75 + 279 = 354 \text{ ms} \).

Figure 1 displays the predicted stage activities when the stage durations are rescaled for each study based on the empirically observed mean RT.

The figure shows that both under proportional rescaling (panel A) and informed rescaling (panel B), there is overlap of different stages across the seven studies even though the succession of stages is strictly serial within each study. The bottom of the figure shows the corresponding earliest onset and latest offset (i.e. range) of the stages across studies, together with the median offsets. The saturation of the colours indicates the degree of stage overlap across studies, with higher saturation denoting greater overlap (cf. Munding et al., 2016a). Clearly, there is considerable overlap among different stages. Also, there is a successive progression of onsets and offsets. This fits well with the observation of Munding et al. (2016a) that “there is a cascading sequence of overlapping activity moving through the brain” (p. 454). Our analysis shows that serial models are compatible with the MEG data. In the remainder, we make clear that prominent computationally implemented models of word production agree with the outcomes of the meta-analysis.

Relating the MEG findings to computational models

Although Munding et al. (2016a) evaluated serial, cascaded, and parallel models, widely discussed implemented models of spoken word production in the literature, such as the model of Dell (1986), Dell, Schwartz, Martin, Saffran, and Gagnon (1997), Dell, Schwartz, Nozari, Faseyitan, and Coslett (2013), and WEAVER++ (Levet, Roelofs, & Meyer, 1999; Roelofs, 2008, 2014), have both serial and cascaded aspects. These models make a distinction between spreading activation in a lexical network and selection of nodes from the network. Whereas activation cascades through the network, nodes at different processing levels are selected sequentially.

For example, Dell (1986) and Dell et al. (1997, 2013) assume a network of conceptual feature, word, and phoneme nodes. Word planning starts by boosting the activation of the relevant conceptual features, activation cascades from conceptual features via word nodes to phoneme nodes, and selection of the highest activated word node occurs after eight time steps. Then, the activation of the selected word is boosted, and the highest activated onset, nucleus, and coda phoneme nodes are selected after eight time steps. Thus, although activation cascades through the network, word and phoneme selection processes are serial in that the phoneme
The word selection process lasts eight time steps, followed by the phoneme selection process lasting another eight time steps. During the word selection process (i.e. the first eight time steps), phonemes are activated in the network. However, word and phoneme selection processes do not overlap in time (i.e. they occur in the first and second eight time steps). The WEAVER++ model assumes concept, lemma, morpheme, phoneme, and syllable program nodes. Activation spreads from concept to syllable program nodes in a cascading fashion (Roelofs, 2008), but nodes at different processing levels are selected sequentially, as in the model of Dell and colleagues. Thus, extant computational models of word production have both cascaded and serial aspects, in line with the observation of a “cascading sequence of overlapping activity moving through the brain” (p. 454) by Munding et al. (2016a).

However, one of the studies in the meta-analysis by Munding et al. (2016a) reported deviant findings. In the study of Miozzo, Pulvermüller, and Hauk (2015), conceptual and phonological manipulations influenced the MEG response at peak latencies of 150 and 141 ms, respectively. The mean picture naming RT was 722 ms. It is unlikely that speakers completed phonological code retrieval within 141 ms, and then took the remaining 581 ms to complete syllabification, phonetic encoding, and articulation (which should take some 150–200 ms, according to Indefrey, 2011; Indefrey & Levelt, 2004). In terms of the computational models, perhaps the early MEG response reflected phonological code activation rather than phonological code selection. Alternatively, perhaps the phonological manipulation was confounded with an uncontrolled but correlated conceptual factor, such as conceptual familiarity (e.g. Shao, Roelofs, & Meyer, 2014). Based on their findings, Miozzo et al. argued for a parallel model (see also Strijkers & Costa, 2016a, 2016b), but see Indefrey (2016) for counterarguments.

Conclusion

A meta-analysis of MEG studies by Munding et al. (2016a) provided evidence for sequential but overlapping stage
activity. We showed that if RTs differ among studies, collapsing time windows of MEG activity across studies yields such overlap of stage activity even under serial models. Moreover, sequential but overlapping stage activity is also expected under prominent computationally implemented models of spoken word production, which assume cascading of activation and serial selection. We conclude that serial and serial/cascaded models are compatible with the outcomes of the MEG meta-analysis.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

