PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/17236

Please be advised that this information was generated on 2017-08-06 and may be subject to change.
A CHARACTERIZATION OF TERMS OF THE λI-CALCULUS HAVING A NORMAL FORM

HENK BARENDREGT

§0. Introduction. The theorem proved in this paper answers some transitivity questions (in the geometric sense) for the type free λ-calculus: Which objects can be mapped on all other objects? How much can an object do by applying it to other objects (see footnote 2)?

The main result is that, for closed terms of the λI-calculus, the following conditions are equivalent:

(a) M has a normal form.
(b) $FM = I$ for some λI-term F.
(c) $MN_1 \cdots N_n = I$ for some λI-terms N_1, \ldots, N_n.

By the same method it follows that if M is a closed term of the λK-calculus having a normal form, then for some λI-terms (sic) N_1, \ldots, N_n, $MN_1 \cdots N_n = I$ is provable in the λK-calculus.

The theorem of Böhm [2] states that if M_1, M_2 are terms of the λK-calculus having different $\beta\eta$-normal forms, then $\forall A_1, A_2 \exists N_1, \ldots, N_n \ M_i N_1 \cdots N_n = A_i$ is provable in the λK-$\beta\eta$-calculus for $i = 1, 2$. As a consequence of this it was shown (implicitly) in [1, 3.2.20 1/2 (1)] that if M has a normal form, then for some λK-terms N_1, \ldots, N_n, $MN_1 \cdots N_n = I$ is provable in the λK-calculus.

It was not clear that this also could be proved for the λI-calculus since the proof of the theorem of Böhm essentially made use of λK-terms.

We conjecture that, using the results of this paper, the full theorem of Böhm can be proved for the λI-calculus.2

Acknowledgement. We thank the referee and R. Hindley for an improvement in the proof of Lemma 1.5.

§1. Preliminaries. We assume familiarity with the λI- and the λK-calculus as treated e.g. in [4, Chapter 3] or [3, Chapters II, V].

1.1. Notation. $L_I (L_K)$ is the language of the λI-calculus (λK-calculus). $[x/N]M$ is the result of substituting N for the free occurrences of x in M. $FV(M)$ is the set of free variables of M.

Received July 27, 1972.

1 The author is supported by the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).

2 Professor Böhm has informed us that, using Corollary 2.15, one can prove also for the λI-calculus his generalized theorem: Let M_1, \ldots, M_n be terms having different $\beta\eta$-normal forms, then

$$\forall A_1 \cdots A_n \exists N_1 \cdots N_m \ \lambda \eta \vdash M_i N_1 \cdots N_m = A_i, \quad 1 \leq i \leq n.$$
The $\lambda \eta$-calculus ($\lambda K\eta$-calculus) is the extensional theory containing η-reduction. When in a certain context L, λ or $\lambda \eta$ is used, L, λ and $\lambda \eta$ should be replaced throughout that context by L, $\lambda \eta$ and $\lambda \eta$ (theorems stated for L, etc. hold for both versions).

"normal form" will be abbreviated by n.f.

MN^n is $MN \cdots N$ (N appearing n times). $\lambda(\eta) \vdash$ denotes provability in $\lambda(\eta)$. \geq is the reduction relation, $=\!\!\!\!\!\!\;=$ the convertibility relation and \equiv the relation of syntactic identity.

1.2. Definition. Let M be a term $\in L$. M is $I(\eta)$-solvable iff $\exists N_1 \cdots N_n \in L I(\eta) \vdash MN_1 \cdots N_n = I$. M is $K(\eta)$-solvable iff $\exists N_1 \cdots N_n \in L K(\eta) \vdash MN_1 \cdots N_n = I$.

By the following lemma there is no need to make a distinction between $I(\eta)$-solvable in $\lambda I(\eta)$ or in $\lambda K(\eta)$.

1.3. Lemma. The $\lambda K(\eta)$-calculus is a conservative extension of the $\lambda I(\eta)$-calculus.

Proof. Show first $[\lambda K(\eta) \vdash M \geq N$ and $\lambda I(\eta) \vdash M \geq N]$, then use the well-known Church-Rosser theorem (see e.g. [4, Chapter 4]) for $\lambda K(\eta)$.

1.4. Lemma. Let M be a term $\in L$. M has a β-n.f. $\iff M$ has a $\beta\eta$-n.f.

Proof. \Rightarrow: Each β-n.f. has a $\beta\eta$-n.f. by contracting some η-redexes. \Leftarrow: See [5, Chapter 11E, Lemma 13.1].

1.5. Lemma. M is I-solvable $\iff M$ is $I\eta$-solvable;

M is K-solvable $\iff M$ is $K\eta$-solvable.

Proof. (Same proof for both cases.) \Rightarrow: Trivial. \Leftarrow: Suppose that $\exists N_1 \cdots N_n \lambda \eta \vdash MN_1 \cdots N_n = I$. Then $MN_1 \cdots N_n$ has a $\beta\eta$-n.f., hence by 1.4, a β-n.f. M'. M' has the properties: $\lambda \vdash MN_1 \cdots N_n = M'$ and $\lambda \eta \vdash M' \geq I$ (by the Church-Rosser theorem for $\lambda \eta$). Since M' is in β-n.f., $M' \geq I$ is a pure η-reduction, say with the number of η-contractions q. By induction on q it follows that M' must be of the form $M' \equiv \lambda x_1 \cdots x_m.x_1 M_2 \cdots M_m$, where $M_i \geq x_i (2 \leq i \leq m)$ by an η-reduction and $F \lor (M_i) = \{x_i\}$. By induction on q it now follows that M' is solvable. If $q = 0$ this is clear. If $q > 0$, then $m \geq 2$ and $M_i \geq x_i$ by an η-reduction of less than q steps. Hence also $[x_i/I]M_i \geq I$ by an η-reduction of less than q steps. By the induction hypothesis,

$\exists N_{i1} \cdots N_{ik_i} \epsilon L \lambda \vdash [x_i/I]M_i N_{i1} \cdots N_{ik_i} \geq I, \quad 2 \leq i \leq m$.

Then

$\lambda \vdash M'L_{1} \cdots L_m = I$,

where

$L_1 \equiv \lambda y_2 \cdots \lambda y_m.(y_2 N_{21} \cdots N_{2k_2}) \cdots (y_m N_{m1} \cdots N_{mk_m}), \quad L_2 \equiv \cdots \equiv L_m \equiv I$.

Hence $\lambda \vdash MN_1 \cdots N_l L_1 \cdots L_m = M'L_1 \cdots L_m = I$; i.e., M is solvable.

1.6. Lemma. If $M \epsilon L_i$ and has a n.f., then every subterm of M has a n.f.

Proof. See [3, p. 27, Theorem 7 XXII].

1.7. Example. Let $\Omega \equiv (\lambda x.xx)(\lambda x.xx)$. Then $\Xi \equiv \lambda x.xf\Omega$ is a term which is K-solvable but not I-solvable; $\lambda K \vdash \Xi K = I$, but Ξ cannot be solved by λI-terms as follow from 1.6.

§2. Proof of the main theorem.

2.1. Theorem. (i) If M is a closed term of L_i, the following are equivalent:
(a) \(M \) has a n.f.
(b) \(\exists F \in L_I : \lambda F \uparrow FM = I \).
(c) \(M \) is I-solvable.

(ii) If \(M \) is a closed term of \(L_K \), then \(M \) has a n.f. \(\Rightarrow \) \(M \) is I-solvable.

Proof. (i) We show (c) \(\Rightarrow \) (b) \(\Rightarrow \) (a) \(\Rightarrow \) (c). (c) \(\Rightarrow \) (b): If \(M \) is \(I \)-solvable, then for some \(N_1 \cdots N_n \in L_I \). Take \(F = \lambda x . x N_1 \cdots N_n \). (b) \(\Rightarrow \) (a): If \(\lambda F \uparrow FM = I \) for some \(F \in L_I \), then \(FM \) has a n.f. Hence, by 1.6, \(M \) has a n.f.

(a) \(\Rightarrow \) (c): The proof of this fact occupies 2.3–2.13.

(ii) This will be a corollary to the proof of (a) \(\Rightarrow \) (c) of (i).

2.2. The converse of 2.1 (ii) is false: Let \(M = \lambda x . x K Q \), where \(D \) is as in 1.7. Then \(M \) is \(I \)-solvable: \(\lambda K \uparrow MSI = I \). But \(M \) has no n.f.

2.3. **Definition.** \(S \)-indices (integers) are defined inductively as follows:

- 0 is an \(S \)-index.
- If \(s \) is an \(S \)-index, then, for integers all \(n \geq 1 \), \(m \geq 0 \), \(a_1 \cdots a_n \) \((a_1O_s^m) \cdots (a_nO_s^m)\).

2.4. **Definition.**

- 2.8. **Lemma.** Each \(S \)-polynomial \(P \) is \(I \)-solvable (using only \(I \)'s).

Proof. Induction on \(d(P) \). If \(d(P) = 0 \), then \(P \) is a combination of \(I \)'s and hence \(I \)-solvable. Suppose \(d(P) = n > 0 \). By contracting several \(I \)'s, \(\lambda I \uparrow P = O_sP_1 \cdots P_p \), with \(s \neq 0 \), \(p \geq 0 \) and \(d(O_sP_1 \cdots P_p) = d(P) \). If \(p < (s)_0 \), then \(\lambda I \uparrow O_sP_1 \cdots P_pI^{s_0} = P' \) where \(P' \equiv (P_1O^m_s) \cdots (P_pO^m_s)(IO^{m_0}_s) \cdots (IO^{m_0}_s)I^{s_0} \) and \(m = (s)_1 \) and \(s' = (s)_2 \). We have \(d(P') = d(P_1 \cdots P_p) + m \cdot d(O_s) \cdot (s)_0 < d(P_1 \cdots P_p) + l(s) = d(O_sP_1 \cdots P_p) = d(P) \). If \(p \geq (s)_0 \), then a similar argument shows that once more \(\lambda I \uparrow PI^{s_0} = P' \) where \(P' \) is an \(S \)-polynomial with \(d(P') < d(P) \). By the induction hypothesis, \(P' \) is \(I \)-solvable, using only \(I \)'s; thus \(\lambda I \uparrow P'I^{s_0} = I \) for some \(m \). Hence \(\lambda I \uparrow PI^{s_0}I^{s_0} = I \).

2.9. **Definition.** By course of value recursion, the following number-theoretic predicate and functions are defined.
\[s \subseteq s' \text{ iff } [s = 0 \lor ((s)_0 \leq (s')_0) \land (s)_1 \leq (s')_1 \land (s)_2 \leq (s')_2], \]
\[s \cup s' = s' \text{ if } s = 0, \]
\[= \langle \operatorname{Max}(s)_0, (s')_0 \rangle, \operatorname{Max}(s)_1, (s')_1 \rangle, (s)_2 \cup (s')_2 \rangle \text{ else}. \]
\[s/m = 0 \text{ if } s = 0, \]
\[= \langle (s)_0, m, (s)_1/m \rangle \text{ else}. \]

Then \(\subseteq \) is transitive, \(s \cup s' \supseteq s, s \cup s' \supseteq s', s \supseteq s \supseteq (s)_2 \supseteq (s')_2 \) (if \(s \neq 0 \)) and \(\langle n, m, s/m \rangle = \langle n, m', s/m' \rangle \).

2.10. Notation. We write \(M(x_1, \ldots, x_p) \) to indicate that \(\operatorname{FV}(M) = \{x_1, \ldots, x_p\} \) and the \(x_i \) are distinct. If \(N_1, \ldots, N_p \) are closed terms, then \(M(N_1, \ldots, N_p) \) is \([x_1/N_1] \cdots [x_p/N_p]M \).

2.11. Lemma. For every term \(M(x_1, \ldots, x_p) \) of \(L_I \) in \(\beta\text{-n.f.} \)
\[\forall s \exists t_0 \cdots t_p \exists n \forall m \geq nM(O_{t_1/m}, \ldots, O_{t_p/m})O_{t_0/m} \]
is provably equal (in \(\lambda I \)) to an \(S \)-polynomial.

Proof. Induction on the definition of \(\beta\text{-n.f.} \)'s given in 2.8. We write \(s_M, n_{M,t} \to \) to indicate the dependence of \(s \) and \(n \) on \(M, t \) (\(t = t_0, \ldots, t_p \)).

\[M \equiv x. \text{ Let } x = x_{t_0}. \text{ Take } s = 0, n_{M,t} = 0. \text{ Let } t, m \text{ be given. Then } M(O_{t_1/m}, \ldots, O_{t_p/m})O_{t_0/m} = \langle 0 \rangle \text{, which is an } S \text{-polynomial.} \]

\[M \equiv \lambda x N. \text{ Let } FV(M) = \{x_1, \ldots, x_p\} \text{ and } x = x_{t_{p+1}}. \text{ Then } FV(N) = \{x_1, \ldots, x_{p+1}\}. \text{ Take } s = n_{N,t_0, \ldots, t_p} = n_{N,t_0, \ldots, t_p} + 1. \text{ Then } \]
\[\lambda I \vdash M(O_{t_1/m}, \ldots, O_{t_p/m})O_{t_0/m} = \langle \lambda \lambda x_{t+1} N(0_{t_1/m}, \ldots, O_{t_p/m}, x_{t+1}) \rangle O_{t_0/m} = n_{N,t_1/m, \ldots, O_{t_p/m}}O_{t_0/m}. \]

Since \(t_i \geq s_i = s_M, m \geq n_{M,t_0, \ldots, t_p} > n_{N,t_0, \ldots, t_p} + 1 \) and \(n - 1 = n_{N,t_0, \ldots, t_p} + 1 \), this is provably equal to an \(S \)-polynomial by the induction hypothesis.

\[M \equiv x M_1 \cdots M_k. \text{ Let } x = x_{t_0}. \text{ Take } s = s_{M_1} \cup \cdots \cup s_{M_k}, s_M = s_1 \cup \langle k + 1, 0, s_i \rangle \text{ and } n_{1:t_0, \ldots, t_p} = \operatorname{Max}_{1 \leq i \leq k} \{n_{M_i(t_{t_1}), \ldots, t_{t_p}} \}, n_{M_1, \ldots, t_p} = \operatorname{Max}\{n_{t_0}, n_{1:t_0, \ldots, t_p}. \text{ Then } \]
\[\lambda I \vdash M(O_{t_1/m}, \ldots, O_{t_p/m})O_{t_0/m} = O_{t_1/m}O_{t_0/m}M_{k}^{*}O_{t_0/m} = s_{M_1} \cdots s_M \cdot n_{M_1, \ldots, t_p} \]
\[= (M_{1}^{*}O_{t_0/m}) \cdots (M_{k}^{*}O_{t_0/m}) \cdots , \]

where \(M_{i}^{*} \equiv M(O_{t_1/m}, \ldots, O_{t_p/m}) \) and \(\cdots \) consists of \(S \)-polynomials (in this step it is used that \(n \geq (t_{t_0})_0 \geq (s_M)_0 \geq k \)). Since, for \(j = 1, \ldots, p, t_j \supseteq s_{M} \supseteq s_{M_j} \), \((t_{t_0})_2 \supseteq s_{M} \supseteq s_{M_j} \supseteq s_{M_j}, m \geq n_{M,t} \geq n_{M_i(t_{t_1}), \ldots, t_p} \), by the induction hypothesis each \(M_{i}^{*}O_{t_0/m}O_{t_0/m} = M_i(O_{t_0/m}, \ldots, O_{t_p/m})O_{t_0/m} \) is provably equal to an \(S \)-polynomial.

Hence \(M(O_{t_1/m}, \ldots, O_{t_p/m})O_{t_0/m} \) is provably equal to an \(S \)-polynomial.

2.12. Corollary. If \(M \) is a closed \(L_I \) term in \(\beta\text{-n.f.} \), then \(M \) is \(I \)-solvable.

Proof. By the theorem, \(\lambda I \vdash MO_{t_0/m} = P \) for some \(s, n \) and \(S \)-polynomial \(P \).

Hence, by 2.7, \(M \) is \(I \)-solvable.

2.13. (a) \(\Rightarrow \) (c) of 2.1(i) follows immediately from 2.12. 2.1(ii) follows by repeating the proofs of 2.8, 2.11, 2.12 for the \(\lambda K \)-calculus.

The following corollary shows that a finite number of terms can be solved in a uniform way.

2.14. Corollary. If \(M_1, \ldots, M_k \) are closed terms having a normal form, then, for some \(s, n, m, \)
\[\lambda I \vdash M_iO_{t_0/m}^sI^m = I, \quad i = 1, \ldots, k. \]
PROOF. For L_I: Let $s' = s_{M_1} \cup \cdots \cup s_{M_k}$. Take $n = \text{Max}(n_{M_i}: s')$. Then $M_iO_{s'/n}^n$ is provably equal to an S-polynomial. Hence, by 2.7, $\lambda I \vdash M_iO_{s'/n}^nI = I$ for m big enough, where $s = s'/n$. The proof for L_K is similar, following the proof of 2.1(ii).

It follows that for a finite set of terms having a normal form K can be simulated in the λI-calculus.

2.15. COROLLARY. Let $X \subseteq L_I$ be a finite set of terms having a normal form. Then there is a $K^* \in L_I$ such that $\lambda I \vdash K^*MN = M$ for all $M \in L_I$ and all $N \in X$.

Proof. Let $X = \{M_1, \ldots, M_k\}$. By 2.14, $\lambda I \vdash M_iN_1 \cdots N_p = I, 1 \leq i \leq k$, for some closed terms $N_1, \ldots, N_p \in L_I$. Define $K^* \equiv \lambda xy.yN_1 \cdots N_p x$. Then $\lambda I \vdash K^*MN = NN_1 \cdots N_p M = IM = M$ provided $N \in X$.

REFERENCES