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Abstract

Fatigue is commonly reported in a variety of illnesses, and it has major impact on quality of life. Previously, it was
thought that fatigue originates in the skeletal muscles, leading to cessation of activity. However, more recently, it
has become clear that the brain is the central regulator of fatigue perception. It has been suggested that pro-
inflammatory cytokines, especially interleukin-1 alpha (IL-1α) and interleukin-1 beta (IL-1β), play a prominent role in
the development of central fatigue, and several studies have been performed to elucidate the connection between
inflammation and these central processes.
In this narrative review, mechanisms of action of IL-1 are described, with special attention to its effect on the
central nervous system. In addition, we present a summary of studies that (i) investigated the relationship between
circulating IL-1α and IL-1β and fatigue severity and/or (ii) evaluated the effect of inhibiting IL-1 on fatigue. We aim
to improve the understanding of fatigue in both inflammatory and non-inflammatory illnesses, which could help
develop strategies to treat fatigue more effectively.
Reviewing the studies that have been performed, it appears that there is a limited value of measuring circulating
IL-1. However, inhibiting IL-1 has a positive effect on severe fatigue in most studies that have been conducted.
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Background
General introduction and aims
There is growing evidence supporting the theory that
the central nervous system plays an important role in
the perception of fatigue. The central nervous system
processes and values sensory information, as well as
guides motivational behavior involving decisions to dis-
continue activity or to invest effort. Cytokines have been
suggested as prominent mediators in the induction of
this central fatigue.
In this narrative review, we explored the evidence for

the connection between pro-inflammatory cytokines, es-
pecially interleukin-1 (IL-1), and the perception of fa-
tigue. Next to investigations that have examined whether
there is a relation between circulating IL-1 and severity
of fatigue (Table 1), the effect of blocking IL-1 on fatigue
severity has also been reported (Table 2). For example,
trials have been performed in rheumatoid arthritis [1, 2],

Sjögren’s syndrome [3], and diabetes [4]. In this review,
the different mechanisms of action of IL-1 will be dis-
cussed, especially considering its action in the CNS. We
also review studies performed up to this writing that
searched for a relation between IL-1 and fatigue in a var-
iety of inflammatory and non-inflammatory illnesses.

Interleukin-1
To elucidate the contribution of IL-1 to the experience
of fatigue, it is important to have a view of the pleio-
tropic action of this cytokine. Because of the important
role of IL-1 in the innate immune system and other
physiological systems, it has become a field of great
interest. Of the 11 members of the IL-1 family, two
prominent members, IL-1alpha (IL-1α) and IL-1beta
(IL-1β), have been described most frequently in the lit-
erature on fatigue. IL-1α, IL-1β, and the IL-1 receptor
antagonist (IL-1Ra) bind to the type 1 IL-1 receptor (IL-
1R1). Whereas IL-1α and IL-1β activate an inflammatory
signal upon binding to the IL-1R1, IL-1Ra binds to the
same receptor but does not activate a signal.
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IL-1α is constitutively present as a bioactive precursor
inside a wide range of cells. It is present, for example, in
epithelial cells of the lungs, keratinocytes of the skin,
and vascular endothelial cells [5]. During necrosis result-
ing in cell death, the bioactive IL-1α precursor is re-
leased. Furthermore, IL-1α is also present on the surface
of monocytes and B lymphocytes [6]. IL-1β is produced
by more specific subsets of cells; it is a product of mono-
cytes, tissue macrophages, and dendritic cells [5]. In
order to become biologically active, the IL-1β precursor
is first cleaved by caspase-1, an intracellular enzyme that
is activated by a complex of intracellular proteins termed
“the inflammasome” [7]. There is also an alternative
mechanism by which the inactive IL-1β precursor is
converted into an active cytokine. In presence of a high
numbers of neutrophils, enzymes released by these cells,
such as elastase and proteinase-3, will cleave the IL-1β
precursor and yield the bioactive moiety [8]. After bind-
ing of IL-1α or IL-1β to the IL-1R1, a complex signaling
cascade is activated, eventually leading to “nuclear factor
kappa-light-chain-enhancer of activated B cells” (NFκB)
production and subsequent gene transcription [9]. In
this manner, IL-1 action leads to a variety of biological
events, ranging from activation of the acquired immune
system to the induction of fever and slow-wave sleep
[10]. For the scope of this review, we will focus on the
ability of IL-1 to induce fatigue.
The importance when investigating the involvement

of IL-1 in disease is to note that circulating concen-
trations of IL-1β often are at best only slightly ele-
vated (picograms/ml) even under conditions of severe
pathology [11]. A large part of IL-1β remains inside
the cell, and in the circulation, it is bound to other
proteins, such as the type 2 IL-1 receptor (IL-1R2),
which serves as a decoy receptor, leading to a de-
crease in bioactivity [12]. Therefore, IL-1Ra, which is
secreted by various cells in an inflammatory environ-
ment, has been proposed as a surrogate marker for
IL-1β activity [12, 13].

Effect of interleukin-1 on the central nervous system
The central nervous system (CNS) plays an important
role in cytokine-induced fatigue. As stated earlier, IL-1α
and IL-1β are produced by a broad range of immuno-
competent and non-immunological cells. Elevation of
IL-1 in the brain contributes to behavioral alterations
described as “sickness behavior,” which includes in-
creased feelings of fatigue and depressed mood, loss of
interest in social interactions, and reduction of physical
activity both in animals and in humans treated for differ-
ent malignancies [14–19]. The observed behavioral alter-
ations in response to the intrathecal administration of
pro-inflammatory cytokines indicate that, in addition to
its peripheral effect on the immune response, IL-1 also

signals to the brain via several immune-to-brain com-
munication pathways.
Before peripherally produced cytokines can have an ef-

fect on the brain, they have to find a way to reach the
CNS. In most diseases described in this review, there is
no disruption of the blood-brain barrier (BBB) to allow
proteins to gain access to the CNS. However, there are
several mechanisms by which this barrier can be
bypassed (Fig. 1). Some parts of the BBB are more per-
meable, especially those surrounding the circumventri-
cular organs (CVOs), and cytokines like IL-1 can cross
the BBB in this area by diffusion through the fenestrated
endothelium (1) [20–22]. For IL-1α, IL-1β, and IL-1Ra,
there is a saturable transport system from blood to the
CNS (2) [20], and production of cytokines by locally ac-
tivated perivascular endothelial cell and macrophages
has also been described (3) [23]. These three routes
combined are often described as the humoral pathway.
There is also a neuronal pathway, which uses the vagal
nerve and sometimes also other peripheral afferent
nerve fibers (4), directly transmitting the cytokine signal
to relevant brain regions [24]. The fifth route, activated
by both the humoral and neuronal pathways, is acti-
vation of the immunocompetent cells of the brain, be-
ing the microglia (5). These cells are able to produce
IL-1β locally once they have become activated [25,
26]. In chronic fatigue syndrome (CFS), a syndrome
characterized by severe fatigue, evidence for microglial
activation has already been reported in a small group
of patients [27].
The IL-1R1 is distributed throughout the brain, al-

though human studies on this topic are scarce [28]. The
intracellular pathways after IL-1R1 activation in the
brain are similar to those in the periphery, eventually
leading to NFκB activation and subsequent gene tran-
scription [28]. In an animal experiment, an increase of
IL-1β messenger RNA (mRNA) was found in the hypo-
thalamus directly after peripheral injection of IL-1β,
where it is able to induce fever [15]. While the concen-
tration in the hypothalamus decreased within 24 h, up-
regulation of IL-1β mRNA persisted in the cerebral
cortex, and this was accompanied by a decrease in spon-
taneous activity lasting several days. Hypothetically, such
persistence of IL-1β transcription might be due to epi-
genetic changes in microglial cells, a process that is
thought to play a role in several neuroinflammatory dis-
orders [29, 30].
Once cytokines have reached the brain, there are

changes in behavior through dopamine and serotonin
neurotransmitter systems. Cytokines can influence dopa-
mine synthesis via oxidative stress and disruption of the
enzyme tetrahydrobiopterin (BH4), which is important
for conversion of phenylalanine to the dopamine precur-
sor tyrosine and L-3,4-dihydroxyphenylalanine (L-dopa).
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In addition, cytokines can enhance dopamine transporter
activity and dopamine receptor functioning. Alterna-
tively, cytokines can affect serotonin functioning through
the activation of indoleamine 2,3dioxygenase (IDO) in
peripheral immune cells or microglia and kynurenine
pathways [31–34]. Immunotherapy models have identi-
fied dissociation between the role of dopamine and sero-
tonin in symptom expression, with mood and cognitive
symptoms being more responsive to treatment with
serotonin reuptake inhibitors (SSRIs) and fatigue and
psychomotor functioning being more responsive to
treatment with dopaminergic medications [35–37]. This
suggests that fatigue symptoms may involve alterations
in dopamine functioning. Indeed, animal studies show
that dopamine depletion alters motivational behavior in
a way similar to cytokine administrations [38–41], and it
has been demonstrated that immune-induced reductions
in physical activity and effort expenditure can be re-
versed with dopamine treatment [14, 42]. In addition, fa-
tigue is a common symptom in many psychiatric and
neurological conditions that have been associated with
alterations of the dopamine system including Parkinson’s
disease and depression [35, 43–45]. Besides their effects
on brain neurotransmitter systems, IL-1 can also

influence brain functioning through their effect on hip-
pocampal neuroplasticity and neurogenesis [46] or via
neuro-endocrine mechanisms involving the hypothal-
amic pituitary-adrenal axis (HPA) functioning [47].
These effects have been associated with the development
of mental problems that often concur with fatigue symp-
toms, such as impairments in learning and memory and
depressive-like behavior.
To give a clear view of the possible role of IL-1 in the

development of fatigue in different diseases, we will dis-
cuss the studies that have been performed.

Overview of studies investigating the role of
interleukin-1 in disease
Inflammatory illnesses
Rheumatoid arthritis
Rheumatoid arthritis (RA) is a chronic disease character-
ized by recurrent, often symmetrical destructive arthritis.
In addition to local joint inflammation, RA is known for
systemic symptoms such as fatigue. The prevalence of
fatigue in the RA population varies between 40 and 88%,
depending on criteria and questionnaires used [48–50].
Although the exact causal mechanism of fatigue is un-
known [51], it can be predicted by pain, sleep

Fig. 1 Overview of routes by which peripherally produced IL-1 is able to influence IL-1 levels in the brain. An overview of the five different routes
that can be used by peripherally produced IL-1α and IL-1β to access the CNS. The first route (1) is diffusion of IL-1 trough the fenestrated
endothelium surrounding blood vessels in the circumventricular organs (CVOs). The rest of the brain microvasculature is surrounded by the
blood-brain barrier (BBB), where diffusion is not possible due to tight junctions between cells. In these areas, IL-1 can be transported across the
BBB by a saturable transport system (2), or it can activate perivascular macrophages at the brain side of blood vessels, stimulating them to
produce IL-1 (3). These three routes combined are frequently described as the humoral pathway, which is able to activate microglial cells in the
brain parenchyma (5). Another important system is the neuronal pathway, where peripherally produced IL-1 stimulates afferent nerves, especially
the vagal nerve, causing local IL-1 production in the CNS by microglial cells (4). Increased concentrations of IL-1 in different areas of the brain are
suspected to influence neurotransmitter systems (e.g., dopamine and serotonin), thereby exerting its effect on behavior and the development of fatigue
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disturbances, and depression, rather than by disease
activity [52]. The contribution of cytokine distur-
bances to the development of fatigue remains to be
elucidated but could be prominent as treatment with
tumor necrosis factor alpha (TNF-α) inhibitors has a
positive effect on fatigue compared to treatment with
methotrexate alone [53].
Cytokine disturbances in RA are well known and are

predominantly driven by increased TNF-α and IL-1, al-
though TNF-α is measured more frequently. Both con-
centrations of IL-1β and IL-1Ra are slightly elevated in
RA, and both correlate with disease severity, reflected by
elevated pain scores and an increased erythrocyte sedi-
mentation rate (ESR) [54, 55]. Several findings suggest a
central activation of the immune system in RA patients.
A study evaluating IL-1 concentrations in cerebrospinal
fluid (CSF) in 14 female RA patients with moderate dis-
ease activity and 12 healthy subjects found IL-1β con-
centrations in CSF are increased in patients and
positively correlated to fatigue severity (R = 0.55, p <
0.05) [26]. Such a correlation was not present for pain or
tender joint count. IL-1Ra in CSF was lower in RA pa-
tients compared to healthy subjects. Furthermore, IL-1β
concentrations in CSF were significantly higher than that
in plasma, which suggests a central pro-inflammatory
state in RA patients.
The next step is to assess the effect of IL-1 blockade

on fatigue severity in RA, which has been investigated
by using monoclonal antibodies against IL-1β (canakinu-
mab, Ilaris) and recombinant IL-1Ra (anakinra, Kineret)
in patients with current disease activity [1, 2]. In both
studies, there was a significant decrease of fatigue sever-
ity. The double blind study performed by Alten et al. [1]
measured fatigue using the “Functional Assessment of
Chronic Illness Fatigue” (FACIT-F) questionnaire in pa-
tients on different canakinumab dosing regimens next to
methotrexate, compared to patients who used placebo.
At 12 weeks, two out of three canakinumab groups re-
ported a small but significant decrease in fatigue com-
pared to placebo. With respect to disease response rate,
measured by joint inflammation and other disease-
specific characteristics, there was only a significant re-
sponse in one of the groups (150 mg canakinumab s.c.
once every 4 weeks). An inherent problem with canaki-
numab, being a monoclonal antibody, is its failure to
reach the CNS, and hence only fatigue driven by periph-
erally produced IL-1 that may gain access to the brain is
being countered. In case of apparent peripheral inflam-
mation, which is the case in RA, this appears to be ef-
fective as can also be concluded from a study lowering
TNF-α using a monoclonal antibody; here, a rapid effect
on central nociceptive brain activity was found [56].
In the study using anakinra in RA, eight patients were

treated daily for 8 weeks, although there was no

placebo-treated control group [2]. The decrease of fa-
tigue severity was most profound in the first 4 weeks
with visual analog scale (VAS) scores being almost re-
duced by 50%. Decrease of fatigue was paralleled by a
decrease in disease activity.

Sjögren’s syndrome
Another disease that is often accompanied by joint pain
is Sjögren’s syndrome, although diminished salivary and
lacrimal gland function are the hallmarks. Sjögren’s syn-
drome is characterized by autoantibody production
against ribonucleoparticles and mononuclear cell accu-
mulations in exocrine glands. Besides sicca complaints,
fatigue is one of the most frequently noted symptoms in
this disease reported by up to 85% of patients [57]. Fa-
tigue for some part can be explained by an altered sleep-
ing pattern [58], but IL-1 might also be a contributor.
Harboe et al. assessed IL-1 alterations in CSF in 54

adult patients with primary Sjögren syndrome (pSS)
compared to 53 controls [59]. IL-1β concentrations were
below the detection limit of 1 pg/ml for both patients
and controls. IL-1Ra concentrations were significantly
elevated in patients and correlated to fatigue severity
using a visual analog scale (VAS) independent of age and
depression, although this correlation was very weak (r =
0.11, p = 0.015).
The effect of IL-1 inhibition on fatigue severity was

assessed by the same study group in 26 pSS patients [3].
Patients were treated with either daily anakinra or pla-
cebo for a period of 4 weeks and were randomized on a
1:1 basis. Fatigue scores measured with the fatigue sever-
ity scale (FSS) after 4 weeks compared to baseline did
not differ between groups. However, significantly more
patients in the anakinra group had a fatigue reduction of
more than 50% when using the VAS fatigue scale (p =
0.03). This study suggests anakinra could be effective for
treating fatigue in pSS, although the study was probably
underpowered to detect significant changes.

Cryopyrin-associated periodic syndrome
In cryopyrin-associated periodic syndrome (CAPS), a
group of rare diseases with an estimated prevalence of 1
in 360,000 persons [60], increased IL-1β activity plays a
crucial role. CAPS consists of three auto-inflammatory
disorders: familial cold autoinflammatory syndrome
(FCAS), Muckle-Wells syndrome (MWS), and chronic
infantile neurologic cutaneous and articular syndrome
(CINCA). These syndromes are all caused by a mutation
in the NLRP3 gene encoding cryopyrin, a protein which
is responsible for inflammasome activation [61]. Differ-
ent stimuli, for example, cold temperature, in FCAS, can
lead to cryopyrin production in these patients, causing a
systemic inflammatory response mainly caused by IL-1β.
FCAS, MWS, and CINCA are all characterized by
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intermittent episodes of fever, headache, urticarial rash,
and arthralgia [62]. Although these symptoms are typic-
ally present during exacerbations, overall quality of life
is also significantly affected and fatigue is reported by
more than 75% of FCAS patients [63, 64].
The influence of blocking IL-1 on disease severity and

fatigue was assessed in several studies. It should be
noted that the MWS and CINCA patients tend to have
sterile chronic meningitis, which probably results in in-
hibitors having greater entry into the brain [65]. Koné-
Paut et al. assessed the influence of treatment with cana-
kinumab in 35 CAPS patients [66]. At baseline, mean
FACIT-F scores for the whole group were 27.4; after
8 weeks of treatment, the score increased to 40.6, which
is a significant decrease in fatigue (p < 0.05). Symptoms
of fatigue, as rated by the physicians, were already absent
in more than 85% of patients after 8 days of treatment.
In the second part of the study, patients were random-
ized to either canakinumab or placebo. In those patients
randomized to placebo, fatigue recurred. In another
study, the influence of canakinumab on fatigue was
assessed in seven pediatric CAPS patients [67]. At sev-
eral time points, physicians scored fatigue severity using
a 5-point scale. At baseline, fatigue was reported to be
severe in two patients, moderate in three patients, and
mild in one patient. After 1 day of treatment, fatigue
was absent in five patients and minimal in two patients
and this effect was maintained until the next relapse of
fever.
The effect of rilonacept (Regeneron), a soluble IL-1

decoy-receptor construct, was assessed in 47 CAPS pa-
tients in two sequential phase III studies [68]. In the first
double-blind part of the trial, patients were randomized
between weekly rilonacept and placebo for a duration of
6 weeks. In the subsequent second study, patients were
treated with active drug for 9 weeks, followed by another
placebo-controlled period of 9 weeks. Fatigue severity
was measured using a 10-point rating scale by both pa-
tients and investigators. In both groups, fatigue de-
creased significantly during the first phase of the trial,
with a larger decrease in the rilonacept group. In the
third phase of the trial, patients on placebo had a relapse
of symptoms, while patients receiving rilonacept
remained without fatigue.
The influence of anakinra on the development of

symptoms in FCAS was assessed in patients who were
exposed to a cold challenge [69]. In three patients, ana-
kinra was given 24 and 1 h prior to the challenge. None
of the patients developed acute symptoms which they
developed without prior anakinra treatment. Although
not measured objectively, patients reported less fatigue
and increased well being, a feeling that lasted 48–72 h
after the second anakinra dose. In all of the described
studies, the decrease in fatigue was accompanied by less

inflammatory activity both clinically and biologically.
These studies demonstrate the effect of IL-1 on clinical
symptoms and the fast improvement of these symptoms
when IL-1, especially IL-1β, is inhibited.

Sarcoidosis
In sarcoidosis, an inflammatory disease of unknown eti-
ology, patients develop granulomas in involved organs.
The lungs are affected most often, but extra-pulmonary
manifestations are present in up to 30% of patients [70].
Young patients are most often affected, and symptoms
usually resolve within 2–4 years. Even when in clinical
remission of the disease, prevalence of fatigue is rather
high. In a Dutch post-sarcoidosis cohort of 75 patients,
49% of patients reported severe fatigue, which was asso-
ciated with psychological distress and reduced health
status [71].
To explore the involvement of pro-inflammatory cyto-

kines in post-sarcoidosis patients with fatigue, 72 pa-
tients were included in a study by Korenromp et al. [72].
Patients were categorized as being fatigued based on a
Checklist Individual Strength subscale fatigue (CIS-f )
score ≥35 (n = 34) or non-fatigued when the score was
below 35 (n = 38). Whole blood IL-1α and IL-1β produc-
tion was measured after lipopolysaccharide (LPS) stimu-
lation. In plasma, these cytokines were also determined
in addition to IL-1Ra. No differences for these proteins
could be found between groups. The contribution of
IL1β was also assessed in 22 patients with active sarcoid-
osis compared to 22 controls [73]. Fatigue was measured
using the Multidimensional Fatigue Inventory (MFI-20),
and IL-1β concentrations were determined before and
after 11–15 min of cardiopulmonary exercise testing. Be-
tween patients and controls, there were no differences
measured in IL-1β concentrations. However, pre-
exercise circulating IL-1β concentrations in patients sig-
nificantly correlated with fatigue severity in those pa-
tients who used immunomodulatory drugs (n = 13).
Thus, fatigue in sarcoidosis patients seems to be a con-
sequence of treatment rather than of the disease itself.
However, the study population is too small to draw firm
conclusions. The effect of IL-1 inhibition on fatigue se-
verity in sarcoidosis patients has not been assessed.

Non-inflammatory illnesses
Diabetes mellitus
During the past three decades, a large number of studies
have documented a role of IL-1β in type 1 and type 2
diabetes. IL-1β causes selective pancreatic beta-cell tox-
icity, resulting in decreased insulin production [74].
Anakinra might be able to reduce this, disease-
characterizing, islet inflammation in newly diagnosed
type 1 diabetes patients [75] but probably has to be
combined with T cell targeting therapy to reach a
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maximal effect. The effect of anakinra on diabetes
regulation was also assessed in type 2 diabetes [76].
After 13 weeks of treatment, patients needed less dia-
betes lowering drugs to obtain the same glycemic
control. A similar positive response on glycemic con-
trol was established using an anti-IL-1β antibody in
type 2 diabetes [77].
The interaction between peripheral inflammation and

deregulation of central mechanisms was demonstrated
in type 2 diabetic mice [78]. After administration of LPS
or IL-1β, diabetic mice had prolonged sickness behavior
compared to controls. The mechanism for this diabetes-
induced brain immune alteration is unclear, but it ap-
pears that diabetes has an effect on the IL-1β counterre-
gulation, as IL-1Ra did not increase after LPS
administration in diabetic mice.
Both patients with type 1 and type 2 diabetes experi-

ence fatigue, although literature on this subject is scarce.
In a recent study in 214 patients with type 1 diabetes,
severe and persistent fatigue was present in 40% of pa-
tients [79]. Diabetes appeared to be correlated with be-
havioral variables rather than with blood glucose
concentrations. These results lead to the development of
a behavior-based therapy to treat fatigue in type 1 dia-
betes [80]. Cavelti-Weder et al. assessed the efficacy of
XOMA052, a monoclonal anti-IL1β antibody, compared
to placebo in 30 type 2 diabetes patients [4]. Fatigue was
reported by 53% of patients and significantly correlated
to diabetes duration, but not to age, HbA1c, weight, body
temperature, and C-reactive protein. After treatment for
1 month, fatigue decreased in the groups treated with
moderate- and high-dose XOMA052, whereas an in-
crease of fatigue was seen in the low-dose and placebo
groups.

Cancer
In cancer, fatigue is one of the most prominent symp-
toms during all stages of disease, leading to substantial
impairment and disability. A recent study evaluated the
prevalence of fatigue in patients with breast, prostate,
colorectal, and lung cancer undergoing active treatment
(n = 2177) or who had survived cancer (n = 515) [81].
Moderate-to-severe fatigue was reported by 45 and 29%
of patients, respectively. The impact of fatigue on daily
functioning in these patients is even greater than that of
nausea or cancer-related pain [82]. The exact mechan-
ism causing fatigue during and after cancer treatment is
not clear, but it is suspected that pro-inflammatory cyto-
kines, especially TNF-α and IL-1β play an important role
[83]. One of the major reasons for this suspected rela-
tionship is that chemotherapeutic agents are known to
trigger IL-1β release, as mentioned previously [84]. In
the acute situation, such cytokine release promotes sur-
vival, but during the course of anti-cancer treatment, it

is associated with a variety of manifestations of illness, in-
cluding fatigue [85]. A systematic review evaluating the re-
lationship between IL-1 and fatigue in different types of
cancer during and after treatment could not prove IL-1β
concentrations to be significantly correlated to fatigue se-
verity [86]. Patients in different stages of disease were ana-
lyzed as one group, which could have influenced the
results. It is known that different biological processes take
place during treatment and in the post-treatment situ-
ation. However, fatigue could be associated with an in-
crease in circulating IL-1Ra (r = 0.24, p < 0.001) in this
review, thus probably pointing to IL-1 activity.
In addition to a possible effect of IL-1 during cancer

treatment, IL-1 may also influence the persistence of
symptoms after treatment. This was evaluated in a group
of advanced cancer patients (n = 45) and cancer survi-
vors (n = 47) [87]. In both patient groups, IL-1Ra corre-
lated with physical fatigue (r = 0.32, p = 0.03 and r = 0.24,
p = 0.10, respectively). In cancer survivors, IL-1Ra corre-
lated not only with physical fatigue but also with mental
fatigue (r = 0.35, p = 0.02). When comparing both
groups, inflammatory markers were higher in patients
with advanced cancer than in cancer survivors. Concen-
trations of circulating IL-1β and/or IL-1α were not
determined.

Prostate cancer A possible relationship between IL-1
and fatigue in patients treated for prostate cancer has
already been addressed more than two decades ago [88].
In this study, 15 men undergoing external beam radi-
ation therapy for prostate cancer were evaluated for a
period of 8 weeks. Radiation therapy initiates an im-
munological response to stimulate tissue repair, which is
accompanied by an increase in pro-inflammatory cyto-
kines [89]. Patients reported on fatigue daily using a
VAS. IL-1β was determined in serum before the start of
therapy and weekly thereafter. Both concentrations of
IL-1β and fatigue increased during treatment, with a
maximum after 4 weeks of treatment. A correlation be-
tween these measurements was not determined. Al-
though performed in a small number of patients, this
study was the first study on this subject. More recently,
other investigators evaluated inflammatory markers dur-
ing radiation therapy in patients with breast (n = 28) and
prostate (n = 20) cancer [90]. Circulating IL-1β increased
significantly during treatment, although there was a
large variation between patients, and there was no
correlation between IL-1β and fatigue severity. How-
ever, in a subset of 22 patients, IL-1Ra was deter-
mined, which did correlate with reported fatigue. In
another study, a correlation between IL-1β and fa-
tigue was not found [91].
A study conducted in patients with prostate cancer eval-

uated the influence of single-nucleotide polymorphisms
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(SNPs), which are associated with the production of pro-
inflammatory cytokines. The study assessed the develop-
ment of fatigue during androgen-deprivation therapy [92].
Testosterone is suspected to modulate cytokine concen-
trations, especially IL-1β, IL-6, and TNF-α. Variation in
IL-1β genotypes did not predict changes in fatigue scores
in the 53 patients evaluated. Interventions directed to-
wards inhibition of IL-1 have not been performed in pros-
tate cancer.

Breast cancer Several studies have been performed in
breast cancer patients undergoing radio- or chemother-
apy. Geinitz and colleagues investigated the association
between fatigue and cytokine concentrations during ad-
juvant radiotherapy in breast cancer patients [93]. In ac-
cordance with prostate cancer patients undergoing
radiotherapy, fatigue severity reached a maximum after
4 weeks of treatment; IL-1β concentrations in serum did
not change and did not correlate with fatigue severity.
Another study examined potential predictors of fatigue
before, during, and after adjuvant therapy in 44 women
after breast cancer surgery [94]. Blood samples were col-
lected before adjuvant therapy had started. Question-
naires were repeated during and after therapy. Before
adjuvant therapy, higher IL-1β concentrations predicted
fatigue severity. During and after adjuvant therapy, this
association was no longer present, but cytokine concen-
trations were not determined during this period. Liu
et al. measured fatigue and IL-1Ra in a group of 53
women diagnosed with breast cancer before and during
chemotherapy [95]. At baseline, IL-1Ra did not correlate
with higher fatigue levels and had no influence on
changes of fatigue severity during treatment. The most
recent study, performed by Schmidt et al., did find a
small but significant influence of increased IL-6/IL-1Ra
ratio after treatment, which could not be found for IL-
1Ra levels (r = 0.25) [96].
Besides experiencing fatigue during cancer treatment,

breast cancer survivors up to 2 years after completing
treatment also report more fatigue than healthy controls
[97]. This symptom may be due to the cytokine response
initiated by tissue damage during the acute treatment
phase and persists after several years. To investigate the
contribution of pro-inflammatory cytokines to fatigue
after treatment, Bower et al. compared 20 fatigued
women with 20 women without fatigue between 1 and
5 years after breast cancer diagnosis [98]. Fatigued
women had significantly higher concentrations of IL-1Ra
in serum (p = 0.006); there were no differences for IL-1β
concentrations, which were below the detection limit in
almost half of the patients. These observations were not
confirmed in a study in 103 patients 1–3 months after
treatment for breast cancer [99]. Bower et al. also eval-
uated ex vivo whole blood IL-1β production after LPS

stimulation in 10 fatigued and 15 non-fatigued breast
cancer survivors at baseline and after completion of the
Trier Social Stress Test (TSST) [100]. At baseline, there
were no differences with regard to IL-1β production.
However, after completing the TSST, fatigued patients
had significant higher IL-1β concentrations. These find-
ings suggest a higher pro-inflammatory response to psy-
chological stress in fatigued patients. Circulating IL-1Ra
concentrations were determined by the same study
group in 50 fatigued and non-fatigue breast cancer sur-
vivors and were found to be significantly higher in
fatigued patients [101]. Again, this finding was contra-
dicted by a cross-sectional study evaluating IL-1Ra levels
in 299 disease-free breast cancer survivors, who did not
find any positive correlations between this marker and
fatigue severity [102].
The presence of SNPs in promoters of cytokine genes

was also studied in breast cancer survivors (fatigued n =
33, non-fatigued n = 14). The presence of at least one
cytosine nucleotide at the IL-1β gene (rs16944), a com-
mon SNP in many diseases, was reported to be associ-
ated with fatigue [103]. However, in a larger cohort (n =
302), this association could not be confirmed [104].

Other types of cancer In two other types of solid tu-
mors, the involvement of IL-1 in the development of fa-
tigue has been assessed. Orre et al. evaluated 92 fatigued
testicular cancer survivors, compared to 191 non-
fatigued survivors at a median of 11 years after diagnosis
[105]. Cases had significant higher IL-1Ra concentra-
tions than controls. Increased IL-1Ra concentrations sig-
nificantly correlated with physical fatigue, although they
explained only 4% of variance in logistic regression ana-
lysis. A study investigating IL-1 in 15 patients with uter-
ine cancer before, during, and after undergoing curative
radiation therapy failed to prove a correlation, as IL-1
concentrations remained below the detection limit dur-
ing the whole study [106]. No distinction was made be-
tween IL-α and IL-1β in this small pilot study.
In hematologic malignancies, a single study has been

performed that assessed the correlation between fatigue
and IL-1 and IL-1Ra in 54 patients with acute myeloid
leukemia or myelodysplastic syndrome undergoing pre-
treatment evaluation [107]. IL-1Ra concentrations corre-
lated with fatigue severity (r = 0.52). Concentrations of
circulating cytokines were higher in patients than in
healthy controls.
The effect of IL-1α inhibition, using a neutralizing

antibody, on fatigue was determined in 16 patients with
metastatic, treatment-resistant non-small cell lung can-
cer [108]. Quality of life was assessed at baseline and
after 8 weeks of treatment using the European
Organization for Research and Treatment of Cancer,
Quality of Life Questionnaire (EORTC QLQ C-30). After
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8 weeks, fatigue was reported to be less severe, although
this difference was not significant probably due to the
small patient numbers. A significant improvement of fa-
tigue after blocking IL-1α was seen in a large group of
patients treated for metastatic colorectal cancer, in
addition to improvement of appetite and a decrease in
pain severity (personal communications) [109].

Post-stroke fatigue
In patients who experienced a stroke, fatigue is reported
by 29–77% of the population. The prevalence of fatigue
is equally distributed over patients after ischemic stroke
and those who had an intracerebral hemorrhage [110].
With respect to inflammation, high levels of circulating
IL-6 during the acute phase of stroke have been associ-
ated with poor outcome (odds ratio 3.1, 95% CI 1.9–5.0);
these data are derived from a large prospective study
consisting of 844 patients [111]. In subarachnoid
hemorrhage patients, IL-6 concentrations can be low-
ered using intravenous anakinra infusion [112] and
might prove to increase survival in future studies.
The relationship between post-stroke fatigue and in-

flammation was described by Ormstad et al., who in-
cluded 45 patients after a first stroke in a longitudinal
study [113]. Serum samples were collected <24, 24–48,
and 48–72 h after stroke onset in 35, 7, and 3 of the 45
patients. IL-1β and IL-1Ra were measured in available
samples. Fatigue was measured using the Fatigue Sever-
ity Scale (FSS) up to 18 months after stroke. Directly
after stroke, IL-1β concentrations correlated with fatigue
severity after 6 months (r = 0.37, p = 0.015); this correl-
ation could no longer be found after 12 and 18 months.
At 12 months, however, a negative correlation between
IL-1Ra in the acute phase and fatigue was found (r =
−0.38, p = 0.013), a correlation that was not present at 6
and 18 months. Age, gender, comorbidity, and the use of
medication were not confounders for these associations.
These results imply that the acute inflammatory re-
sponse during stroke has an impact on the occurrence
of fatigue in the chronic phase.
In a study of 39 stroke patients, the presence of a C al-

lele at a SNP located in the promoter region of IL1RN was
related to the severity of post-stroke fatigue [114]. The
presence of a C allele in this region has been associated
with lower IL-1Ra concentrations and higher concentra-
tions of circulating IL-1β [115]. In this study, patients
were included within 72 h of stroke onset; fatigue was
assessed using the Fatigue Assessment Scale (FAS) at one
or more time points (30–365 days after stroke). In patients
with severe fatigue, a C/T or C/C genotype was signifi-
cantly more present (88%) than in patients with moderate
(57%) and low fatigue (24%, p = 0.03). This small study is
the only study performed in this field, and circulating
cytokine concentrations were not determined.

Chronic fatigue syndrome
Chronic fatigue syndrome (CFS) is a condition of un-
known origin that is characterized by the presence of se-
vere fatigue for a duration of at least 6 months, next to
several accompanying symptoms such as headaches, sore
throat, and muscle and joint pain [116]. Over the past
decades, CFS has been attributed to a range of different
causes, but a unifying cause has not been found. Even if
a distinct abnormality is found repeatedly, for example
relative hypocortisolism [117], it is difficult to determine
whether this is a causative factor or rather an epiphe-
nomenon as a consequence of inactivity, depressive
symptoms, sleep problems, etc. Perhaps, more than any
other chronic disease associated with fatigue, cytokines
have been measured by several investigators. A relation-
ship between IL-1 and fatigue severity has often been
assessed. The studies reveal a large heterogeneity, not
only with respect to patient characteristics but also with
respect to selection of controls and sample handling. In
addition, there is a large variation in questionnaires used
to measure fatigue dimensions and fatigue-related symp-
toms. These issues make it difficult to draw reliable
conclusions.
A systematic review focusing on circulating cytokines

in CFS was published recently by Blundell et al. [118],
who reviewed all studies published on this subject be-
tween the publication of the first CFS case definition in
1988 [119] to March 2015. All 38 studies measuring cir-
culating cytokines in diagnosed CFS patients compared
to controls were included. As mentioned earlier, there
were large differences with respect to recruitment of
controls, sample handling, and exclusion of concomitant
diagnoses. IL-1α was measured in 11 of the described
studies, 27% of studies found increased concentrations,
and 73% found no significant differences. IL-1β was de-
termined in 28 studies, with only 25% reporting in-
creased concentrations; the other studies did not find
any significant differences. One of the more recent stud-
ies included in the review also discriminated patients
with a short duration of illness (≤3 years, n = 52) from
patients with a long illness duration (n = 246) and con-
trols (n = 348) [120]. It appeared that patients with a
short duration of illness had significantly higher IL-1α
and IL-1Ra concentrations than controls. This was also
found when comparing IL-1β levels in patients with
short versus long illness duration. IL-1β appeared to be
elevated in patients with a short duration and decreased
in patients with a long illness duration (when compared
to controls). After this extensive review of the literature
by Blundell, three more studies on circulating cytokines
were published [121–123]. A study by Russell et al. also
tried to discriminate between patients with different ill-
ness durations [123]. Comparing IL-1 concentrations, no
differences could be found, although it has to be noted
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that patients with a “short” illness duration had been fa-
tigued for a mean of 7 years, which is longer than the
study mentioned earlier. In the linear classification
model, however, IL-1α appeared to have predictive value
in recently ill adolescent patients. Hardcastle et al. com-
pared severely ill, house-bound patients (n = 19), to
moderately ill patients (n = 22) [121]. Although groups
are rather small, IL-1β was significantly elevated in the
moderately ill patients (p = 0.002). There were no differ-
ences for IL-1Ra. The third study could not find any dif-
ferences between patients and controls for either IL-1β
or IL-1α in a group of 100 patients and 79 controls
[122]. We conclude from the literature that there is lim-
ited evidence for increased circulating IL-1 in CFS
patients, although there might be a more pro-
inflammatory pattern in those with a short illness dur-
ation [120].
The effect of physical exercise on circulating cytokines

was discussed in a separate systematic review [124], al-
though some of the studies discussed were also included
in the review by Blundell [125–129]. The conclusion of
this review is that also after exercise of varying intensity,
there are no consistent differences with respect to IL-1β.
Another approach is to compare cytokine production

capacity of PBMCs after stimulation between CFS pa-
tients and controls. An early study reported increased
IL-1β production after LPS stimulation in a small group
of CFS patients (n = 9) compared to controls (laboratory
personal, n = 7) [130]. Swanink et al. recruited neighbor-
hood controls and found the opposite: lower LPS-
induced IL-1β concentrations in patients (n = 76) than in
controls (n = 69), with a large overlap between concen-
trations of cytokines [131]. Lower IL-1β and IL-1α pro-
duction after PHA stimulation was also reported by
Mawle et al. in patients with a gradual onset of symp-
toms; no differences were observed when those with a
gradual and acute onset analyzed together [132]. A
fourth study by Cannon et al., published in the same
period, investigated IL-1β production in women during
different phases of the menstrual cycle [133]. In controls,
spontaneous IL-1β production by PBMCs increased dur-
ing the luteal phase, which already has been observed in
healthy subjects many years ago [134]. However, this
could not be found in CFS patients. One recent study
reported no differences between CFS patients and con-
trols [135].
IL-1β production by PBMCs in relation to fatigue has

also been studied during the acute phase of an infection
[136] and in the phase of persisting symptoms [137].
During the acute phase, the IL-1β concentration corre-
lated significantly with fatigue symptoms; however, this
relationship disappeared in the persistent phase. The
perpetuation of fatigue symptoms in the absence of per-
ipherally increased cytokine concentrations suggest that

other, most likely central mechanisms, may be involved
in persistent fatigue after an acute infection.
With the brain as the suspected target organ for im-

munological dysregulation in CFS, a limited number of
studies measured cytokine concentrations in cerebro-
spinal (CSF) fluid of patients. The first study, performed
in 1991 by Lloyd et al., found no differences in IL-1β
concentrations between patients and controls [138].
Others had similar findings, and both IL-1α and IL-1β
tended to be below the detection limit [139, 140]. A
more recent study compared 32 CFS patients to 40 pa-
tients with multiple sclerosis (MS) and 19 controls [141].
CFS patients had lower CSF concentrations of both IL-
1β and IL-1Ra compared to the MS and control group.
When CFS patients were compared with MS patients
only, IL-1α levels were also significantly lower.
Instead of creating more insight into pathological

mechanisms in CFS, the described studies tend to raise
more questions with respect to the role of IL-1 in CFS.
It could be that disturbances of IL-1 signaling are only
present in certain groups, for example only in those
patients with short illness duration or those who ex-
perience fatigue after an infection, instead of when all
patients are considered together. One possible way to
elucidate the role of IL-1 in CFS is to investigate the
effect of blocking IL-1 on fatigue severity in CFS pa-
tients [142].

Conclusions
In this review, we first described the mechanism by
which IL-1 is able the influence certain brain regions,
thereby leading to the development of fatigue. Next, we
reviewed the literature describing studies where (i) fa-
tigue was correlated to IL-α, IL-1β, or IL-1Ra activity or
(ii) the effect of lowering IL-1 concentrations on fatigue
severity was measured. In addition to inflammatory
diseases such as CAPS, we also focused on non-
inflammatory diseases characterized by profound fatigue,
such as several malignancies and CFS. There might be a
distinctive underlying mechanism causing fatigue in in-
flammatory disorders, compared to the other groups of
fatigue causing illnesses. In inflammatory diseases, fa-
tigue often has an acute pattern; however, in subgroups
of patients, fatigue persists even when the inflammation
phase has subsided.
It can be concluded that there is no solid evidence that

increased concentrations of circulating IL-α and IL-1β
are associated with fatigue in any of the diseases de-
scribed. This is not surprising, given the fact that circu-
lating concentrations of these cytokines usually are very
low, as discussed previously [12]. However, IL-1Ra seems
to be correlated with fatigue in some diseases, for ex-
ample in cancer. However, in each of the studies de-
scribed in this review, but especially in CFS, studies are
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rather contradicting. For a large part, this can be caused
by the fact that there is a large heterogeneity between
studies. Selection of controls and sample handling,
which is known to be very important when measuring
cytokines, differed significantly between studies or was
not described [143]. Furthermore, studies differed with
respect to questionnaires used to measure fatigue, the
presence of comorbid diseases, the use of medication in
the patients studied, sample size, time since onset of the
disease, duration of the fatigue (acute versus chronic),
and the presence or absence of inflammatory processes.
For blocking IL-1 activity, most of the currently avail-

able inhibitors do not reach effective concentrations in
the brain when the blood brain barrier is intact. This
particularly is the case for the large molecular inhibitors
(like canakinumab and rilonacept). For anakinra, which
has a smaller molecular weight of 17 kDa, the available
pharmacological data show that the drug is able to reach
the CNS after peripheral administration, although it is
not clear if the local concentration in the CNS is high
enough to have a substantial influence on neural pro-
cesses [144, 145].
In diseases such as rheumatoid arthritis [2] and

Sjögren’s syndrome [3], blocking IL-1 using anakinra re-
veals promising effects on fatigue. In addition, specific
inhibition of either IL-1α [109] or IL-1β [4] also has a
positive influence on fatigue severity. Unfortunately, the
majority of the studies were not randomized controlled
trials [2, 4] or were most likely underpowered to detect
significant effects [3]. If IL-1 blockade effectively dimin-
ishes fatigue, the question of course remains whether
this is a direct effect on central fatigue, whether the ef-
fect on fatigue is due to inhibition of inflammation, or
whether IL-1 blockade directly affects central neuro-
transmitter systems. Also, it is important to determine if
the positive effects of IL-1 blockade are limited to acute
fatigue or are also present in patients who report persist-
ent fatigue without evidence of being ill. Especially in
this last group, persistent fatigue may involve mainten-
ance of alterations in central brain systems, potentially
triggered by acute inflammation.
With regard to future studies, it is our hope that these

will be performed in more controlled settings, which will
make it easier to draw conclusions and to establish
whether fatigue should or should not be added to the
growing list of diseases in which blocking IL-1 is effect-
ive [146].
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