Directional Limits on Persistent Gravitational Waves from Advanced LIGO’s First Observing Run

B. P. Abbott et al.*
(LIGO Scientific Collaboration and Virgo Collaboration)
(Received 7 December 2016; published 24 March 2017)

We employ gravitational-wave radiometry to map the stochastic gravitational wave background expected from a variety of contributing mechanisms and test the assumption of isotropy using data from the Advanced Laser Interferometer Gravitational Wave Observatory’s (aLIGO) first observing run. We also search for persistent gravitational waves from point sources with only minimal assumptions over the 20–1726 Hz frequency band. Finding no evidence of gravitational waves from either point sources or a stochastic background, we set limits at 90% confidence. For broadband point sources, we report upper limits on the gravitational wave energy flux per unit frequency in the range $F_{\alpha,0}(f) < (0.1–56) \times 10^{-8}$ erg cm$^{-2}$ s$^{-1}$ Hz$^{-1}$($f/25$ Hz)$^{-\alpha}$ depending on the sky location Θ and the spectral power index α. For extended sources, we report upper limits on the fractional gravitational wave energy density required to close the Universe of $\Omega(f, \Theta) < (0.39–7.6) \times 10^{-8}$ sr$^{-1}$($f/25$ Hz)$^{\alpha}$ depending on Θ and α. Directed searches for narrowband gravitational waves from astrophysically interesting objects (Scorpius X-1, Supernova 1987 A, and the Galactic Center) yield median frequency-dependent limits on strain amplitude of $h_0 < (6.7, 5.5, \text{ and } 7.0) \times 10^{-25}$, respectively, at the most sensitive detector frequencies between 130–175 Hz. This represents a mean improvement of a factor of 2 across the band compared to previous searches of this kind for these sky locations, considering the different quantities of strain constrained in each case.

DOI: 10.1103/PhysRevLett.118.121102

Introduction.—A stochastic gravitational-wave background (SGWB) is expected from a variety of mechanisms [1–5]. Given the recent observations of binary black hole mergers GW150914 and GW151226 [6,7], we expect the SGWB to be nearly isotropic [8] and dominated [9] by compact binary coalescences [10–12]. The Laser Interferometer Gravitational Wave Observatory (LIGO) and Virgo Collaborations have pursued the search for an isotropic stochastic background from LIGO’s first observational run [13]. Here, we adopt an eyes-wide-open philosophy and relax the assumption of isotropy in order to allow for the greater range of possible signals. We search for an anisotropic background, which could indicate a richer, more interesting cosmology than current models. We present the results of a generalized search for a stochastic signal with an arbitrary angular distribution mapped over all directions in the sky.

Our search has three components. First, we utilize a broadband radiometer analysis [14,15], optimized for detecting a small number of resolvable point sources. This method is not applicable to extended sources. Second, we employ a spherical harmonic decomposition [16,17], which can be employed for point sources but is better suited to extended sources. Last, we carry out a narrowband radiometer search directed at the sky positions of three astrophysically interesting objects: Scorpius X-1 (Sco X-1)[18,19], Supernova 1987 A (SN 1987A)[20,21], and the Galactic Center [22].

These three search methods are capable of detecting a wide range of possible signals with only minimal assumptions about the signal morphology. We find no evidence of persistent gravitational waves, and set limits on broadband emission of gravitational waves as a function of sky position. We also set narrowband limits as a function of frequency for the three selected sky positions.

Data.—We analyze data from Advanced LIGO’s 4 km detectors in Hanford, Washington (H1) and Livingston, Louisiana (L1) during the first observing run (O1), from 15:00 UTC, Sep 18, 2015–16:00 UTC, Jan 12, 2016. During O1, the detectors reached an instantaneous strain sensitivity of 7×10^{-24} Hz$^{-1/2}$ in the most sensitive region from 100–300 Hz, and collected 49.67 days of coincident H1L1 data. The O1 observing run saw the first direct detection of gravitational waves and the first direct observation of merging black holes [6,7].

For our analysis, the time-series data are downsampled to 4096 Hz from 16 kHz, and divided into 192 s, 50% overlapping, Hann-windowed segments, which are high-pass filtered with a 16th order Butterworth digital filter with knee frequency of 11 Hz (following [13,23]). We apply data quality cuts in the time domain in order to remove segments associated with instrumental artifacts and
hardware injections used for signal validation [24,25]. We also exclude segments containing known gravitational-wave signals. Finally, we apply a standard nonstationarity cut (see, e.g., [26]), to eliminate segments that do not behave as Gaussian noise. These cuts remove 35% of the data. With all vetoes applied, the total live time for 192 s segments is 29.85 days.

The data segments are Fourier transformed and coarse-grained to produce power spectra with a resolution of 1/32 Hz. This is a finer frequency resolution than the 1/4 Hz used in previous LIGO-Virgo stochastic searches [15,17] in order to remove many finely spaced instrumental lines occurring at low frequencies. Frequency bins associated with known instrumental artifacts including suspension violin modes [27], calibration lines, electronic lines, correlated combs, and signal injections of persistent, monochromatic, gravitational waves are not included in the analysis. These frequency domain cuts remove 21% of the observing band. For a detailed description of data quality studies performed for this analysis, see the Supplemental Material [28] of [13].

The broadband searches include frequencies from 20–500 Hz which more than cover the regions of 99% sensitivity for each of the spectral bands (see Table 1 of [13]). The narrowband analysis covers the full 20–1726 Hz band.

Method.—The main goal of a stochastic search is to estimate the fractional contribution of the energy density in gravitational waves Ω_{GW} to the total energy density needed to close the Universe ρ_c. This is defined by

$$\Omega_{GW}(f) = \frac{f}{\rho_c} \frac{d\rho_{GW}}{df},$$

(1)

where f is frequency and $d\rho_{GW}$ represents the energy density between f and $f + df$ [29]. For a stationary and unpolarized signal, ρ_{GW} can be factored into an angular power $P(\Theta)$ and a spectral shape $H(f)$ [30], such that

$$\Omega_{GW}(f) = \frac{2\pi^2}{3H_0^2} f^3 H(f) \int d\Theta P(\Theta),$$

(2)

with Hubble constant $H_0 = 68$ km s$^{-1}$ Mpc$^{-1}$ from [31].

The angular power $P(\Theta)$ represents the gravitational-wave power at each point in the sky. To express this in terms of the fractional energy density, we define the energy density spectrum as a function of sky position

$$\Omega(f, \Theta) = \frac{2\pi^2}{3H_0^2} f^3 H(f) P(\Theta).$$

(3)

We define a similar quantity for the energy flux, where

$$F(f, \Theta) = \frac{c^3 \pi}{4G} f^2 H(f) P(\Theta).$$

(4)

has units of erg s$^{-1}$ Hz$^{-1}$ sr$^{-1}$ [15,16], c is the speed of light and G is Newton's gravitational constant.

Point sources versus extended sources.—We employ two different methods to estimate $P(\Theta)$ based on the cross-correlation of data streams from a pair of detectors [17,29]. The radiometer method [14,15] assumes that the cross-correlation signal is dominated by a small number of resolvable point sources. The point source power is given by P_{Θ_0} and the angular power spectrum is then

$$P(\Theta) \equiv P_{\Theta_0} \delta^2(\Theta, \Theta_0).$$

(5)

Although the radiometer method provides the optimal method for detecting resolvable point sources, it is not well suited for describing diffuse or extended sources, which may have an arbitrary angular distribution. Hence, we also implement a complementary spherical harmonic decomposition (SHD) algorithm, in which the sky map is decomposed into components $Y_{lm}(\Theta)$ with coefficients P_{lm} [16]

$$P(\Theta) \equiv \sum_{lm} P_{lm} Y_{lm}(\Theta).$$

(6)

Here, the sum over l runs from 0 to l_{max} and $-l \leq m \leq l$.

We discuss the choice of l_{max} below. While the SHD algorithm has comparably worse sensitivity to point sources than the radiometer algorithm, it accounts for the detector response, producing more accurate sky maps.

Spectral models.—In both the radiometer algorithm and the spherical harmonic decomposition algorithm, we must choose a spectral shape $H(f)$. We model the spectral dependence of $\Omega_{GW}(f)$ as a power law

$$H(f) = \left(\frac{f}{f_{ref}} \right)^{a-3},$$

(7)

where f_{ref} is an arbitrary reference frequency and a is the spectral index (see, also, [13]). The spectral model will also affect the angular power spectrum, so $P(\Theta)$ is implicitly a function of a.

We can rewrite the energy density map $\Omega(f, \Theta)$ to emphasize the spectral properties, such that

$$\Omega(f, \Theta) = \Omega_s(\Theta) \left(\frac{f}{f_{ref}} \right)^a,$$

(8)

where

$$\Omega_s(\Theta) = \frac{2\pi^2}{3H_0^2} f_{ref}^3 P(\Theta)$$

(9)

has units of fractional energy density per steradian Ω_{GW} sr$^{-1}$. The spherical harmonic analysis presents sky maps of $\Omega_s(\Theta)$. Note that, when $P(\Theta) = P_{\Theta_0}$ (the monopole moment), we recover a measurement for the energy density of the isotropic gravitational-wave background.
the expected shape from a population of compact binary

Here, \((\text{SNR}) \) grows with the square root of integration time \([29]\).

detector noise, the cross-correlation signal-to-noise ratio
tors. Although the signal is expected to be buried in the
induce low-level correlation between the two LIGO detec-

The cross-correlation between two detectors, with (one-

spectral models are summarized in Table I.

\(\gamma^\prime(f; t) \) is a generalization of the overlap reduction function, which is a function of the separation and relative orientation between the detectors, and characterizes the
frequency response of the detector pair [33]; see [16] for an
exact definition.

We can think of \(X_\nu \) as a sky map representation of the
cross-correlation measurement before deconvolving the
detector response. The associated uncertainty is encoded in the Fisher matrix

\[
\Gamma_{\mu\nu} = \sum_{f,t} \gamma^\prime(f; t) \frac{H^2(f)}{P_1(f; t)P_2(f; t)} \gamma^\prime(f; t),
\]

where the asterisk denotes complex conjugation.

Once \(X_\nu \) and \(\Gamma_{\mu\nu} \) are calculated, we have the ingredients to calculate both the radiometer map and the SHD map. However, the inversion of \(\Gamma_{\mu\nu} \) is required to calculate the maximum likelihood estimators of GW power \(\hat{\Gamma}_{\mu\nu} = \Gamma^{-1}_{\mu\nu}X_\nu \)[16]. For the radiometer, the correlations between neighboring pixels can be ignored. The radiometer map is given by

\[
\hat{\Gamma}_{\theta\theta} = (\Gamma_{\theta\theta})^{-1}X_\theta,
\]

where the standard deviation \(\sigma^\text{rad}_{\theta\theta} \) is the uncertainty associated with the point source amplitude estimator \(\hat{\Gamma}_{\theta\theta} \), and \(\Gamma_{\theta\theta} \) is a diagonal entry of the Fisher matrix for a pointlike signal. For the SHD analysis, the full Fisher matrix \(\Gamma_{\mu\nu} \) must be taken into account, which includes singular eigenvalues associated with modes to which the detector pair is insensitive. The inversion of \(\Gamma_{\mu\nu} \) is simplified by a singular value decomposition regularization. In this decomposition, modes associated with the smallest eigenvalues contribute the least sensitivity to the detector network. Removing a fraction of the lowest eigenmodes “regularizes” \(\Gamma_{\mu\nu} \) without significantly affecting the

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(\Omega_{\text{GW}})</th>
<th>(H(f))</th>
<th>(f_a (\text{Hz}))</th>
<th>(\theta (\text{deg}))</th>
<th>(l_{\text{max}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>constant</td>
<td>(\propto f^{-3})</td>
<td>52.50</td>
<td>55</td>
<td>3</td>
</tr>
<tr>
<td>2/3</td>
<td>(\propto f^{2/3})</td>
<td>(\propto f^{-7/3})</td>
<td>65.75</td>
<td>44</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>(\propto f^3)</td>
<td>constant</td>
<td>256.50</td>
<td>11</td>
<td>16</td>
</tr>
</tbody>
</table>

\[
\text{TABLE I. Values of the power-law index } \alpha \text{ investigated in this analysis, the shape of the energy density and strain power spectrum.}
\]

\[
\text{The characteristic frequency } f_a, \text{ angular resolution } \theta \text{ [Eq. (17)], and corresponding harmonic order } l_{\text{max}} \text{ [Eq. (18)] for each } \alpha \text{ are also shown. The right hand section of the table shows the maximum SNR, associated significance } (p \text{ value}) \text{ and best upper limit values from the broadband radiometer (BBR) and the SHD. The BBR sets upper limits on energy flux } [\text{erg cm}^{-2} \text{s}^{-1} \text{Hz}^{-1} (f/25 \text{ Hz})^{\alpha-1}] \text{ while the SHD sets upper limits on the normalized energy density } [\text{sr}^{-1} (f/25 \text{ Hz})^{\alpha}] \text{ of the SGWB.}
\]

Similarly, the gravitational-wave energy flux can be expressed as

\[
\mathcal{F}(f, \Theta) = \mathcal{F}_\alpha(\Theta) \left(\frac{f}{f_{\text{ref}}} \right)^{\alpha-1},
\]

where

\[
\mathcal{F}_\alpha(\Theta) = \frac{c^3 \pi}{4G} f_{\text{ref}}^2 \mathcal{P}(\Theta).
\]

In the radiometer case, we calculate the flux in each direction

\[
F_{\alpha\theta_0} = \frac{c^3 \pi}{4G} f_{\text{ref}}^2 \mathcal{P}(\theta_0),
\]

which is obtained by integrating Eq. (11) over the sphere for the point-source signal model described in Eq. (5). This quantity has units of \(\text{erg cm}^{-2} \text{s}^{-1} \text{Hz}^{-1} \). Following [13,32], we choose \(f_{\text{ref}} = 25 \text{ Hz} \), corresponding to the most sensitive frequency in the spectral band for a stochastic search with the Advanced LIGO network at design sensitivity.

We consider three spectral indices: \(\alpha = 0 \), corresponding to a flat energy density spectrum (expected from models of a cosmological background), \(\alpha = 2/3 \), corresponding to the expected shape from a population of compact binary coalescences, and \(\alpha = 3 \), corresponding to a flat strain power spectral density spectrum [17,32]. The different spectral models are summarized in Table I.

Cross-correlation.—A stochastic background would induce low-level correlation between the two LIGO detectors. Although the signal is expected to be buried in the detector noise, the cross-correlation signal-to-noise ratio (SNR) grows with the square root of integration time [29].

The cross-correlation between two detectors, with (onesided strain) power spectral density \(P_i(f; t) \) for detector \(i \), is encoded in what is known as “the dirty map” [16]

\[
X_\nu = \sum_{f,t} \gamma^\prime^\ast(f; t) \frac{H(f)}{P_1(f; t)P_2(f; t)} C(f, t).
\]

Here, \(\nu \) is an index, which can refer to either individual points on the sky (the pixel basis) or different \(l m \) indices (the spherical harmonic basis). The variable \(C(f; t) \) is the cross-power spectral density measured between the two LIGO detectors at some segment time \(t \). The sum runs over all segment times and all frequency bins. The variable \(\gamma^\prime(f; t) \) is a generalization of the overlap reduction function, which is a function of the separation and relative orientation between the detectors, and characterizes the frequency response of the detector pair [33]; see [16] for an exact definition.

We can think of \(X_\nu \) as a sky map representation of the raw cross-correlation measurement before deconvolving the detector response. The associated uncertainty is encoded in the Fisher matrix

\[
\Gamma_{\mu\nu} = \sum_{f,t} \gamma^\prime(f; t) \frac{H^2(f)}{P_1(f; t)P_2(f; t)} \gamma^\prime(f; t),
\]

where the asterisk denotes complex conjugation.

Once \(X_\nu \) and \(\Gamma_{\mu\nu} \) are calculated, we have the ingredients to calculate both the radiometer map and the SHD map. However, the inversion of \(\Gamma_{\mu\nu} \) is required to calculate the maximum likelihood estimators of GW power \(\hat{\Gamma}_{\mu\nu} = \Gamma^{-1}_{\mu\nu}X_\nu \)[16]. For the radiometer, the correlations between neighboring pixels can be ignored. The radiometer map is given by

\[
\hat{\Gamma}_{\theta\theta} = (\Gamma_{\theta\theta})^{-1}X_\theta,
\]

where the standard deviation \(\sigma^\text{rad}_{\theta\theta} \) is the uncertainty associated with the point source amplitude estimator \(\hat{\Gamma}_{\theta\theta} \), and \(\Gamma_{\theta\theta} \) is a diagonal entry of the Fisher matrix for a pointlike signal. For the SHD analysis, the full Fisher matrix \(\Gamma_{\mu\nu} \) must be taken into account, which includes singular eigenvalues associated with modes to which the detector pair is insensitive. The inversion of \(\Gamma_{\mu\nu} \) is simplified by a singular value decomposition regularization. In this decomposition, modes associated with the smallest eigenvalues contribute the least sensitivity to the detector network. Removing a fraction of the lowest eigenmodes “regularizes” \(\Gamma_{\mu\nu} \) without significantly affecting the

\[
\text{All-sky (broadband) Results}
\]

<table>
<thead>
<tr>
<th></th>
<th>BBR</th>
<th>SHD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max SNR (% p value)</td>
<td>BBR (x10^{-8})</td>
<td>SHD (x10^{-8})</td>
</tr>
<tr>
<td>3.32 (7)</td>
<td>10–56</td>
<td>2.5–7.6</td>
</tr>
<tr>
<td>3.31 (12)</td>
<td>5.1–33</td>
<td>2.0–5.9</td>
</tr>
<tr>
<td>3.43 (47)</td>
<td>0.1–0.9</td>
<td>0.4–2.8</td>
</tr>
</tbody>
</table>
sensitivity (see [16]). The estimator for the SHD and corresponding standard deviation are given by

\[
\hat{P}_{lm} = \sum_{l'm'} (\Gamma^{-1})_{lm,l'm'} X_{l'm'},
\]

\[
\sigma^{\text{SHD}}_{lm} = \left[(\Gamma^{-1})_{lm,lm} \right]^{1/2},
\]

(16)

where \(\Gamma\) is the regularized Fisher matrix. We remove 1/3 of the lowest eigenvalues following [16,17].

Angular scale.—In order to carry out the calculation in Eq. (16), we must determine a suitable angular scale, which will depend on the angular resolution of the detector network and vary with spectral index \(\alpha\). The diffraction-limited spot size on the sky \(\theta\) (in radians) is given by

\[
\theta = \frac{c}{2df} \approx \frac{50 \text{ Hz}}{f_{\alpha}},
\]

(17)

where \(d = 3000 \text{ km}\) is the separation of the LIGO detectors. The frequency \(f_{\alpha}\) corresponds to the most sensitive frequency in the detector band for a power law with spectral index \(\alpha\) given the detector noise power spectra [15]. In order to determine \(f_{\alpha}\), we find the frequency at which a power law with index \(\alpha\) is tangent to the single-detector “power-law integrated curve” [34]. The angular resolution scale is set by the maximum spherical harmonic order \(l_{\text{max}}\), which we can express as a function of \(\alpha\) since

\[
\theta = \frac{\pi}{\theta} \approx \frac{\pi f_{\alpha}}{50 \text{ Hz}},
\]

(18)

where \(f_{\alpha}\), \(\theta\), and \(l_{\text{max}}\) for three different values of \(\alpha\) are shown in Table I. As the spectral index increases, so does \(f_{\alpha}\), decreasing the angular resolution limit, thus, increasing \(l_{\text{max}}\).

Angular power spectra.—For the SHD map, we calculate the angular power spectra \(C_l\), which describe the angular scale of structure in the clean map, using an unbiased estimator [16,17]

\[
\tilde{C}_l = \frac{1}{2l+1} \sum_m [\hat{P}_{lm}]^2 - (\Gamma^{-1})_{lm,lm}.
\]

(19)

Narrowband radiometer.—The radiometer algorithm can be applied to the detection of persistent gravitational waves from narrowband point sources associated with a given sky position [15,17]. We “point” the radiometer in the direction of three interesting sky locations: Sco X-1, the Galactic Center, and the remnant of supernova SN 1987A.

Scorpius X-1 is a low-mass x-ray binary believed to host a neutron star that is potentially spun up through accretion, in which gravitational-wave emission may provide a balancing spin-down torque [18,19,35,36]. The frequency of the gravitational-wave signal is expected to spread due to the orbital motion of the neutron star. At frequencies below \(\sim 930 \text{ Hz}\) this Doppler line broadening effect is less than \(1/4 \text{ Hz}\), the frequency bin width selected in past analyses [15,17]. At higher frequencies, the signal is certain to span multiple bins. Therefore, we combine multiple 1/32 Hz frequency bins to form optimally sized combined bins at each frequency, accounting for the expected signal broadening due to the combination of the motion of the Earth around the Sun, the binary orbital motion, and any other intrinsic modulation. For more detail on the method of combining bins, see the Supplemental Material to this Letter [37].

The possibility of a young neutron star in SN 1987A [20,21] and the likelihood of many unknown, isolated neutron stars in the Galactic Center region [22] indicate potentially interesting candidates for persistent gravitational-wave emission. We combine bins to include the signal spread due to Earth’s modulation. For SN 1987A, we choose a combined bin size of 0.09 Hz. We would be sensitive to spin modulations up to \(|\dot{\nu}| < 9 \times 10^{-9} \text{ Hz s}^{-1}\) within our O1 observation time spanning 116 days. The Galactic Center is at a lower declination with respect to the orbital plane of the Earth. Therefore, the Earth modulation term is more significant, so, for the Galactic Center, we choose combined bins of 0.53 Hz across the band. In this case, we are sensitive to a frequency modulation in the range \(|\dot{\nu}| < 5.3 \times 10^{-8} \text{ Hz s}^{-1}\).

Significance.—To assess the significance of the SNR in the combined bins of the narrowband radiometer spectra, we simulate many realizations of the strain power consistent with Gaussian noise in each individual frequency bin. Combining these in the same way as the actual analysis leaves us with a distribution of maximum SNR values across the whole frequency band for many simulations of noise.

For a map of the whole sky, the distribution of maximum SNR is complicated by the many dependent trials due to covariances between different pixels (or patches) on the sky. We calculate this distribution numerically by simulating many realizations of the dirty map \(X_s\) with expected covariances described by the Fisher matrix \(\Gamma_{\mu\nu}\) [cf. Eqs. (13) and (14), respectively]. This distribution is then used to calculate the significance (or \(p\) value) of a given SNR recovered from the sky maps [17]. We take a \(p\) value of 0.01 or less to indicate a significant result. The absence of any significant events indicates the data are consistent with no signal being detected, in which case we quote Bayesian upper limits at 90% confidence [15,17].

Results.—The search yields four data products: radiometer sky maps, angular power spectra, and radiometer spectra.

Radiometer sky maps optimized for broadband point sources, are shown in Fig. 1. The top row shows the SNR. Each column corresponds to a different spectral index, \(\alpha = 0.2/3\), and 3, from left to right, respectively. The maximum SNRs are, respectively, 3.32, 3.31, and 3.43.
corresponding to false-alarm probabilities typical of what would be expected from Gaussian noise; see Table I. We find no evidence of a signal and, so, set limits on gravitational-wave energy flux, which are provided in the bottom row of Fig. 1 and summarized in Table I.

SHD sky maps, suitable for characterizing an anisotropic stochastic background, are shown in Fig. 2. The top row shows the SNR and each column corresponds to a different spectral index ($\alpha = 0$, $2/3$, and 3, respectively). The maximum SNRs are 2.96, 3.06, and 3.86 corresponding to false-alarm probabilities typical of those expected from Gaussian noise; see Table I. Failing evidence of a signal, we set limits on energy density per unit solid angle, which are provided in the bottom row of Fig. 2 and summarized in Table I. Interactive visualizations of the SNR and upper limit maps are also available online [38].

Angular power spectra are derived from the SHD sky maps. We present upper limits at 90% confidence on the angular power spectrum indices C_l from the spherical harmonic analysis in Fig. 3.

Radiometer spectra, suitable for the detection of a narrowband point source associated with a given sky position, are given in Fig. 4, the main results of which are summarized in Table II. For the three sky locations (Sco X-1, SN 1987A, and the Galactic Center), we

FIG. 1. All-sky radiometer maps for pointlike sources showing SNR (top) and upper limits at 90% confidence on energy flux F_{α, Θ_0} [erg cm$^{-2}$ s$^{-1}$ Hz$^{-1}$] (bottom) for three different power-law indices, $\alpha = 0, 2/3$, and 3, from left to right, respectively. The p values associated with the maximum SNR are (from left to right) $p = 7\%$, $p = 12\%$, $p = 47\%$ (see Table I).

FIG. 2. All-sky spherical harmonic decomposition maps for extended sources showing SNR (top) and upper limits at 90% confidence on the energy density of the gravitational-wave background Ω_α (sr$^{-1}$) (bottom) for three different power-law indices $\alpha = 0, 2/3$, and 3, from left to right, respectively. The p values associated with the maximum SNR are (from left to right) $p = 18\%$, $p = 11\%$, $p = 11\%$ (see Table I).

FIG. 3. Upper limits on C_l at 90% confidence vs l for the SHD analyses for $\alpha = 0$ (top, blue squares), $\alpha = 2/3$ (middle, red circles) and $\alpha = 3$ (bottom, green triangles).
calculate the SNR in appropriately sized combined bins across the LIGO band. For Sco X-1, the loudest observed SNR is 4.58, which is consistent with Gaussian noise. For SN 1987A and the Galactic Center, we observe maximum SNRs of 4.07 and 3.92, respectively, corresponding to false alarm probabilities consistent with noise; see Table II.

Since we observe no statistically significant signal, we set 90% confidence limits on the peak strain amplitude h_0 for each optimally sized frequency bin. Upper limits were set using a Bayesian methodology with the constraint that $h_0 > 0$ and validated with software injection studies. The upper limit procedure is described in more detail in the Supplemental Material [37], while the subsequent software injection validation is detailed in [39].

The results of the narrowband radiometer search for the three sky locations are shown in Fig. 4. To avoid setting limits associated with downward noise fluctuations, we take the median upper limit from the most sensitive 1 Hz band as our best strain upper limit. We obtain 90% confidence upper limits on the gravitational-wave strain of $h_0 < 6.7 \times 10^{-25}$ at 134 Hz, $h_0 < 7.0 \times 10^{-25}$ at 172 Hz, and $h_0 < 5.5 \times 10^{-25}$ at 172 Hz from Sco X-1, SN 1987A, and the Galactic Center, respectively, in the most sensitive part of the LIGO band.

TABLE II. Results for the narrowband radiometer showing the maximum SNR, corresponding p value and 1 Hz frequency band as well as the 90% gravitational-wave strain upper limits, and corresponding frequency band, for three sky locations of interest. The best upper limits are taken as the median of the most sensitive 1 Hz band.

<table>
<thead>
<tr>
<th>Direction</th>
<th>Max SNR</th>
<th>p value (%)</th>
<th>Frequency band (Hz)</th>
<th>Best UL Frequency (×10$^{-25}$) band (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sco X-1</td>
<td>4.58</td>
<td>10</td>
<td>616–617</td>
<td>6.7</td>
</tr>
<tr>
<td>SN1987A</td>
<td>4.07</td>
<td>63</td>
<td>195–196617</td>
<td>5.5</td>
</tr>
<tr>
<td>Galactic Center</td>
<td>3.92</td>
<td>87</td>
<td>1347–1348617</td>
<td>7.0</td>
</tr>
</tbody>
</table>

Conclusions.—We find no evidence to support the detection of either pointlike or extended sources and set upper limits on the energy flux and energy density of the anisotropic gravitational-wave sky. We assume three different power law models for the gravitational-wave background spectrum. Our mean upper limits present an improvement over Initial LIGO results of a factor of 8 in flux for the $\alpha = 3$ broadband radiometer and factors of 60 and 4 for the spherical harmonic decomposition method for $\alpha = 0$ and 3, respectively [17,40]. We present the first upper limits for an anisotropic stochastic background dominated by compact binary inspirals (with an $\Omega_{GW} \propto f^{2/3}$ spectrum) of $\Omega_{2/3}(\Theta) < (2–6) \times 10^{-8}$ sr$^{-1}$ depending on sky position. We can directly compare the monopole moment of the spherical harmonic decomposition to the isotropic search point estimate $\Omega_{2/3} = (3.5 \pm 4.4) \times 10^{-8}$ from [13]. We obtain $\Omega_{2/3} = (2\pi^2/3H_0^2)f_{\text{ref}}^3 \sqrt{4\pi} P(90) = (4.4 \pm 6.4) \times 10^{-8}$. The two results are statistically consistent. Our spherical harmonic estimate of $\Omega_{2/3}$ has a larger uncertainty than the dedicated isotropic search because of the larger number of (covariant) parameters estimated when $f_{\text{max}} > 0$. We also set upper limits on the gravitational-wave strain from point sources located in the directions of Scorpius X-1, the Galactic Center, and Supernova 1987A. The narrowband results improve on previous limits of the same kind by more than a factor of 10 in strain at frequencies below 50 Hz and above 300 Hz, with a mean improvement of a factor of 2 across the band [17].

The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck Society (MPS), and the State of Niedersachsen, Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto
Competitivitat and Conselleria d’Educació, Cultura i Universitats of the Govern de les Illes Balears, the National Science Centre of Poland, the European Commission, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the Lyon Institute of Origins (LIO), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the Natural Science and Engineering Research Council Canada, Canadian Institute for Advanced Research, the Brazilian Ministry of Science, Technology, and Innovation, Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Russian Foundation for Basic Research, the Leverhulme Trust, the Research Corporation, Ministry of Science and Technology (MOST), Taiwan and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS and the State of Niedersachsen, Germany for provision of computational resources. This article has been assigned document number LIGO-P1600259.

[40] The spherical harmonic analysis uses different values of the maximum order l_{max} than those used in [17]. The l_{max} value was decreased by a factor of 2 for $\alpha = 0$ and increased by 30% for $\alpha = 3$. The harmonic order resembles extra degrees of freedom, meaning that larger values of l_{max} tend to reduce the sensitivity in Ω_{GW} by increasing uncertainty in estimates of the angular power $P(\theta)$.

118, PRL

(LIGO Scientific Collaboration and Virgo Collaboration)

1LIGO, California Institute of Technology, Pasadena, California 91125, USA 2Louisiana State University, Baton Rouge, Louisiana 70803, USA 3American University, Washington, D.C. 20016, USA 4University of Salerno, Fisciano, I-84084 Salerno, Italy 5INFN, Sezione di Napoli, Complesso Universitario di Monte S.S. Angelo, I-80126 Napoli, Italy 6University of Florida, Gainesville, Florida 32611, USA 7LIGO Livingston Observatory, Livingston, Louisiana 70734, USA 8Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Université Savoie Mont Blanc, CNRS/IN2P3, F-74941 Annecy-le-Vieux, France 9University of Sannio at Benevento, I-82100 Benevento, Italy and INFN, Sezione di Napoli, I-80100 Napoli, Italy 10Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, D-30167 Hannover, Germany 11KnePh, Science Park, 1098 XG Amsterdam, The Netherlands 12LIGO, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 13Instituto Nacional de Pesquisas Espaciais, 12227-010 São José dos Campos, São Paulo, Brazil 14INFN, Gran Sasso Science Institute, I-67100 L’Aquila, Italy 15INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy 16Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India 17International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India 18University of Wisconsin-Milwaukee, Wisconsin 53201, USA
77 University of Chicago, Chicago, Illinois 60637, USA
78 Kenyon College, Gambier, Ohio 43022, USA
79 Korea Institute of Science and Technology Information, Daejeon 305-806, Korea
80 University of Cambridge, Cambridge CB2 1TN, United Kingdom
81 Università di Roma ‘La Sapienza’, I-00185 Roma, Italy
82 University of Brussels, Brussels 1050, Belgium
83 Sonoma State University, Rohnert Park, California 94928, USA
84 Montana State University, Bozeman, Montana 59717, USA
85 Center for Interdisciplinary Exploration & Research in Astrophysics (CIERA), Northwestern University, Evanston, Illinois 60208, USA
86 Universitat de les Illes Balears, IAC3—IEEC, E-07122 Palma de Mallorca, Spain
87 The University of Texas Rio Grande Valley, Brownsville, Texas 78520, USA
88 Bellevue College, Bellevue, Washington 98007, USA
89 Institute for Plasma Research, Bhat, Gandhinagar 382428, India
90 The University of Sheffield, Sheffield S10 2TN, United Kingdom
91 California State University, Los Angeles, 5154 State University Dr, Los Angeles, California 90032, USA
92 Università di Trento, Dipartimento di Fisica, I-38123 Povo, Trento, Italy
93 INFN, Trento Institute for Fundamental Physics and Applications, I-38123 Povo, Trento, Italy
94 Cardiff University, Cardiff CF24 3AA, United Kingdom
95 Montclair State University, Montclair, New Jersey 07043, USA
96 National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
97 Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, Ontario MSS 3H8, Canada
98 MTA Eötvös University, “Lendulet” Astrophysics Research Group, Budapest 1117, Hungary
99 School of Mathematics, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
100 University and Institute of Advanced Research, Gandhinagar, Gujarat 382007, India
101 ISER-TVM, CET Campus, Trivandrum Kerala 695016, India
102 University of Szeged, Dőm tér 9, Szeged 6720, Hungary
103 Embry-Riddle Aeronautical University, Prescott, Arizona 86301, USA
104 Tata Institute of Fundamental Research, Mumbai 400005, India
105 INAF, Osservatorio Astronomico di Capodimonte, I-80131, Napoli, Italy
106 University of Michigan, Ann Arbor, Michigan 48109, USA
107 Rochester Institute of Technology, Rochester, New York 14623, USA
108 NCSA, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
109 University of Bialystok, 15-424 Bialystok, Poland
110 SUPA, University of Strathclyde, Glasgow G1 1XQ, United Kingdom
111 University of Southampton, Southampton SO17 1BJ, United Kingdom
112 University of Washington Bothell, 18115 Campus Way NE, Bothell, Washington 98011, USA
113 Institute of Applied Physics, Nizhny Novgorod, 603950, Russia
114 Seoul National University, Seoul 151-742, Korea
115 Inje University Gimhae, 621-749 South Gyeongsang, Korea
116 National Institute for Mathematical Sciences, Daejeon 305-390, Korea
117 Pusan National University, Busan 609-735, Korea
118 NCBJ, 05-400 Świerk-Otwock, Poland
119 Institute of Mathematics, Polish Academy of Sciences, 00656 Warsaw, Poland
120 The School of Physics & Astronomy, Monash University, Clayton 3800, Victoria, Australia
121 Hanyang University, Seoul 133-791, Korea
122 The Chinese University of Hong Kong, Shatin, NT, Hong Kong
123 University of Alabama in Huntsville, Huntsville, Alabama 35899, USA
124 ESPCI, CNRS, F-75005 Paris, France
125 University of Minnesota, Minneapolis, Minnesota 55455, USA
126 Università di Camerino, Dipartimento di Fisica, I-62032 Camerino, Italy
127 Southern University and A&M College, Baton Rouge, Louisiana 70813, USA
128 The University of Melbourne, Parkville, Victoria 3010, Australia
129 College of William and Mary, Williamsburg, Virginia 23187, USA
130 Instituto de Física Teórica, University Estadual Paulista/ICTP South American Institute for Fundamental Research, São Paulo, São Paulo 01140-070, Brazil
131 Whitman College, 345 Boyer Avenue, Walla Walla, Washington 99362 USA
132 Université de Lyon, F-69361 Lyon, France
133 Hobart and William Smith Colleges, Geneva, New York 14456, USA
134 Janusz Gil Institute of Astronomy, University of Zielona Góra, 65-265 Zielona Góra, Poland
135 King’s College London, University of London, London WC2R 2LS, United Kingdom
136 IISER-Kolkata, Mohanpur, West Bengal 741252, India
137 Indian Institute of Technology, Gandhinagar Ahmedabad Gujarat 382424, India
138 Andrews University, Berrien Springs, Michigan 49104, USA
139 Università di Siena, I-53100 Siena, Italy
140 Trinity University, San Antonio, Texas 78212, USA
141 University of Washington, Seattle, Washington 98195, USA
142 Abilene Christian University, Abilene, Texas 79699, USA

† Deceased.