Cadmium Inhibition of the Erythrocyte Ca²⁺ Pump

A MOLECULAR INTERPRETATION*

Pieter M. Verbost, Gert Flik, Peter K. T. Pang†, Robert A. C. Lock, and Sjoerd E. Wendelaar Bonga

From the Department of Animal Physiology, Faculty of Science, Toernooiveld 2, 6525 ED Nijmegen, The Netherlands and the
Department of Physiology, School of Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2H7

The effects of cadmium (Cd²⁺) on transmembrane Ca²⁺ transport and on the membrane permeability for Ca²⁺ were studied in human erythrocytes. The erythrocyte Ca²⁺ pump is inhibited competitively by Cd²⁺ via interaction with the Ca²⁺ transport site of the carrier and not via interaction with its activator calmodulin. The affinity of the Ca²⁺ pump for Cd²⁺ is extremely high (Kᵢ = 2.0 nM Cd²⁺). Cd²⁺ (≤10⁻⁴ M) does not alter the membrane permeability for Ca²⁺. We conclude that the pivotal mechanism in the toxic action of Cd²⁺ is the inhibition of Ca²⁺-ATPase-mediated Ca²⁺ extrusion. As a result Cd²⁺ disturbs intracellular Ca²⁺ homeostasis and may increase cytosolic Ca²⁺ (Ca²⁺ᵢ) to toxic levels.

Cadmium, reputed for its toxicity, has become widely distributed in the environment as an industrial waste. The mechanism of cadmium toxicity is incompletely understood although a specific interaction with the cellular calcium metabolism has been indicated. Several cellular Ca²⁺ acceptors are Cd²⁺ targets as well. The similar behavior of Ca²⁺ and Cd²⁺ with regard to, for example, calmodulin (1–4) has been attributed to a comparable charge and ionic radius of Ca²⁺ and Cd²⁺ (5). However, Cd²⁺ blocks Ca²⁺ channels (6, 7), inhibits Na⁺/Ca²⁺ exchange processes (8), and impedes the plasma membrane Ca²⁺ pump (9–11). In vivo, Cd²⁺ poisoning results in anemia as a result of increased erythrocyte clearance (12). An important indicator for Cd²⁺ poisoning is an increase in Ca²⁺ᵢ. Incubation of erythrocytes with Cd²⁺ (0.5 mM for 1 h) accelerates age-related changes of the cells, such as increased cell density, loss of discoidal shape, and decreased filterability. The same changes can be induced by calcium loading of the cells (13). Scott et al. (10) have shown that Cd²⁺ exposure increases ⁴⁵Ca²⁺ accumulation by lymphocytes, but not as a result of enhanced Ca²⁺ influx. The authors related the increased accumulation of ⁴⁵Ca²⁺ to an inhibition of the Ca²⁺ pump by Cd²⁺. Accumulation of Cd²⁺ in human platelets resulted in increased protein phosphorylation (14) which may be ascribed to an increase in Ca²⁺ᵢ (15). Cd²⁺ may increase Ca²⁺ᵢ by enhancing the Ca²⁺ permeability of the cell membrane (15) or by inhibiting the Ca²⁺ pump (10). At least two mechanisms of Ca²⁺ pump inhibition by Cd²⁺ may be anticipated, viz. by interaction with the Ca²⁺ transport site of the ATPase or by interaction with the Ca²⁺ binding sites of its regulator calmodulin.

Erythrocyte membranes were used in this study because the maintenance of low free intracellular Ca²⁺ in these cells is achieved merely by a calmodulin-dependent Ca²⁺/Mg²⁺-ATPase (16). Buffers containing EGTA,¹ HEEDTA, and NTA were used in the vesicle Ca²⁺ transport study to define the physiologically active free Ca²⁺ and Cd²⁺ concentrations in the assay media.

MATERIALS AND METHODS

Preparation of Ghosts—Ghosts were prepared according to Schatzmann (26), with minor modifications; the medium for hemolysis contained 15 mM KCl, 4 mM MgCl₂, 10 mM sucrose, 10 mM Tris-HCl, pH 7.4. 1 mM EGTA was added to this hemolyzing medium if the ghosts had to be loaded with EGTA. The osmolarity of the hemolysis medium was 69 mosm.

The membrane orientation was determined according to Steck and Kant (27). The ghost preparation was 8.7 ± 3.0% inside-out and 87.3 ± 2.3% right-side-out (n = 9). Preparation of ghosts in the presence of ⁴⁵Ca²⁺ EGTA had no effect on the membrane resealing or orientation: 6.5 ± 3.8% was inside-out and 88.2 ± 2.8% was right-side-out (n = 3).

Preparation of Vesicles—Resealed IOV were prepared from freshly collected human blood, according to Sarkadi et al. (28). Sodium-heparin was used as an anticoagulant (100 IU/ml). The vesicle preparation used in these studies was 52.3 ± 10.2% IOV and 39.0 ± 12.9% (n = 7) right-side-out vesicles.

*Ca²⁺ Accumulation in Ghosts—Before the ⁴⁵Ca²⁺ accumulation experiments, ghosts were washed and resuspended in incubation medium (126.5 mM NaCl, 5.4 mM KCl, 0.4 mM MgSO₄, 20 mM HEPES/Tris, pH 7.4) to a protein concentration of 3.15 ± 0.67 corresponding to 25.7 ± 4.5% hematocrit (n = 14). After prewarming this suspension to 37 °C, ⁴⁵Ca²⁺ uptake was started by adding ⁴⁵Ca²⁺ (1 × 10⁶ Bq/ml), CaCl₂ (final concentration 0.42 mM), and Ca(NO₃)₂ as required. Sequential 100-µl samples were taken and mixed with 2 ml of ice-cold stop buffer containing 150 mM NaCl, 20 mM Tris, pH 7.2, and 1 mM LaCl₃. After centrifugation (10 min, 1200 x g) the supernatant was removed by suction. Variation in the amount of protein per sample collected by centrifugation was constant (deviation 6.2 ± 1.5%, n = 28). The pellet was lysed in 300 µl of water and transferred to a counting vial.

Ca²⁺ Transport Assay—Vesicles were resuspended in 150 mM KCl, 1.5 mM MgCl₂, 20 mM Tris/Hepes, pH 7.4. Ca²⁺ transport into membrane vesicles was determined using a rapid filtration technique (29). The content of membrane vesicles in suspension was determined on the basis of protein concentration, determined with a Coomassie Blue kit with bovine serum albumin as standard (Bio-Rad). Media and assay conditions are described in detail in Ref. 31. Free Ca²⁺, Cd²⁺, and Mg²⁺ concentrations were calculated with a matrix computer program (29) taking into account the first and second protonations of the respective ligands (ATP, EGTA, HEEDTA, NTA).

¹The abbreviations used are: EGTA, [ethylenebis(oxy-ethylenenitrilo)]tetraacetic acid; HEEDTA, N-(2-hydroxyethyl)-ethylenediamine-N,N′-N′-triacetic acid; NTA, nitrilotriacetic acid; IOV, inside-out vesicles; Hepes, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid.

5613
binding constants were taken from Sillen and Martell (30) except the one for Cd-ATP ($K_d = 5.43 \text{ M}^{-1}$) which was determined in our laboratory (31). ATP-driven Ca$^{2+}$ transport in plasma membrane vesicles was determined as the difference of Ca$^{2+}$ retained in the presence and in the absence of ATP. In all kinetic studies initial velocities were determined from 1-min incubations. Under all conditions Ca$^{2+}$ transport followed Michaelis-Menten kinetics. Kinetic parameters were derived from best fits of the curves using a non-linear regression data analysis program (32).

RESULTS

Ca$^{2+}$ accumulation in ATP-depleted, erythrocyte ghosts plateaus within 5 min at around 15 nmol of Ca$^{2+}$ (mg protein)$^{-1}$ (Fig. 1). Loading with EGTA does not affect Ca$^{2+}$ accumulation. Permeation of the ghosts with the Ca$^{2+}$ ionophore A23187 (10 μg·ml$^{-1}$) increases the amount of 45Ca$^{2+}$ accumulated, showing that a Ca$^{2+}$ gradient (high outside, low inside) is conserved during the experimental period of 60 min. Cd$^{2+}$ levels up to 0.1 mM have no effect on the Ca$^{2+}$ accumulation, and 1.0 mM Cd$^{2+}$ significantly inhibited the accumulation.

The rate of ATP-dependent Ca$^{2+}$ transport was constant for at least 2 min. At 15 min, 95 nmol of Ca$^{2+}$ (mg protein)$^{-1}$ had accumulated. Addition of A23187 (10 μg·ml$^{-1}$) induced release of 45Ca$^{2+}$ accumulated in the membrane vesicles by the ATP-driven process (inset, Fig. 2).

The maximum transport velocity of the Ca$^{2+}$ transporter (V_{max}) was 18.8 ± 1.2 nmol of Ca$^{2+}$ min$^{-1}$ (mg protein)$^{-1}$ (or 35.9 nmol of Ca$^{2+}$ min$^{-1}$ (mg IOV protein)$^{-1}$), and an affinity (K_m) for Ca$^{2+}$ of 0.48 ± 0.10 μM was observed.

The IOV isolation method used (28) yields calmodulin-depleted membrane vesicles. Calmodulin repletion (10 μg·ml$^{-1}$) increased the V_{max} by 140% but did not effect the K_m for Ca$^{2+}$. Thus, calmodulin exclusively stimulates the maximal transport velocity of the Ca$^{2+}$ pump, an observation in line with that of other researchers using Ca-EGTA buffers (16).

In a medium in which Ca$^{2+}$ is buffered to 1 μM Ca$^{2+}$, Ca$^{2+}$ transport is half-maximally inhibited at 6.06 ± 1.72 nM Cd$^{2+}$ (Fig. 3). At all Cd$^{2+}$ concentrations above 1 nM (no effect level) Ca$^{2+}$ transport was significantly inhibited.

Cd$^{2+}$ did not effect the V_{max} of Ca$^{2+}$ transport but significantly increased the K_m for Ca$^{2+}$, both in the absence and in the presence of calmodulin (Fig. 4). This increase was linear from 1 to 5 nM Cd$^{2+}$, which defines the inhibition as competitive.

In Fig. 5 the apparent K_m for Ca$^{2+}$ is plotted versus medium Cd$^{2+}$ concentration. From this plot a K_f value of 2.0 nM Cd$^{2+}$ was derived (33).

DISCUSSION

Erythrocyte, ATP-driven transmembrane movement of Ca$^{2+}$ proved extremely sensitive to Cd$^{2+}$. The K_f for Cd$^{2+}$ is 100 times as high as the K_m for Ca$^{2+}$. This K_f indicates the involvement of thiol groups in Ca$^{2+}$ transport. Thiol groups are known to have a high affinity for Cd$^{2+}$ ($pK_d \sim 17$; Ref. 17). Indeed, the DNA sequence of the Ca$^{2+}$-ATPase from rabbit muscle sarcoplasmic reticulum (18) predicts that the Ca$^{2+}$ binding site contains a SH group. Hepatocyte microsomal Ca$^{2+}$ sequestration (which is Ca$^{2+}$-ATPase-mediated) is critically dependent on protein sulfhydryl groups, and modification of protein thiols may be an important mechanism for the
inhibition of microsomal Ca\(^{2+}\) sequestration by a variety of toxic agents (19). Although the Ca\(^{2+}\) pumps of the plasma membrane and of the endoplasmic or sarcoplasmic reticulum are immunologically distinct (21), we postulate that a conserved Ca\(^{2+}\) binding region makes these systems equally sensitive to Cd\(^{2+}\) inhibition. Indeed, we observed that Ca\(^{2+}\) sequestration in endoplasmic reticulum and Golgi apparatus of rat duodenal cells (a process dependent on a similar Ca\(^{2+}\)-ATPase as found in plasma membranes of rat duodenum (20)) is as sensitive to Cd\(^{2+}\) as the plasma membrane Ca\(^{2+}\) pump (11). We conclude that for Cd\(^{2+}\) intoxication membrane Ca\(^{2+}\) pumps are the most sensitive membrane transport system described thus far.

One could argue that Cd\(^{2+}\) affects the membrane integrity instead of inhibiting Ca\(^{2+}\) transport in membrane vesicles. High concentrations of Cd\(^{2+}\) may increase the permeability to Ca\(^{2+}\) of plasma membranes of erythrocytes and hepatocytes (15, 22). However, from our experiments such an effect appears unlikely: the membrane permeability for Ca\(^{2+}\) in ghosts is not influenced by up to 0.1 mM Cd\(^{2+}\). Moreover, at 1.0 mM Cd\(^{2+}\), \(^{46}\)Ca\(^{2+}\) accumulation was inhibited rather than enhanced as one may predict when Cd\(^{2+}\) increases the membrane permeability for Ca\(^{2+}\). Competition of Cd\(^{2+}\) with Ca\(^{2+}\) could be responsible for this observation.

We have at least three reasons to conclude that the inhibition is not through calmodulin. First, although Cd\(^{2+}\) activates calmodulin (1–3, 5) and may stimulate Ca\(^{2+}\)- and calmodulin-dependent enzymes (23), such an interaction seems unlikely on the erythrocyte Ca\(^{2+}\) pump. As the affinity of calmodulin for Ca\(^{2+}\) and Cd\(^{2+}\) in vitro is in the micromolar range (4, 23) and the Cd\(^{2+}\) concentration in our media is at least a 100 times lower than the Ca\(^{2+}\) concentration, the formation of Cd-calmodulin complexes will be insignificant. Second, indirect inhibition of the Ca\(^{2+}\) pump via Cd\(^{2+}\) binding to calmodulin is unlikely since the inhibition is competitive, and stimulatory effects of Cd\(^{2+}\) on calmodulin would have affected the \(V_{\text{max}}\). Third, at 5 nM Cd\(^{2+}\) (inhibiting Ca\(^{2+}\) transport in calmodulin-depleted membrane vesicles by 40–50\%) calmodulin repletion has stimulatory effects on IOV Ca\(^{2+}\) transport. The same \(V_{\text{max}}\) is observed for calmodulin-stimulated Ca\(^{2+}\) transport whether Cd\(^{2+}\) is present or not. Thus, a binding site for Cd\(^{2+}\) other than on calmodulin is involved. We therefore conclude that Cd\(^{2+}\) inhibits Ca\(^{2+}\) transport by competing with Ca\(^{2+}\) for the Ca\(^{2+}\) binding site of the enzyme.

In several studies (4, 9, 23, 24) it was concluded that Cd\(^{2+}\) exerts its toxic action by upsetting calmodulin dependent enzyme systems by binding to calmodulin. Micromolar concentrations Cd\(^{2+}\) are required in vitro to obtain significant activation of calmodulin by Cd\(^{2+}\) (e.g. induction of tyrosine fluorescence, stimulation of phosphodiesterase). Obviously, the unprecedented 1000-fold higher affinity for Cd\(^{2+}\) of the membrane Ca\(^{2+}\) pump makes this enzyme the “most sensitive Cd\(^{2+}\) target” in a cell exposed to Cd\(^{2+}\).

The conclusion that the Cd\(^{2+}\) inhibition of the Ca\(^{2+}\) pump is calmodulin-independent has important consequences for the extrapolation to in vivo conditions. At the resting Ca\(^{2+}\), (≤0.1 \(\mu\)M), most of the calmodulin is dissociated from the erythrocyte Ca\(^{2+}\) pump (25). As we have shown here, the pump may still be inhibited by Cd\(^{2+}\) at this Ca\(^{2+}\). Yet, a subsequent calmodulin stimulation, resulting from a rise in Ca\(^{2+}\), may give a partial restoration of low Ca\(^{2+}\), as inhibition by Cd\(^{2+}\) of the enzyme activity does not preclude activation of the enzyme by calmodulin. For a full understanding of these processes it is necessary to monitor Ca\(^{2+}\), during cadmium exposure. However, this research has proved difficult since Cd\(^{2+}\) interacts with the well known Ca\(^{2+}\) probes quin2, fura-2, and indo-1.\(^2\,3\).

FIG. 5. \(K_m\) for Ca\(^{2+}\) at various Cd\(^{2+}\) concentrations. The \(K_m\) value derived is 2.0 nM Cd\(^{2+}\).

REFERENCES

\(^2\) R. Y. Tsien, personal communication.

\(^3\) P. M. Verboet, G. Flik, P. K. T. Pang, R. A. C. Lock, and S. E. Wendelaar Bonga, unpublished results.