A TWO-WEEK FEEDING STUDY OF BHA: EFFECT ON CELL KINETIC PARAMETERS IN THE RAT GASTRO-INTESTINAL TRACT.

H. Verhagen1, B. Schutte2, M.J.M. Reynders2
G. M. Blijham1, F. ten Hoopen1 and J.C.S. Kleiweg1

The synthetic food antioxidant 2(3)-tert-buty1-4-hydroxyanisole (BHA) is carcinogenic in the forestomach of rats, hamsters and probably mice. Sequential changes are dose-dependent and involve lesions, hyperplasia, papillomas and carcinomas, the development of which is accompanied by an increase in forestomach labelling index (L.I.). In the present study, subcellular markers of cell kinetics were assessed in the rat gastro-intestinal tract after short-term consumption of BHA.

Groups of five male Wistar rats (306±17g) were fed a diet containing 2% BHA or basal diet (control) group for two weeks. Subsequently, rats were injected i.p. with 25 mg/kg 5-bromodeoxyuridine (BrdU), a thymidine analogue, and killed after four hours. The gastro-intestinal tract was removed, opened longitudinally, cleaned and fixed in 7% ethanol. After pepsin digestion of random samples of the fixed tissues, labelled cell nuclei were visualized by means of a monoclonal anti-BrdU antibody technique. Cell kinetic parameters were determined by bivariate BrdU/DNA analysis using flow cytometry.

Forestomach L.I. and potential doubling time (Tpot) in random samples were 10.0±3.4% and 2.7±0.8 days for the control group and 20.7±3.9% and 1.2±0.2 days for the group fed 2% BHA respectively (mean ± SD; p<0.001). Mean transit time through the S-phase was not altered. Glandular stomach, ileum, caecum and colon were not affected. Thus, we confirm proliferative effects of BHA on rat forestomach as indicated by an increase in L.I. and additionally report a decrease in Tpot following short-term dietary BHA administration.

Departts. of 1) Human Biology and 2) Internal Medicine, State University of Limburg, P.O.Box 616, 6200 MD Maastricht, the Netherlands

NANOMOLAR CONCENTRATIONS OF CA2+ INHIBIT Ca2+ TRANSPORT SYSTEMS IN PLASMA MEMBRANE AND INTRACELLULAR Ca2+ STORES.
P.M. Verbost, R.A.C. Lock, C.M. van Os and S.E. Wendelaar Bonga.

Exposure of fish to cadmium (Cd) in the water causes a spectrum of toxic effects that is well documented. The mechanisms of Cd-toxicity, however, are largely unknown.

A transient hypocalcemia is observed in fish the first days after Cd-exposure, which is indicative of a disturbed Ca2+-homeostasis. For freshwater trout it was demonstrated (1) that branchial Ca2+-influx (which is a transcellular event depending on basolateral plasma membrane Ca2+-ATPase activity) is extremely sensitive to inhibition by Cd2+.

Experiments with isolated basolateral membrane (BLM) vesicles provided direct evidence that the Ca2+-pump in the BLM of gills is strongly inhibited by Cd2+ (10μg = 3 nM at 0.29 Ca2+). Not only in fish gills (trout, tilapia) but also in intestine and kidney from landvertebrates (rat, chicken) Cd was reported to inhibit transcellarial Ca2+ transport.

Proceeding from the extreme sensitivity of the branchial Ca2+-pump we predicted that a high affinity of the Ca2+-pump for Cd2+ would be a general phenomenon and that the inhibition of the Ca2+-pump may be the key event in Cd-toxicity. In this study we tested the effect of Cd2+ on active Ca2+-transport in BLM's isolated from rat duodenum and rat kidney cortex. Using permeabilized ducdinal cells we were able to study the effect of Cd2+ on ATP-dependent Ca2+-transport in intracellular stores. A kinetic analysis of the Ca2+-inhibition was undertaken to evaluate the mechanism of inhibition on the molecular level.

2. Dept. of Zoology, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands

MUTAGENIC ACTION OF SOME ISOCYANATES AND THEIR AMINE ANALOGUES TO SALMONELLA TYPHIMURIUM
A.M. Wetzer, H. Weetink, E.C. Rietveld and F. Seutter-Berlage

Organic isocyanates are highly reactive chemicals characterised by the general formula R(NC0)x. The diisocyanates are widely used for the industrial production of polyurethanes.

Exposure to isocyanates is known to cause pulmonary and skin irritation as well as immunologic sensitization of the respiratory tract. In contrast to these well studied toxic effects, little is known about the mutagenic and possible carcinogenic effects of the isocyanates. We present a study of the mutagenic action to Salmonella typhimurium of three isocyanates extensively used in polyurethane industry: toluene diisocyanate (TDI), 4,4'-di-phenylmethane diisocyanate (MDI) and hexamethylene diisocyanate (HDI).

In addition, the closely related tolylsycyanate was also studied. Isocyanates easily form amines in a reaction with water. Therefore the amines analogues (TDA, MDA, HDA and toluidine) were incorporated in the Ames-tests. The mutagenicity testing was carried out with the plate incorporation assay as described by Ames et al. (1). The tests were performed with S. typh. strains TA 100, TA 1535, TA 98 and TA 1538 both with and without metabolic activation (S9-mix containing rat liver homogenate (9000 g)).

The isocyanates, particularly HDI, showed a large toxic effect on the Salmonella bacteria.

Mutagenicity was observed with TDI, TDA, MDI and MDA in TA 100 and TA 98 with S9-mix. In both cases the amine was more mutagenic than the analogous isocyanate. This finding suggest that the mutagenic effect of isocyanates can be attributed to reactive metabolites of the amines formed during hydrolysis of isocyanates.

1. B.N. Ames, J. McCann and E. Yamasaki, Mutation Research, 31 (1975) 347

Department of Pharmacology, University of Nijmegen, Geert Grooteplein N21, 6525 EZ Nijmegen, The Netherlands.