A CHARACTERIZATION OF TERMS OF THE λI-CALCULUS HAVING A NORMAL FORM

HENK BARENDREGT

§0. Introduction. The theorem proved in this paper answers some transitivity questions (in the geometric sense) for the type free λ-calculus: Which objects can be mapped on all other objects? How much can an object do by applying it to other objects (see footnote 2)?

The main result is that, for closed terms of the λI-calculus, the following conditions are equivalent:

(a) M has a normal form.
(b) $FM = I$ for some λI-term F.
(c) $MN_1 \cdots N_n = I$ for some λI-terms N_1, \ldots, N_n.

By the same method it follows that if M is a closed term of the λK-calculus having a normal form, then for some λI-terms (sic) N_1, \ldots, N_n, $MN_1 \cdots N_n = I$ is provable in the λK-calculus.

The theorem of Böhm [2] states that if M_1, M_2 are terms of the λK-calculus having different $\beta \eta$-normal forms, then $\forall A_1, A_2 \exists N_1, \ldots, N_n M_1 N_1 \cdots N_n = A_i$ is provable in the λK-$\beta \eta$-calculus for $i = 1, 2$. As a consequence of this it was shown (implicitly) in [1, 3.2.20 1/2 (1)] that if M has a normal form, then for some λK-terms N_1, \ldots, N_n, $MN_1 \cdots N_n = I$ is provable in the λK-calculus.

It was not clear that this also could be proved for the λI-calculus since the proof of the theorem of Böhm essentially made use of λK-terms.

We conjecture that, using the results of this paper, the full theorem of Böhm can be proved for the λI-calculus.

Acknowledgement. We thank the referee and R. Hindley for an improvement in the proof of Lemma 1.5.

§1. Preliminaries. We assume familiarity with the λI- and the λK-calculus as treated e.g. in [4, Chapter 3] or [3, Chapters II, V].

1.1. Notation. $L_I (L_K)$ is the language of the λI-calculus (λK-calculus). $[x/N]M$ is the result of substituting N for the free occurrences of x in M. $FV(M)$ is the set of free variables of M.

Received July 27, 1972.

1 The author is supported by the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).

2 Professor Böhm has informed us that, using Corollary 2.15, one can prove also for the λI-calculus his generalized theorem: Let M_1, \ldots, M_n be terms having different $\beta \eta$-normal forms, then

$$\forall A_1 \cdots A_n \exists N_1 \cdots N_m \lambda \eta \vdash M_1 N_1 \cdots N_m = A_i, \quad 1 \leq i \leq n.$$

© 1973, Association for Symbolic Logic
The $\lambda \eta$-calculus ($\lambda K\eta$-calculus) is the extensional theory containing η-reduction.
When in a certain context L, λ or $\lambda \eta$ is used, L, λ and $\lambda \eta$ should be replaced throughout that context by L, $\lambda' \eta$ and $\lambda' \lambda \eta$ or by L_k, λK and $\lambda K \eta$ (theorems stated for L, etc. hold for both versions).

"normal form" will be abbreviated by n.f.

$MN\eta^n$ is $MN\cdots N$ (N appearing n times). $\lambda(\eta) \vdash$ denotes provability in $\lambda(\eta)$. \geq is the reduction relation, \equiv the convertibility relation and \equiv the relation of syntactic identity.

1.2. Definition. Let M be a term $\in L$. M is $I(\eta)$-solvable iff $\exists N_1\cdots N_n \in L_I\lambda(\eta) \vdash MN_1\cdots N_n \equiv I$. M is $K(\eta)$-solvable iff $\exists N_1\cdots N_n \in L_k\lambda K(\eta) \vdash MN_1\cdots N_n \equiv I$.

By the following lemma there is no need to make a distinction between $I(\eta)$-solvable in $\lambda I(\eta)$ or in $\lambda K(\eta)$.

1.3. Lemma. The $\lambda K(\eta)$-calculus is a conservative extension of the $\lambda I(\eta)$-calculus.

Proof. Show first $[\lambda K(\eta) \vdash M \geq N$ and $M \in L_I]\Rightarrow [N \in L_I$ and $\lambda I(\eta) \vdash M \geq N]$; then use the well-known Church-Rosser theorem (see e.g. [4, Chapter 4]) for $\lambda K(\eta)$.

1.4. Lemma. Let M be a term $\in L$. M has a β-n.f. \iff M has a $\beta\eta$-n.f.

Proof. \Rightarrow: Each β-n.f. has a $\beta\eta$-n.f. by contracting some η-redexes.

\Leftarrow: See [5, Chapter 11E, Lemma 13.1].

1.5. Lemma. M is I-solvable $\iff M$ is $I\eta$-solvable; M is K-solvable $\iff M$ is $K\eta$-solvable.

Proof. (Same proof for both cases.) \Rightarrow: Trivial.

\Leftarrow: Suppose that $\exists N_1\cdots N_n \lambda(\eta) \vdash MN_1\cdots N_n \equiv I$. Then $MN_1\cdots N_n$ has a $\beta\eta$-n.f., hence by 1.4, a β-n.f. M'. M' has the properties: $\lambda \vdash MN_1\cdots N_n = M'$ and $\lambda(\eta) \vdash M' \geq I$ (by the Church-Rosser theorem for $\lambda(\eta)$). Since M' is in β-n.f., $M' \geq I$ is a pure η-reduction, say with the number of η-contractions q. By induction on q it follows that M' must be of the form $M' \equiv \lambda x_1\cdots x_m.x_1M_2\cdots M_m$, where $M_i \geq x_i$ ($2 \leq i \leq m$) by an η-reduction and $F \vee (M_i) = \{x_i\}$. By induction on q it now follows that M' is solvable. If $q = 0$ this is clear. If $q > 0$, then $m \geq 2$ and $M_i \geq x_i$ by an η-reduction of less than q steps. Hence also $[x_i/I]M_i \geq I$ by an η-reduction of less than q steps. By the induction hypothesis,

$$\exists N_{1i}\cdots N_{ik_i} \in L \quad \lambda \vdash [x_i/I]M_iN_{1i}\cdots N_{ik_i} \geq I, \quad 2 \leq i \leq m.$$

Then

$$\lambda \vdash M'L_1\cdots L_m = I,$$

where

$$L_1 \equiv \lambda y_2\cdots y_m.(y_2N_{21}\cdots N_{2k_2})\cdots(y_mN_{1m1}\cdots N_{1mk_m}), \quad L_2 \equiv \cdots \equiv L_m \equiv I.$$

Hence $\lambda \vdash MN_1\cdots N_mL_1\cdots L_m = M'L_1\cdots L_m = I$; i.e., M is solvable.

1.6. Lemma. If $M \in L_I$ and has a n.f., then every subterm of M has a n.f.

Proof. See [3, p. 27, Theorem 7 XXII].

1.7. Example. Let $\Omega \equiv (\lambda x.xx)(\lambda x.xx)$. Then $\Xi \equiv \lambda x.x\Omega$ is a term which is K-solvable but not I-solvable; $\lambda K \vdash \Xi K = I$, but Ξ cannot be solved by λI-terms as follow from 1.6.

§2. Proof of the main theorem.

2.1. Theorem. (i) If M is a closed term of L_I, the following are equivalent:
(a) M has a n.f.
(b) $\exists F \in L_I \lambda I \vdash FM = I$.
(c) M is I-solvable.

(ii) If M is a closed term of L_K, then M has a n.f. $\Rightarrow M$ is I-solvable.

Proof. (i) We show (c) \Rightarrow (b) \Rightarrow (a) \Rightarrow (c).

(c) \Rightarrow (b): If M is /-solvable, then $Xb\ M N_1 \ldots N_n = I$ for some $N_1 \cdots N_n \in L_I$. Take $F = \lambda x.x N_1 \cdots N_n$. (b) \Rightarrow (a): If $\lambda I \vdash FM = I$ for some $F \in L_I$, then FM has a n.f. Hence, by 1.6, M has a n.f.

(a) \Rightarrow (c): The proof of this fact occupies 2.3-2.13.

(ii) This will be a corollary to the proof of (a) \Rightarrow (c) of (i).

2.2. The converse of 2.1(ii) is false: Let $M = \lambda x.\ x[K]$, where D,

2.3. Definition. S-indices (integers) are defined inductively as follows:

0 is an S-index.
If s is an S-index, then, for integers all $n > 1$, $m > 0$, $a_n\ (a_n, m, s)$ is an S-index.

2.4. Definition. For every S-index s we define a closed term O_s of L_I:

2.5. Definition. For S-indices s we define inductively a length $l(s)$:

2.6. Definition. We define simultaneously the class of S-polynomials P and their depth $d(P)$:

O_s is an S-polynomial for every S-index s; $d(O_s) = l(s)$.
If P_1, P_2 are S-polynomials, so is $(P_1 P_2)$; $d(P_1 P_2) = d(P_1) + d(P_2)$.

2.7. Lemma. Each S-polynomial P is I-solvable (using only I's).

Proof. Induction on $d(P)$. If $d(P) = 0$, then P is a combination of I's and hence I-solvable. Suppose $d(P) = n > 0$. By contracting several I's, $\lambda I \vdash P = O_s P_1 \cdots P_p$, with $s \neq 0$, $p \geq 0$ and $d(O_s P_1 \cdots P_p) = d(P)$. If $p < (s)_0$, then $\lambda I \vdash O_s P_1 \cdots P_p I^{\sim s_0} = P'$ where $P' \equiv (P_1 O_s^{-m_1}) \cdots (P_p O_s^{-m_p}) (I O_s^{-m})^{1-p}$ and $m = (s)_1$ and $s' = (s)_2$. We have $d(P') = d(P_1 \cdots P_p) + m \cdot d(O_s) - (s)_0 < d(P_1 \cdots P_p) + l(s) = d(O_s P_1 \cdots P_p) = d(P)$. If $p \geq (s)_0$, then a similar argument shows that once more $\lambda I \vdash PI^{\sim (s)_0} = P'$ where P' is an S-polynomial with $d(P') < d(P)$. By the induction hypothesis, P' is I-solvable, using only I's; thus $\lambda I \vdash P'I^{\sim m} = I$ for some m. Hence $\lambda I \vdash PI^{\sim (s)_0}I^{-m} = I$.

2.8. Lemma. The class of L_I terms in β-n.f. has the following inductive definition:

$x \in \beta$-n.f.
$[M \in \beta$-n.f. and $x \in FV(M)] \Rightarrow \lambda x.\ M \in \beta$-n.f.
$M_1, \ldots, M_k \in \beta$-n.f. $\Rightarrow x M_1 \cdots M_k \in \beta$-n.f.

Proof. The terms obtained by this inductive definition are clearly in β-n.f. Conversely, every term has one of the three following forms: $x, x M_1 \cdots M_k$ and $(\lambda x.\ M_1) M_2 \cdots M_k$. The only β-n.f.'s among those are $x, x M_1 \cdots M_k$ and $\lambda x.\ M_1$, if M_1, \ldots, M_k are in β-n.f.

2.9. Definition. By course of value recursion, the following number-theoretic predicate and functions are defined.
$s \preceq s'$ iff $[s = 0 \lor ((s)_0 \leq (s')_0) \land (s)_1 \leq (s')_1 \land (s)_2 \leq (s')_2]$, $s \cup s' = s'$ if $s = 0$, $s \cup s' \neq s'$ else.

\[\frac{s/m = 0 \text{ if } s = 0}{\langle s \rangle_s, m, (s)_1/m \rangle \text{ else}} \]

Then \preceq is transitive, $s \cup s' \supset s, s \cup s' \supset s', s \supset s' \supset (s)_2 \supset (s')_2$ (if $s' \neq 0$) and $\langle n, m, s/m \rangle \preceq \langle n, m, s/m' \rangle$.

2.10. Notation. We write $M(x_1, \ldots, x_p)$ to indicate that $FV(M) \subseteq \{x_1, \ldots, x_p\}$ and the x_i are distinct. If N_1, \ldots, N_p are closed terms, then $M(N_1, \ldots, N_p)$ is $[x_1/N_1] \cdots [x_p/N_p]M$.

2.11. Lemma. For every term $M(x_1, \ldots, x_p)$ of L_i in β-n.f.

\[\exists s \forall t_0 \supset s, \ldots, t_p \supset s \exists n \forall m \geq nM(O_{t_1/m}, \ldots, O_{t_p/m})O_{t_0/m}^{-n} \]

is provably equal (in λf) to an S-polynomial.

Proof. Induction on the definition of β-n.f.'s given in 2.8. We write $s_M, n_M : t_0 \cdots$ to indicate the dependence of s and n on M, t_0, \cdots, t_p.

\[M = \lambda x. \text{ Let } x = x_{t_0}. \text{ Take } s_M = 0, n_M : t_0 = 0. \text{ Let } t_0, m \text{ be given. Then } M(O_{t_1/m}, \ldots, O_{t_p/m})O_{t_0/m}^{-n} = O_{t_1/m}, \ldots, O_{t_p/m}O_{t_0/m}^{-1}. \]

Since $t_i \supset s_M = s_N, m \geq n_{M, t_0}, \ldots, t_p > n_{N,t_0}, \ldots, t_p, t_0$ and $n - 1 = n_{N,t_0}, \ldots, t_p, t_0$, this is provably equal to an S-polynomial by the induction hypothesis.

\[M = \lambda xM_1 \cdots M_k. \text{ Let } x = x_{t_0}. \text{ Take } s_M = s_{M_1} \cup \cdots \cup s_{M_k}, s_M = s_1 \cup \langle k + 1, 0, s_1 \rangle \text{ and } n_{t_0, 10}, \ldots, t_p = \text{Max} \{s_1, n_{t_0, 10}, \ldots, t_p\}. \]

\[\lambda t M(O_{t_1/m}, \ldots, O_{t_p/m})O_{t_0/m}^{-n} = O_{t_1/m}M^*_{k}O_{t_0/m}^{-n} = (M^*_1O_{t_0/m}^{-n}) \cdots (M^*_kO_{t_0/m}^{-n}), \]

where $M^*_k = M(O_{t_1/m}, \ldots, O_{t_p/m})$ and \ldots consists of S-polynomials (in this step it is used that $n \geq (t_0)_0 \geq s_M) \geq k$). Since, for $j = 1, \ldots, p, t_j \supset s_N, (t_0)_0 \supset s_M, t_j \supset s_M$ and $m \geq n_{M, t_0} \geq n_{M, t_0, t_2}, \ldots, t_0, t_p$ by the induction hypothesis each $M^*_1O_{t_0/m}^{-n} = M_i(O_{t_1/m}, \ldots, O_{t_p/m})O_{t_0/m}^{-n}$ is provably equal to an S-polynomial. Hence $M(O_{t_1/m}, \ldots, O_{t_p/m})O_{t_0/m}^{-n}$ is provably equal to an S-polynomial.

2.12. Corollary. If M is a closed L_i term in β-n.f., then M is I-solvable.

Proof. By the theorem, $\lambda t M(O_{t_1/m}, \ldots, O_{t_p/m})O_{t_0/m}^{-n} = P$ for some s, n, P and S-polynomial P. Hence, by 2.7, M is I-solvable.

2.13. (a) \Rightarrow (c) of 2.1(i) follows immediately from 2.12. 2.1(ii) follows by repeating the proofs of 2.8, 2.11, 2.12 for the λK-calculus.

The following corollary shows that a finite number of terms can be solved in a uniform way.

2.14. Corollary. If M_1, \ldots, M_k are closed terms having a normal form, then, for some s, n, m,

\[\lambda t M_iO_{s_i}^{-n}I_{s_i}^{-m} = I, \quad i = 1, \ldots, k. \]
TERMS OF THE \(\lambda \)-CALCULUS HAVING A NORMAL FORM

PROOF. For \(L_I \): Let \(s' = s_{M_1} \cup \cdots \cup s_{M_k} \). Take \(n = \text{Max}\{n_{M_i} : s'\} \). Then \(M_iO_{s'/n}^n \) is provably equal to an \(S \)-polynomial. Hence, by 2.7, \(\lambda I \vdash M_iO_{s'/n}^n I^m = I \) for \(m \) big enough, where \(s = s'/n \). The proof for \(L_K \) is similar, following the proof of 2.1(ii).

It follows that for a finite set of terms having a normal form \(K \) can be simulated in the \(\lambda \)-calculus.

2.15. Corollary. Let \(X \subset L_I \) be a finite set of terms having a normal form. Then there is a \(K^* \in L_I \) such that \(\lambda I \vdash K^*MN = M \) for all \(M \in L_I \) and all \(N \in X \).

Proof. Let \(X = \{M_1, \ldots, M_k\} \). By 2.14, \(\lambda I \vdash M_iN_1 \cdots N_p = I \), \(1 \leq i \leq k \), for some closed terms \(N_1, \ldots, N_p \in L_I \). Define \(K^* \equiv \lambda xy.yN_1 \cdots N_p x \). Then \(\lambda I \vdash K^*MN = NN_1 \cdots N_p M = IM = M \) provided \(N \in X \).

REFERENCES

